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Abstract: Arsenic, a potent carcinogen and neurotoxin, affects over 200 million people globally.
Current detection methods are laborious, expensive, and unscalable, being difficult to implement
in developing regions and during crises such as COVID-19. This study attempts to determine if
a relationship exists between soil’s hyperspectral data and arsenic concentration using NASA’s
Hyperion satellite. It is the first arsenic study to use satellite-based hyperspectral data and apply
a classification approach. Four regression machine learning models are tested to determine this
correlation in soil with bare land cover. Raw data are converted to reflectance, problematic atmo-
spheric influences are removed, characteristic wavelengths are selected, and four noise reduction
algorithms are tested. The combination of data augmentation, Genetic Algorithm, Second Derivative
Transformation, and Random Forest regression (R2 = 0.840 and normalized root mean squared error
(re-scaled to [0,1]) = 0.122) shows strong correlation, performing better than past models despite us-
ing noisier satellite data (versus lab-processed samples). Three binary classification machine learning
models are then applied to identify high-risk shrub-covered regions in ten U.S. states, achieving
strong accuracy (=0.693) and F1-score (=0.728). Overall, these results suggest that such a methodology
is practical and can provide a sustainable alternative to arsenic contamination detection.

Keywords: remote sensing; machine learning; imaging spectroscopy; environmental contamination;
land cover; satellite imagery; dimensionality reduction; arsenic detection; EO-1 Hyperion

1. Introduction

Contamination due to heavy metal pollution has emerged as one of the leading envi-
ronmental concerns in the last few decades, causing a variety of adverse effects on both
human and overall ecosystem health. Human activities such as poor waste management,
fossil fuel exploitation, and excessive mining of metal ores release arsenic (As) into soil and
groundwater [1], from where it can easily spread throughout the environment. In 2020,
an estimated 220 million people worldwide were exposed to arsenic concentrations that ex-
ceeded recommended limits [2,3]. Densely-populated Asian countries such as China, India,
Cambodia, Pakistan, and Vietnam are among the most severely impacted, but detrimental
arsenic contamination has also been found in large concentrations in Argentina and parts
of the United States [3].

Arsenic is found abundantly in both the Earth’s crust and on the surface [4]. Past
medical research and data show that inorganic arsenic exposure can cause many different
types of cancer such as lung cancer [5], leading to its classification as a Group 1 human
carcinogen [6]. Published literature further indicates that arsenic is toxic to human neural
development: consuming arsenic has been linked with oxidative stress, which interferes
with the biological ability to detoxify accumulating oxygen reactive species and potentially
contributes to aging, neurogenerative diseases, and cancer [7]. Inorganic arsenic can easily
increase risks of pregnancy outcomes such as impaired fetal growth [8]. Arsenic poison-
ing also has many economic implications as it affects agriculture, water management,
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and public health [9]. Coupled with its mobility in the environment as part of natural
biogeochemical cycles, arsenic poses a serious threat to human health. Traditional ap-
proaches to arsenic contamination detection involve two methods: lab-based techniques
and colorimetric field tests.

Lab-based techniques, primarily involving High-Performance Liquid Chromatogra-
phy (HPLC), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Optical Emission
Spectroscopy (OES), and Atomic Absorption Spectrometry (AAS), have been the traditional
way to detect arsenic since the 1990s, with advances in technology allowing for more pre-
cise detection of arsenic [10]. However, even with the significantly cheaper costs of the OES
and AAS instruments due to trade-offs in their detection limits, the cost of using any of
these lab-based spectral technologies is in the thousands of dollars [10]. These instruments
are also known to be laborious and unportable due to their design. Furthermore, as arsenic
is often distributed unevenly throughout an area, known as spatial heterogeneity [11,12],
laboratory methods for one area are often not accurately applicable to other regions.

Methods directly implementable in the field include the Gutzeit method, which works
by forming a color complex when arsine gas (AsH3) reacts with mercuric bromide, with the
intensity of the color being proportional to the arsenic concentration in the water sam-
ple [13]. However, the interpretation of this color change requires the human user to rely
on accurate visual perception, making it difficult to operate without training. In addition,
researchers have found the results to differ noticeably from the more accurate lab test
results [13]. One study found that the kits gave 68% false negative results and 35% false
positive results, with 44.9% of samples found to have been mislabeled, especially those
below the upper safety limit of arsenic [14]. Furthermore, even if the cost of one test is
cheap, applying tests multiple times to hundreds of sites can amount to high costs.

Recent advances in remote sensing and machine learning can make a more scalable
and low-cost solution possible. Hyperspectral remote sensing is an emerging field that
uses imaging spectroscopy to obtain images in continuous spectral ranges from 0.4 to
14 µm [15]. Compared to its predecessor, multispectral imaging, hyperspectral imagery
offers a variety of advantages, including high spatial resolution and an appreciably larger
amount of spectral information [16]. Hyperspectral imagery has been used to remotely
study chemical and physical properties of the geology of a given region, with application
to fields such as precision agriculture, ecological modeling and monitoring, discovering
important ores, and urban planning [17]. NASA’s EO-1 Hyperion satellite, which orbited
the Earth daily from 2001 to 2017 and gathered over 54 terabytes of data in the process,
pioneers important use of this technology. Hyperion provides high spectral resolution data
with 242 bands at 10 nanometer (nm) spectral resolution, 30 m length pixels, and swath
width of 7.5 km [18], collecting detailed images (in the form of 3D-cubes) over a large
geographical area relatively efficiently.

Multiple research studies have been conducted in the past few years to explore relation-
ships between hyperspectral data and heavy metal contamination in bare soil, including As,
Chromium (Cr), Cadmium (Cd), Lead (Pb), and Zinc (Zn), using regression-based machine
learning approaches on small-field scales with lab-processed soil data and hyperspectral
measurements [11,12,18–27]. This approach is advantageous because it offers a remote
yet effective technique for scalable heavy metal detection. Most of these studies indicate
reasonable success with similar methodologies across all the mentioned heavy metals.
For example, when detecting arsenic, Zhang et al. [20] used a GA-enhanced machine
learning model to achieve 35.0% correlation between the two variables, and Liu et al. [22]
used a Particle Swarm Optimized (PSO) Back Propagation Neural Network (BPNN) to
achieve 81.1% correlation.

A lesser number of studies have been conducted using airborne sensors and multi-
spectral satellites [28–30]. Peng et al. [28] studied bare Qatari soils and were able to detect
a variety of heavy metals, including arsenic, using multispectral imagery from Landsat 8
with good accuracy. However, multispectral imagery offers less spectral information than
hyperspectral imagery. The Landsat satellite itself also has limitations due to slow repeated
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global coverage [31]. While Choe et al. [30] studied heavy metals using the hyperspectral
HyMAP, they used an airborne sensor that comes with low area coverage and high opera-
tional costs [18]. Both are significant disadvantages in large-scale monitoring, especially
when compared to the use of Hyperion.

To the author’s knowledge, no published study has yet used hyperspectral data di-
rectly from an orbiting satellite besides a cadmium-focused implementation of the HJ-1A
satellite that did not yield promising results for arsenic [32]. Furthermore, no published
study has tested applicability to shrub-covered regions nor applied a classification ap-
proach over a large-field scale. In this study, it was hypothesized that data from Hyperion
combined with a regression-based machine learning approach on bare soil would yield
strong correlation and comparable results to the best models (using less noisy lab-based
data) used in literature (R2 > 0.7). Second, it was hypothesized that high-risk shrub-
covered soil could be identified with reasonable metrics using binary classification. Third,
it was hypothesized that the application of spectral preprocessing, data augmentation,
and dimensionality reduction would serve to increase the accuracies of the baseline mod-
els. Note that dimensionality reduction has some disagreement in literature regarding its
effectiveness and necessity; while some studies’s models benefit from it [21], some have
found it ineffective [26].

The results indicated that all three of the above hypotheses were met, with the DA
+ GA + SD + RF regression model achieving R2 = 0.840 and the Multi-Layer Perceptron
(MLP) binary classification model achieving an average accuracy = 0.693 and F1-score = 0.728.
Overall, the goal of this study was able to identify a simple, versatile, and effective approach
that can provide a low-cost, rapid, less labor-intensive, and still accurate alternative to
arsenic contamination detection, which was successfully accomplished.

2. Materials and Methods

The primary objective of this research is to determine whether a correlation can be
determined between hyperspectral satellite data and soil arsenic concentration, with the
secondary goal of extending this to a new land cover and classification approach if the first
is successful. All data were obtained from publicly available resources and all algorithms
were coded in Python. All work was done over the course of a year using a standard home
laptop, further illustrating the power and versatility of the method. A flowchart illustrating
all of the major steps is diagrammed in Figure 1.

Soil Data

WQP & USGS

Soil As content & risk

USGS Earth Explorer 
Hyperion Image Swaths

Hyperspectral Data 
Bands (242)

SG MSC

Regression Train/Test

KNN

Overfit & optimization

PLSR RF BPNN

High-Risk Classification

FD SD

Data Augmentation SVM RFC

Atmospheric 
Correction

Dimensionality 
Reduction (GA)

MLP

Figure 1. Workflow diagram for arsenic detection from hyperspectral satellite data. WQP stands for
the Water Quality Portal and USGS is the United States Geological Survey. Other abbreviations are
listed at end of the article.
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2.1. Data Acquisition

Publicly available data for soil arsenic concentration in the United States between
2005 and 2020 for both aforementioned land covers (in mg/kg) were processed for the top
layer of soil (0–5 cm depth). After cross-referencing with availability of EO-1 Hyperion’s
hyperspectral data, soil arsenic data from the regions highlighted in Figure 2 were selected
for bare soil regression (the data used for shrub land classification is described later).
A total of 55 bare soil arsenic concentration values, with concentrations between 1.4 mg/kg
and 380 mg/kg, were used for regression analysis. Hyperion hyperspectral data were
downloaded as rectangular image swaths. The actual hyperspectral values were taken
from the 30 m by 30 m subplot that contained the selected coordinate. All coordinates
chosen were identified to be in different subplots in order to prevent overlap.
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Figure 2. Map of the Western United States showing the locations of the 55 locations picked as part of
bare soil regression validation dataset in this study. Data were chosen from USGS sites in sub-regions
A-G (indicated with red squares), with the specific locations in each sub-region shown in Figure 3.
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Figure 3. Data from USGS sites in sub-regions (A–G), with each specific location in each sub-region
shown in subplots 2 (A–G), as labeled in Figure 2. Differences in background color are topographic
variations (not easily visible due to the zoom-in on the relevant regions).

2.2. Geometric and Atmospheric Corrections

Preprocessing of the hyperspectral satellite data is necessary to reduce noise and data
redundancy, reducing the error caused by external influences.

Geometric correction involves distortions caused by errors such as the satellite’s
positioning on its orbit and angle changes due to Earth’s rotation. NASA performs most
base-level geometric processing before releasing Hyperion datasets publicly [33]. NASA’s
provided datasets contain hyperspectral values in a 2D format, with swaths angled away
from geographic north while measuring regions (due to Earth’s rotation). Given the
latitude-longitude coordinates of the four corners, a linear interpolation approach was
used to determine the specific swath pixel containing the desired latitude-longitudinal
location. As the geographical scale of each individual swath (averaging approximately
1.3 degrees of latitude and 0.4 degrees of longitude) is relatively small, linear interpolation
provides very reasonable approximations.
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Next, to correct for problematic atmospheric conditions, the default numerical radi-
ance values were converted into reflectance values using the well-known formula [34]:

ρρ =
πLλd2

cosθs · ESUNλ
,

where ρρ is reflectance, Lλ is the spectral radiance at the sensor’s aperture, d is the Earth–
Sun distance in astronomical units (AU), ESUNλ is the mean solar exo-atmospheric irradi-
ance (provided by NASA), and θs is the solar inclination angle in degrees. As reflectance
measures the ratio of the amount of light leaving a target location to the amount of light
striking the target, the conversion helps minimize the effects of atmospheric scattering,
varying Earth–Sun distances, and solar elevation at time of measurement.

Next, potentially troubling Hyperion bands are identified and filtered out based
on past literature and basic atmospheric principles [34–36]. The Hyperion Visible-Near
Infrared (400–1100 nm) sensor makes up 70 of the 242 hyperspectral bands, with the
other 172 composed from the Short-wave Infrared (1100–2500 nm) sensor. Due to low
sensitivity regions and overlap between the two sensors, bands 1 to 7, 58 to 78, and 224 to
242 are removed from the dataset. Atmospheric water vapor bands, which absorb almost
all relevant solar radiation, and bands likely to contain unstable atmospheric effects are
further removed. The final subset consists of 155 bands: 10 to 57 (448–926 nm), 81 to
97 (953–1114 nm), 101 to 119 (1155–1336 nm), 134 to 164 (1488–1790 nm), and 182 to 221
(1972–2365 nm).

A concern with using satellite-based hyperspectral imagery as opposed to lab-based
spectrometers is that the satellite might be picking up on a factor such as geology or
land/ground cover (shrubland, forest, bare ground, urban/suburban, etc.) as opposed
to the actual differences in arsenic concentration. Spectra for regions that have similar
land cover and overall soil composition but differences in arsenic concentration were
first visually compared to investigate if this was occurring; the results of this analysis are
presented in Section 3.1 of this paper (‘Land Cover Verification’).

2.3. Spectral Preprocessing

For the final preprocessing step, four different spectral preprocessing methods were
tested, each having its distinct advantages and successes in past research [19]: Savitzky–
Golay (SG), First Derivative Transformation (FD), Second Derivative Transformation (SD),
and Multiplicative Scatter Correlation (MSC). SG smoothing allows for the improvement
of the accuracy of noisy synthetic data without losing important baseline trends [37,38].
FD can improve data stability. SD magnifies smaller differences between wavelengths and
reduces some sources of random error caused by external factors through this focus on
differences. MSC can correct for certain errors caused by light scattering [26].

For the purposes of this study, each of the SG, FD, and SD filters use a window length
(the number of coefficients) of 17 and a polynomial order/degree of 4, as consistent with
past hyperspectral research [18,26]. The predictive ability of these four noise reduction al-
gorithms was tested by combining their processing of the spectra with the PLSR ML model.
R2 and nRMSE values of each model were compared against the other transformations and
the main models, as explained later.

2.4. Regression Analysis with Bare Soil Regions
2.4.1. Machine Learning Models

After preprocessing, the dataset was used for establishing baseline correlations using
four machine learning models: Partial Least Squares Regression (PLSR), Back Propagation
Neural Network (BPNN), Random Forest (RF), and K-Nearest Neighbors (KNN). While
PLSR is the most common regression algorithm for hyperspectral data [39], it has been
noted in previous studies that there likely exists a complex nonlinear relationship between
hyperspectral data and arsenic content [40], which is why the nonlinear models—BPNN,
RF, and KNN—were added.
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PLSRs are used frequently because they maximize the correlation of the extraction of
principal components from variables [21]. BPNNs are efficient models that first process
information forwards and then iterate on their errors by going backwards, repeating the
process until best possible optimization [41]. (For this study, all BPNN models consist of
an input layer with 155 input neurons, 1 hidden layer with 7 neurons, and an output layer
with 1 neuron. The Tangent Hyperbolic function (tanh) was used as the activation function.)
Random Forest (RF) regression splits a dataset into multiple subsets that it then attempts
to fit its decision trees on, eventually recombining the subsets through averaging, helping
minimize overfitting and outlier influence [42,43]. K-Nearest Neighbors Regression (KNN)
“predicts its target based on local interpolation of the targets associated with the nearest
neighbors in the training set” [42].

The performances of the machine learning models were evaluated using the coefficient
of determination (R2), measuring the variance the predicted data have to the generated
regression line, and normalized root mean square error (nRMSE), measuring the stan-
dard deviation of the prediction errors divided by the highest value of the dataset [44].
All regression models and their relevant parameters were optimized (Table 1). To test
the predictive ability of the model, the dataset was split into a training group of 70% and
a testing group of the remaining 30%, with the testing group being larger than general
machine learning tests to ensure accurate representations of the evaluation metrics with a
limited dataset. Each of the four regression models was then fit to the training data and
asked to predict on the testing set. Finally, for a visual representation, predicted vs. actual
arsenic concentration was graphed for each model.

2.4.2. Dimensionality Reduction with Genetic Algorithm

Due to the large volume of data hyperspectral remote sensing offers, literature suggests
that, without the extraction and use of characteristic wavelengths, data redundancy reduces
the accuracy of any relationship-establishing regression model [21]. In addition, due to the
limited dataset of 55 output locations available for this study, the results of using 155 input
wavelengths might be somewhat untrustworthy; using a characteristic wavelength-derived
dataset can help ensure greater validity of this study’s results.

For this study, characteristic wavelengths were extracted using the highest weights
generated by the Genetic Algorithm (GA). GA is an optimization algorithm based on Dar-
winian evolutionary principles of survival-of-the-fittest [45] that iterates on a randomized
given population until it selects the most relevant variables, all while considering the
possible interactions between these variables [18]. Here, the variables are the input hyper-
spectral wavelengths and their values, so the result is the most important (“characteristic”)
wavelengths for predictions.

GA was coded with a population size of 98, 155 weights, and 1000 generations.
The characteristic wavelengths resulting from GA were combined with the best performing
regression model and evaluated in the same way as other regression models (comparisons
of R2 and nRMSE). The resulting characteristic wavelengths were also compared with
previously identified As characteristic wavelengths as well as those of other minerals found
in literature to be correlated with spectroscopic arsenic identification such as Fe-oxides,
organic matter content, and clay [46].

2.4.3. Data Augmentation

It is well-known that machine learning models tend to overfit and be unreliable on
smaller data sets. To attempt to overcome this, data augmentation with The Synthetic
Minority Oversampling Technique for Regression with Gaussian Noise (SMOGN) was used.
SMOGN is particularly effective with imbalanced regression datasets such as the one in
this study [47]. The algorithm works by finding distances between a point and its k-nearest
neighbors; if the distance is less than or equal to half the median of all distances, then
interpolation is used [48]. Otherwise, Gaussian noise, statistical noise having a probability
density function equal to the normal distribution, is introduced [47]. With SMOGN,
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the dataset of 55 points was expanded to 98 points, with the expanded dataset being used
to generate a new model based on the best-performing one from earlier. The new model’s
R2 and nRMSE values and scatter plot were compared to earlier models’ results.

2.5. Classification Analysis with High-Risk Shrub Soil Regions

A classification-based approach was applied to detect arsenic risk in shrub-covered
soils in order to broaden the applicability of the methodology to larger areas. A similar
approach with bare soil could not be tested due to limited bare soil data availability. While
such a classification approach is less precise than regression, only being able to distinguish
the highest-risk regions instead of accurately predict specific numerical values, it offers
a greater advantage in extending applicability to a more common land cover and for
larger regions.

Binary machine learning classification models were applied to identify higher-risk
regions of the United States based on risk of arsenic contamination, with the threshold
for a “high-risk” region chosen to be 7.0 mg/kg, the 70th percentile cutoff for arsenic risk
classes. Large-scale risk classification was done for random locations with shrub land
data (obtained from publicly available USGS data [49]) from ten U.S. states: Arizona,
California, Colorado, Idaho, Nevada, New Mexico, Oregon, Texas, Utah, and Wyoming.
A dataset of 20,000 locations was determined by randomly picking points from 11 swaths.
Approximately 30% of the dataset consisted of high-risk locations, as consistent with the
cut-off of high-risk arsenic concentrations used in this study (the 70th percentile), with all
percentiles attempted to be as equally represented as possible with the available data.
An 80/20 train–test split of the dataset was initially used for prediction testing. After initial
failure of the simple 80/20 train–test split on the whole dataset in sufficiently evaluating
classification results (to be discussed in the Results and Discussion section), for more robust
analysis, each model was run 11 times, with each run using a different swath’s data as the
testing set and the other 10 of the 11 swaths as training dataset. Each evaluation metric
was then averaged across these 11 different results to yield the final comparison metrics for
the three models. Other dataset modifications were also attempted, as described later in
the Results and Discussion section.

Three relevant binary machine learning classification models were tested: Support
Vector Machine (SVM), Random Forest Classification (RFC), and Multi-Layer Perceptron
(MLP). SVMs are the most commonly used classification models in previous studies of hy-
perspectral data, working well in datasets with high dimensionality but not as suitable for
larger and/or noisier data sets [50]. RFC boasts systematic handling of high-dimensionality
datasets and good adaptability with imbalanced datasets [51]. Finally, the MLP deep
learning classification model has advantages in generalizing trends and updating errors
effectively, similar to BPNNs. GA and SD were used on the dataset with each of the three
tested classification models as base preprocessing in order to maximize computational
efficiency and performance. All three models were optimized (Table 1).

Models were evaluated and compared based on five metrics:

1. Accuracy: The percentage of the total number of classification predictions that are
correct. A perfect classifier has an accuracy of 1.0.

2. F1-Score: A score combining precision—how many high-risk points predicted to
be high-risk are actually high-risk—and recall—how well the high-risk points were
predicted overall. A perfect classifier has a F1-score of 1.0.

3. F2-Score: A score similar to the F1-score but with more of a focus on recall calculations
to measure presence of false negatives—actual high-risk regions predicted as low-risk.

4. F0.5-Score: A score similar to the F1-score but with more of a focus on precision
calculations to measure presence of false positives—actual low-risk regions predicted
as high-risk.

5. Brier Score: A score that measures the uncertainty of a model’s probabilistic predic-
tions, prioritizing the high-risk regions. A perfect classifier has a Brier score of 0.0.
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Table 1. Optimized regression (Reg) and classification (Cls) machine learning algorithm parameters
in Python scikit-learn. If a parameter is not explicitly mentioned, it was left to default Scikit-learn
definitions. Refer to the Abbreviations section at the end of the paper for full model names.

ML Model Tested Parameters

PLSR Reg n_components = 4, max_iter = 40
BPNN Reg See text in Section 2.4.1, not done with Scikit-learn

RF Reg n_estimators = 30, random_state = 0
KNN Reg n_neighbors = 4, weights = ‘distance’
SVM Cls C = 10, kernel = ‘rbf’, probability = True
RFC Cls n_estimators = 200, criterion = ‘gini’, random_state = 0
MLP Cls activation = ‘tanh’, solver = ‘adam’, learning_rate = ‘adaptive’,

early_stopping = True

3. Results and Discussion
3.1. Land Cover Verification

Bare land cover comparisons were done with numerical data from the regression
dataset (Figures 4 and 5). Note that the empty regions of the spectra result from wavelength
bands removed during preprocessing. Furthermore, observe how similar the 47 mg/kg
and 49 mg/kg spectra are to each other (indicating the necessity of the use of machine
learning models to identify specific differences), while both are clearly different from their
higher concentration counterparts (Figure 5). Shrub land cover comparisons originated
from the classification dataset, with spectra from previously defined high and low risks
used instead (Figure 6).

The spectra of both land covers show at least some clear visual differences between
different arsenic concentrations despite otherwise similar conditions, indicating that the
methodology likely highlights arsenic concentration and not land cover. Furthermore,
visual differences between specific numerical values can be recognized in the bare soil
regression dataset, while this is not the case for the shrubland dataset (hence requiring a
binary classification approach for shrub-covered soils).
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Figure 4. Hyperspectral data measured by EO-1 Hyperion, with bare soil spectra sorted into low and
high risk regions. Spectra for each of the two classes visually differ clearly across the whole spectrum
of wavelengths between 400 nm and 2400 nm. High risk is defined as the 70th percentile (7.0 mg/kg)
and above.
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Figure 5. Comparing reflectance spectra of six bare soil locations with differing arsenic concentrations
from ground measurements. Sites have similar soil composition and visual satellite appearance,
as shown on the right.
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Figure 6. Comparing reflectance spectra of locations with differing arsenic concentrations but similar
soil composition and visual satellite appearance for shrubland. Sites have similar soil risk and visual
satellite appearance, as shown on the right. Overall, some differences can be seen, but they are not as
visibly distinct as with bare soil.

3.2. Noise Reduction Algorithms (Spectral Preprocessing)

First, the original spectrum, SG, FD, SD, and MSC spectral preprocessing were visually
compared with each other to see the effects of each kind of spectral preprocessing (Figure 7).

Out of the five, the SD transformation had the highest R2 value of 0.623 when com-
bined with the PLSR machine learning model with an nRMSE value of 0.194. After SD
transformation, MSC performed best in terms of R2 value, followed by FD, SG, and finally
the unprocessed spectrum (Table 2). SD transformation also yielded the lowest nRMSE
values besides that of the FD transformation, which was actually quite a bit lower than
FD’s. In the future, further analysis needs to be performed about the trade-offs between
improved R2 values but decreased nRMSE values, but for the purposes of this study, R2

was given higher priority in model evaluation than nRMSE as the study focuses on the best
possible correlation determination.

Noise reduction with SD transformation is the most effective likely because it can high-
light otherwise hard to discern absorption features of spectral curves [52]. Furthermore,
taking two derivatives allows for the clearer differences to be observed between spectral re-
flectance of indicative bands with different arsenic contents, which served to increase model
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accuracies more than the other kinds of transformations. Therefore, SD transformation was
chosen to be paired with all following models to maximize predictive capabilities.

500 750 1000 1250 1500 1750 2000 2250
Wavelength (nm)

0

10

20

30

40

50

60

70

80

Re
fle

ct
an

ce

Spectral Preprocessing with SG

500 750 1000 1250 1500 1750 2000 2250
Wavelength (nm)

6

4

2

0

2

4

6

8

Re
fle

ct
an

ce

Spectral Preprocessing with FD

500 750 1000 1250 1500 1750 2000 2250
Wavelength (nm)

1.0

0.5

0.0

0.5

1.0

Re
fle

ct
an

ce

Spectral Preprocessing with SD

500 750 1000 1250 1500 1750 2000 2250
Wavelength (nm)

20

10

0

10

20

30

Re
fle

ct
an

ce

Spectral Preprocessing with MSC

Figure 7. The spectral reflectance curves of the bare-soil arsenic samples after spectral preprocessing
through: SG (top left), FD (top right), SD (bottom left), and MSC (bottom right). Line colors are
used to differentiate samples only.

Table 2. Comparison of the R2 and nRMSE values of the four noise reduction algorithms tested.
Refer to the Abbreviations section at the end of the paper for full technique names.

Algorithm R2 Normalized RMSE

None (unprocessed) 0.492 0.227
Savitzky-Golay Smoothing (SG) 0.546 0.203

First Derivative Transformation (FD) 0.557 0.148
Second Derivative Transformation (SD) 0.623 0.194
Multiplicative Scatter Correlation (MSC) 0.565 0.215

3.3. GA-Generated Characteristic Wavelengths

Running the Genetic Algorithm (GA) generated a set of weights for each of the 155
used wavelengths. The top ten best-performing wavelengths (highest weighted) were
selected as the characteristic wavelengths (in nm): 495, 650, 885, 1225, 1568, 1679, 2143,
2183, 2203, and 2254. These 10 chosen characteristic wavelengths are fairly consistent with
characteristic arsenic wavelengths reported in previous studies [26,53].

They also align well with soil Fe-oxide content. Fe-oxides in soil are generally present
as two main minerals: goethite and hematite. Goethite has its main peak around 920 nm,
with four supplementary ones at 420, 480, 600, and 1700 nm; hematite has three main
peaks at 520, 650, and 880 nm [54]. While not perfect, the GA-chosen ten characteristic
wavelengths contain wavelengths fairly close to all of these peaks besides goethite’s 420 nm
supplementary peak (a wavelength filtered out in spectral preprocessing due to atmo-
spheric influences, something which previous lab-based analyses of soil reflectance spectra
do not need to take into account). The correlation is especially strong with hematite.

Most clay minerals have diagnostic wavelengths of approximately 1400, 1900, and
2200 nm, representing the influences of OH, water, and Al-OH groups, respectively [54].
Wavelengths near and including the first two wavelengths (1400 nm and 1900 nm) had to be
filtered out due to atmospheric influences, but we do see that four out of ten characteristic
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wavelengths lie near the 2200 nm diagnostic, which suggests that there might be some
correlation with clay that unfortunately cannot be confirmed with satellite data.

Finally, little correlation was found with organic matter based on the characteristic
wavelengths [55].

3.4. Regression Models with Bare Soil Regions
3.4.1. Testing ML Regression Models Using 155 Wavelengths

With the use of all 155 wavelengths on the 55-location dataset, the SD+RF regres-
sion model yielded the highest R2 value of 0.746, followed by SD + BPNN, SD + KNN,
and SD + PLSR (Figure 8a–d and Table 3). All four machine learning models showed
moderately strong correlation between preprocessed hyperspectral satellite imagery and
environmental arsenic contamination, likely indicating that such a relationship does indeed
exist and is not a coincidence. All three nonlinear models also exceeded the linear PLSR,
indicating that the relationship between the two variables is indeed nonlinear as consistent
with literature. Furthermore, overfitting did not occur in the SD + RF model, as the training
and testing set R2 values were within 0.05 of each other (R2 = 0.788 vs. R2 = 0.746).
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Figure 8. Scatter plots of the soil arsenic concentrations after the use of four different machine
learning models with all 155 input wavelengths and SD transformation (SD+Reg models): PLSR
(control group, (a)), BPNN (b), RF (c), and KNN (d).

Table 3. Table of the comparison of the R2 and nRMSE values of the four regression-based machine
learning algorithms tested for bare soil arsenic detection using all 155 wavelengths. Refer to the
Abbreviations section at the end of the paper for full technique names.

Algorithm R2 Normalized RMSE

SD + Partial Least Squares Regression (PLSR) 0.623 0.194
SD + Back Propagation Neural Network (BPNN) 0.726 0.144

SD + Random Forest Regression (RF) 0.746 0.136
SD + K-Nearest Neighbors (KNN) 0.715 0.178
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3.4.2. Testing ML Regression Models Using GA-Generated Characteristic 10 Wavelengths

Because of the small regression dataset size (55 output arsenic concentrations vs. 155
input wavelengths), the characteristic 10 wavelengths generated by the use of the Genetic
Algorithm were used as a new dataset to validate the original regression’s results (Table 4
and Figure 9). Narrowing down the dataset to the characteristic wavelengths chosen by
GA still maintained the RF regression model as the best one, with the GA + SD + RF model
showing an increase of 0.059 (R2 = 0.805) in R2 value and decreases in nRMSE value and
computational time. The linear PLSR model showed comparable improvements.

In contrast, the BPNN and KNN models both performed worse with the characteristic
wavelengths, having decreases in their R2 and/or nRMSE values. The probable reason
for this is that some of the 155 wavelengths that were removed were actually important
to informing the results of these two models, with these wavelengths likely much less
important to the PLSR and RF models.

Table 4. Table of the comparison of the R2 and nRMSE values of the four regression-based machine
learning algorithms tested for bare soil arsenic detection using the GA-Generated 10 characteristic
wavelengths. Refer to the abbreviations section at the end of the paper for full technique names.

Algorithm R2 Normalized RMSE

GA + SD + Partial Least Squares Regression (PLSR) 0.668 0.162
GA + SD + Back Propagation Neural Network (BPNN) 0.704 0.173

GA + SD + Random Forest Regression (RF) 0.805 0.132
GA + SD + K-Nearest Neighbors (KNN) 0.693 0.171

While this study’s regression models are a good overall fit for the data, most graphs in
Figures 8 and 9 have data points noticeably far from the 1:1 line of equivalence. In order to
include a larger range of arsenic concentrations to ensure greater applicability, the dataset
was chosen to include values ranging from 1.4 mg/kg to 380 mg/kg. This leads to the
clustering of data at very small values on the graph, as more than 70% of the included data
points are between 1 and 10 mg/kg, and the remaining ones are concentrated on the higher
end of the range with few in the middle. Furthermore, graphs (a)–(d) in Figures 8 and 9
indicate that all four models can clearly distinguish between the lower-risk and higher-risk
arsenic concentrations (as consistent with Figure 4) but might not be able to identify a
consistent trend in the higher-risk values (likely because of a shortage of training data).
In addition, despite thorough preprocessing, the data might still be affected by atmospheric
interference, instrument issues, etc., which could be affecting correlation. In order to
improve the estimation accuracy of soil arsenic content, it is necessary to collect more
verified soil samples to build a more even distribution of concentrations in the future.

Despite BPNN’s noted past excellency working with hyperspectral data and deriving
correlations [21,22], it performed worse than RF. While the difference is small, BPNNs are
known to be prone to a lack of generalization ability and hence are likely not able to fully
optimize their initial parameters. Meanwhile, RF regression is known to be particularly
good with high dimensionality datasets such as the one in this study and effectively handles
outliers by “binning” them. It was likely a combination of these factors that led to the
better performance of the SD+RF model. The KNN regression model performed slightly
worse than the BPNN, probably because of its sensitivity to outliers.
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Figure 9. Same as Figure 8 but with GA-Generated 10 input wavelengths and SD transformation
(GA + SD + Reg models): PLSR (control group, (a)), BPNN (b), RF (c), and KNN (d).

3.4.3. Applying Data Augmentation

SMOGN-based DA (expanding the number of locations from 55 to 98 locations)
combined with the earlier best-performing GA + SD + RF model yielded a higher overall
R2 value of 0.840 for the new DA + GA + SD+RF model with nRMSE = 0.122 (Figure 10).
The nRMSE of the model decreased with lesser magnitude (0.01) as compared to the
increase in R2 value (0.035), possibly because of the addition of Gaussian noise.
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Figure 10. Scatter plot of the soil arsenic concentrations after the use of the DA + GA + SD + RF
model with DA-increased dataset, GA-Generated 10 input wavelengths, and SD transformation.
The model outperforms all other combinations tested in this study (R2 = 0.840 and nRMSE = 0.122).

The finalized DA + GA + SD + RF regression model was also comparable to ones from
literature, especially considering that the others had access to more accurate and less noisy
lab-based hyperspectral measurements (Table 5).
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Table 5. Comparison of previous lab-based estimation models of arsenic concentration in bare soils
with the satellite-based best-performing DA + GA + SD + RF model from this study.

Sample Size Model Methods R2 References

93 SG + PLSR 0.750 [53]
61 FD + PLSR 0.720 [56]
96 GA + PLSR 0.35 [20]
89 sCARS-SPA + SFLA + RBFNN 0.918 [21]
90 PSO + BPNN 0.811 [22]
98 DA + GA + SD + RF 0.840 This study

3.5. Binary Risk Classification for Shrub Regions

A dataset of 20,000 locations from ten different U.S. states was used, and three binary
classification models—SVM, RFC, and MLP—were tested for identifying high-risk arsenic
regions. Initially, the model was tested with all 20,000 points at once, randomly choosing
20% of the data for testing purposes. This approach yielded an extremely impressive
accuracy of 0.932 by the MLP model, which seemed unrealistic given previous regression
results. Running the models 11 times, with each run using a different whole swath’s data
as the testing dataset and the other 10 of the 11 swaths as training data, would help test the
hypothesis that machine learning models were only learning by geographical similarity
as opposed to establishing a legitimate correlation; although each swath has very similar
hyperspectral values (spatial homogeneity), the swaths used were all from different states,
and testing one swath at a time with training data consisting of the other 10 swaths would
likely force the model to attempt to determine a real correlation instead of “learning by
location”. With this new approach, the MLP model still performed best across four of the
five tested metrics (all but the Brier score) (Table 6), still achieving a strong (and much
more realistic) averaged accuracy of 0.693. The other models were also effective in binary
classification, though inferior to the MLP. This was likely because of MLP’s powerful
iteration through errors, something that is especially important in classification problems
with large datasets.

Table 6. Comparisons of the evaluation metrics of the three binary classification ML models for the
averaged swath data.

Model Accuracy F1-Score F2-Score F0.5-Score Brier Score

SVM 0.647 0.688 0.658 0.751 0.272
RFC 0.639 0.678 0.649 0.737 0.252
MLP 0.693 0.728 0.704 0.772 0.279

This study deals with an imbalanced training dataset of 70% low-risk locations and
only 30% high-risk ones, so accuracy is not necessarily the most effective metric to de-
termine model performance. As an example, a no-skill model could theoretically guess
that all points are low-risk ones and get approximately 70% accuracy that way as well.
Although this was not the case here as evident from individual swath results, it was why
four additional metrics were evaluated—F1-score, F2-score, F0.5-score, and Brier score.

As the ratio of high-risk to low-risk points present in the dataset matches the real-
world arsenic risk percentiles, and identification of the high-risk class (“positive class”) is
more important than its low-risk counterpart, the three types of F-scores serve as excellent
evaluation metrics. The best-performing MLP model achieves an F1-score of 0.728, 0.04,
and 0.05 points higher than SVMs and RFCs, respectively, and indicative of good model
performance [57]. However, while it is important to identify false positive predictions
because they can generate false alarms that could lead to wastage of resources, arguably,
not correctly identifying a high-risk region (false negatives) might be much more costly to
human lives and resources because of healthcare, cleanup, and other associated economical
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costs. Fortunately, the MLP model’s results alleviate these concerns given its strong F2-score
(=0.704) and F0.5-score (=0.772), which are each better than the other tested models. Put
another way, the MLP model, given a location to predict risk of, is 22.8% likely to output a
false warning of the location being high-risk and 29.6% likely to misidentify a high-risk
region as a low-risk one. These results further indicate that the MLP model is less likely
to generate false warnings of arsenic risk and misidentify risky regions as compared to
traditional field-based monitoring approaches (which generated inaccurate results almost
45% of the time [14]).

The probability-based Brier score metric, with its priority on the positive class, helps
measure the reliability of a model, not only measuring when it fails but also whether it
selects the wrong class with a high or low probability [57]. The otherwise best-performing
MLP, perhaps surprisingly, performed the worst in terms of Brier scores, achieving 0.279 as
opposed to SVM’s 0.272 and RFC’s 0.252 (a perfect classifier should display a Brier score of
0.0). This indicates that, when the binary classification models are asked to describe the
probability that a certain region is high-risk (a more continuous prediction in the range
[0, 1]) instead of thinking about it in a purely binary fashion, the MLP model performs
slightly worse than the other two tested models. In other words, the MLP model is more
unsure about its predictions, which is interesting to take into account and its implications
can be further analyzed in future studies when compared to its superior performances in
accuracy and the various F-scores.

Besides the averaged metrics, a few of the individual results of the 11 swaths
(Figures 11 and 12) warrant additional discussion.
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Figure 11. Comparison of accuracy of three binary classification machine learning methods for six sample swaths. Back-
ground map of the western US colored by arsenic risk [49] showing the chosen 11 swaths (which yield 20,000 points) for
shrub soil arsenic risk analysis (swath signatures are presented in Table 7 for public reference, being obtained from the USGS
Earth Explorer platform). The results of the three binary classification machine learning models are shown as bar graphs for
6 of the 11 swaths. Accuracy values for all swaths are shown in Figure 12. Background mage created with USGS data [49].
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Figure 12. Bar graphs showing the accuracies (top) and F1-scores (bottom), in alphabetical order,
of each of the three models for each of the chosen 11 swaths for shrub soil arsenic risk analysis.
Numbers below bars correspond to swaths in Figure 11.

Table 7. NASA-designated signatures, along with the U.S. state, of the 11 swaths used in shrubland
arsenic classification.

Swath # U.S. State Signature

1 Arizona EO1H0380362012066110PB
2 California EO1H0390352017062110KF
3 Colorado EO1H0340332003257110PY
4 Idaho EO1H0410292007009110PZ
5 Neavda & Oregon EO1H0420312011146110P0
6 Nevada EO1H0410322005112110KX
7 New Mexico EO1H0310382003092110PZ
8 Oregon EO1H0430302003144110PZ
9 Texas EO1H0300382008351110PY

10 Utah EO1H0360322003177110KW
11 Wyoming EO1H0360302003278110KZ

The Nevada Swath (#6) yields the worst scores out of all 11 swaths for all five metrics
examined, with even the best-performing MLP model only displaying 28% accuracy and
an F1-score of 0.44. This is also the only swath comprising of only high-risk locations
(2000 of them), which probably explains its poor performance—as there are only 6200 total
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high-risk points in the dataset, taking out almost a third of them while training likely leads
to insufficient coverage of adequate training data; similarly, it is also possible that the
data from Nevada adds something significantly new to the training data that the binary
classification models use when informing their predictions, and thus its absence leads to
poor model results on its testing.

In contrast, the Oregon, California, and New Mexico swaths show abnormally high
evaluations across all five metrics (accuracies and F1-scores greater than 0.9 for each of
the three), sometimes up to almost perfect performance with specific ML models. This
possibly indicates that enough relevant information probably exists in the training dataset
without the presence of just one of these swaths. Another possible reason could be that the
geography (and hence reflectance) in these regions is quite similar, which allows for the
model to infer the tested swath’s predictions based on the other two in the training dataset
(similar to the idea of spatial homogeneity discussed earlier that led to the 93% accuracy).
Perhaps interestingly, all three swaths only have low-risk points.

To compensate for some of the poor performance of high-risk predictions such as
with the Nevada swath, 5000 additional high-risk locations were added to the dataset
from Nevada, Arizona, and Colorado, leading to 45% of the 25,000-point dataset now
comprising of high-risk regions (an almost balanced dataset) for training and testing.
However, especially taking into account that moving towards a more balanced dataset
should skew the values of the resulting F-scores higher, the results of these additions
yielded almost negligible benefits in terms of all five metrics. Each previously affected
swath also did not perform more than a few tenths of a percent better than the original
MLP model with 20,000 points. These results indicate that adding just a small number
of additional points yields diminishing returns in terms of model output and prediction
reliability, and is not effective since the current dataset already spans the targeted region
(the Western United States) fairly well. While adding in a much larger number of both
low-risk and high-risk points (for example, making the dataset 200,000 points or larger—a
10-fold increase in dataset size) might give further insights, small additions only serve to
worsen computational efficiency without offering major improvements.

3.6. Limiting Factors of the Satellite Approach

The use of satellites involves many complications that must be considered in order
to appropriately evaluate its applicability for large-scale arsenic contamination detection.
The most important of these challenges include the time of day of measurements and solar
inclination angle, relief characteristics, extent and type of vegetation, and atmospheric ob-
stacles such as humidity and cloud cover. Anticipating this, NASA included many ground
truth verification locations in Hyperion’s initial paths to ensure effective calibration [58,59]

Because of the presence of visible light wavelengths in the examined spectra, the time
of day of satellite measurement is certainly a restrictive condition in terms of method
applicability. Future analysis should be conducted to test the effectiveness of only using
infrared wavelengths to detect arsenic contamination; if the resulting accuracies are reason-
ably similar to current ones, the impact of time of day can be greatly reduced because of
infrared’s relative independence from time of day.

Another potential solar limitation is the solar inclination angle, the angle of the orbit
in relation to Earth’s equator. NASA data contain solar inclination angles between 20 and
90 degrees, with mostly smaller angles (25–40 degrees) between 2001 and 2009 and larger
angles in later years such as 2015 [60]. All possible solar inclination angles, fortunately, can
be corrected for by the formula presented in Section 2.2. Most other sun-related satellite
issues are corrected for by NASA’s solar calibration of the Hyperion satellite [61], thus
likely only contributing minor deviations.

Throughout its orbit, the Hyperion satellite maintained an orbital inclination between
98 and 99 degrees. This indicates that its measurements of swaths were done almost
perpendicularly to ground level, which minimizes potential topographical distortions [62].
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Most locations used in this study are in relatively flat areas, so topographic variations
are not a concern. In addition, NASA’s base-level geometric calibration is able to address
small changes in relief. One study found that slopes greater than 15 degrees introduced a
peak value in anomaly trends, with minimal disturbances in angles less than 15 degrees [60].
Therefore, significantly sloping topography could certainly be a limitation on the accuracy
of this study’s proposed methodology due to difficulties in geometric correction and the
higher potential for arsenic mobility. Applying the methodology to such a region might be
limited to binary risk analysis, and additional ground truth verification would be required.

Some of the effects of the extent and type of vegetation have already been dis-
cussed in detail in Sections 2.2 and 3.1. Any kind of ground cover with extensive soil
coverage—forests, crop fields, and densely-covered grass and shrub soils—would be un-
suitable for a satellite approach. However, many regions containing these types of cover
have particular times of the year when the extent of soil coverage is reduced. For example,
most crop fields globally only have certain months of planting and harvest, with other
months exposing relatively bare soil. Although it would require additional coordination
and resources, hyperspectral measurements could be scheduled accordingly in order to
allow for accurate annual measurements in these regions.

Finally, atmospheric hindrances must be considered. Before inclusion, every swath
used in this study was visually examined to ensure minimal cloud cover. In the future,
an image-based machine learning algorithm could be developed to automate this pro-
cess. Most “bad bands” of the Hyperion satellite, including those containing effects of
water vapor (humidity), were systematically preprocessed and removed, as described in
Section 2.2. The use of characteristic wavelengths further filtered out problematic, redun-
dant wavelengths. As a result, while atmospheric challenges might still be present, most
major consequences were sufficiently addressed and can also be feasibly addressed in
future studies. While a paid professional software such as ENVI’s FLAASH might be better
suited to more carefully and accurately eliminate atmospheric disturbances, the method
used here offers a close approximation for no monetary cost and faster computational
times. Future studies might look at how results derived from using such software compare
with the results of this study.

Overall, the aforementioned factors can play large roles in limiting the applicability of
a satellite-based approach in certain regions of the world, particularly those with frequent
climatic fluctuations, successive topographical changes, and year-long soil cover. However,
outside of these regions, their effects on the accuracy and applicability of the presented
methodology are adequately addressed using thorough preprocessing.

3.7. Additional Future Directions

Due to lack of publicly available data, this study’s models cannot distinguish between
different forms of arsenic such as trivalent (arsenite) and pentavalent (arsenate) arsenic.
Inorganic arsenic variants vary in their toxicity, which could lead to false alarms without
proper identification. Being able to distinguish between different forms of inorganic
arsenic is an important future goal to be able to accurately determine the scale of impact
and spread of arsenic contamination. One potential approach to classify arsenic into its
various forms would be to measure the differences in lab-obtained spectra with differing
concentrations/ratios of these components, similar to how the reflectance spectrum of
overall arsenic varies with different concentrations. A similar approach might be possible
to help distinguish between natural and anthropogenic forms of arsenic in the environment.
Based on the results of this study, it is probable that there are detectable differences between
arsenic content originating from two different chemical sources.

Arsenic is frequently heard of in the context of groundwater contamination, which is
difficult to approach directly with satellites as the water table often lies below the surface
and is not easily detectable through direct hyperspectral measurement. However, literature
has shown that most of the increased arsenic content in groundwater does originate
from soil-based sources and activities such as mining activity, fossil fuel combustion,
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and pesticide runoff [63]. One study found a correlation as high as 92.9%, with p-value less
than 0.0001 [64]. The study concludes that there is a possibility of at least an above average
correlation between soil and groundwater arsenic, implying that this study’s methods
might also be applicable to predicting groundwater arsenic contamination, though with
less certainty.

An important future goal of this study is to apply the predictive power of the DA + GA
+ SD + RF and MLP models to arsenic risk zones in developing countries, which often have
poorer sampling and response measures to environmental contamination hazards such
as arsenic. The models are expected to perform with good accuracy, and success in this
endeavor would likely establish the models as being capable of feasible implementation by
universities, nonprofits, and governments globally in the future.

Overall, this study’s strong regression and especially classification results serve as a
valid proof-of-concept for a similar methodology to be applied more broadly in the real
world, but more work needs to be done before viable implementation. Future studies
can aim to improve metric scores to achieve better classification, possible through more
robust preprocessing or the inclusion of many more data points; test other land covers
such as grasslands and crop fields; introduce more classes into the dataset (for example,
five categories of risk as opposed to binary classification) in order to obtain more precise
risk analyses for vulnerable regions; test other machine and deep learning models, prepro-
cessing algorithms, optimization techniques, or some other novel combination of the three;
and apply the adaptable nature of this study’s methodology towards detection of other
types of environmental contaminants such as lead and cadmium.

4. Conclusions

In the first part of this study, regression-based machine learning models were used
to determine a correlation between a location’s hyperspectral satellite wavelength data
and bare soil arsenic concentration. With its contiguous spectrum and high spectral
resolution, hyperspectral satellite data from NASA’s EO-1 Hyperion were hypothesized to
allow for the distinguishing of small differences in soil arsenic concentrations of different
regions. The second part of this study involved the use of binary classification-based
machine learning models to identify high-risk shrub-covered soil zones in ten U.S. States.
The following are the most important conclusions derived from this study:

1. SG, FD, SD, and MSC transformations were performed on the spectral data, and a
regression model was established by PLSR. The SD transformation had the best
modeling accuracy (R2 = 0.623), a 0.131 increase over no preprocessing.

2. All three nonlinear machine learning regression models outperformed the linear
model, validating the hypothesis that the relationship between the hyperspectral
wavelengths and soil arsenic concentration is nonlinear. SD + RF was the most
effective out of the four tested models in determining correlation (R2 = 0.746 and
nRMSE = 0.136).

3. GA is effective in selecting characteristic wavelengths that align well with previously
indicated characteristic wavelengths for arsenic as well as Fe-oxides and clay. The GA
+ SD + RF model, using only these wavelengths, yielded improved model accuracy
(R2 = 0.805), nRMSE (=0.132), and computational efficiency.

4. Data augmentation with SMOGN increases regression dataset size by 78%, and the
final regression model (DA + GA + SD + RF) achieved R2 = 0.840, nRMSE = 0.122,
and good computational efficiency.

5. The MLP binary classification model is effective in identifying high-risk arsenic re-
gions in shrub-covered soils using Hyperion satellite imagery (Accuracy = 0.693,
F1-Score = 0.728, F2-score = 0.704), with much lower false alarm and incorrect identifi-
cation rates as compared to traditional methods. Both conditions tested (shrub regions
and classification) are novel applications made possible because of the large-scale and
efficient use of satellites over lab-based instruments.
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These results strongly indicate that soil arsenic contamination can be detected with
Hyperion satellite hyperspectral data when combined with preprocessing and machine
learning. At the very least, this study’s models can be used as a screening tool to identify
high-risk regions in applicable land covers, reducing the need for frequent sampling of
large-scale regions. Overall, the results of this study open up possibilities for a cost-effective,
rapid, and versatile annual monitoring system of environmental arsenic contamination.
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