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INTRODUCTION

Alzheimer’s disease (AD) is the leading cause of dementia, 
and the risk increases with age [1]. The impairment 
of cognitive function and behavior occurring in AD is 
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progressive and unremitting, requiring long-term care and 
causing a considerable economic burden on the family. 
It is estimated that by 2020, the total expenditure of all 
patients with AD and other types of dementia will be $305 
billion [2]. AD has a distinct pathology associated with 
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the accumulation of amyloid and tau proteins in the brain. 
In the early stages of the disease, there is no cognitive 
impairment; however, neuropathological changes have 
emerged. Timely treatment may be effective before the 
disease reaches an irreversible degenerative state [3,4]. 
Based on the changes in neuropathology, the 2018 National 
Institute of Aging and Alzheimer’s Association proposed 
the amyloid/tau/neurodegeneration (ATN) classification 
scheme to redefine AD using biomarkers other than clinical 
symptoms [5]. Individuals can be classified as abnormal (+) 
or normal (-) for A, T, and N, resulting in eight different 
ATN profiles.

Cerebrospinal fluid (CSF) examination or brain imaging 
such as MRI or PET can be used to identify ATN biomarkers. 
Owing to its high cost and radioactivity, the application of 
PET is limited. Accessible methods, such as CSF and MRI, 
are most widely used in clinical practice. However, most 
previous studies have only used a single indicator in parts 
of the brain, such as the volume of the hippocampus  
[6-8], the rating of medial temporal lobe atrophy [9-11], 
or the thickness of the cerebral cortex [6,8] to assess the N 
biomarker. In fact, areas with neural damage caused by AD 
in the brain include the entire cortex and subcortical nuclei. 
For example, Lehmann et al. [12] reported a decreased 
cortical thickness in the bilateral posterior cingulate gyrus, 
precuneus, and posterior parietal lobes in patients with 
AD. Subcortical nuclei, such as the putamen, thalamus, and 
basal ganglia, can also undergo significant atrophy related 
to cognitive impairment [13,14]. Therefore, it is of great 
significance to comprehensively investigate the structural 
changes in the brain and obtain a sensitive and accurate N 
biomarker to further improve the ATN system.

Mild cognitive impairment (MCI), a transitional state 
between normal cognition and AD, has always been a focus 
of attention. Indeed, it is estimated that approximately 
60% of MCI cases will progress to dementia during the 
3-year follow-up, with this rate increasing to 80% at the 
4-year follow-up [15,16]. Previously, it has been reported 
that MCI patients with different ATN combinations may have 
different risks of cognitive deterioration [17]. However, 
the role and predictive value of isolated A/T/N biomarkers 
in the cognitive progression of MCI remain unclear. In this 
study, we first analyzed the structural changes in the whole 
brain using a radiomics approach to establish a new method 
to evaluate N biomarkers and determine the optimal ATN 
indicators for distinguishing between healthy controls 
(HCs) and AD patients. Then, all MCI patients were divided 

into different groups according to the radiomics-based ATN 
groups and were followed for five years to investigate the 
value of isolated A/T/N biomarkers for predicting cognitive 
progression.

MATERIALS AND METHODS

Participants
The data used in this study were downloaded from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) website 
(adni.loni.usc.edu). The ADNI study was approved by 
an ethics committee on human experimentation at each 
institution, and written informed consent was obtained 
from all participants. In total, 147 HCs, 197 patients 
with MCI, and 128 patients with AD from ADNI-GO and 
ADNI-2 were included. The patients with AD satisfied 
the criteria by National Institute of Neurological and 
Communicative Disorders and Stroke (NINCDS)/Alzheimer’s 
Disease and Related Disorders Association (ADRDA) for 
probable AD [18,19]. The participants with MCI reported 
a subjective memory concern; however, they showed no 
significant impairment in other cognitive domains, everyday 
activities were substantially preserved, and there were no 
signs of dementia. The HC subjects showed no signs of 
depression, MCI, or dementia. All participants had complete 
demographic, clinical, and laboratory characteristics and 
MR images of T1-weighted imaging at the baseline of data 
collection. The MCI subjects were followed up for 6–60 
months, with a follow-up interval of 6–12 months in the 
first 3 years and 12 months after 3 years. Among them, 
100 patients progressed to dementia, and the remaining 
97 patients remained stable during the follow-up period. 
Participants who temporarily progressed from MCI to AD and 
returned to MCI during the entire observation period were 
not considered to have cognitive progression in this study. 
Figure 1 shows the workflow of the study.

Clinical and CSF Characteristics
Clinical and CSF information was directly collected from 

the ADNI assessment files. Demographic characteristics 
included age, sex, education level, alcohol abuse, body mass 
index, and prevalence of apolipoprotein (APOE) ε4. Eleven 
neuropsychological scales were adopted to evaluate cognitive 
function at baseline, including the Mini-Mental State 
Examination (MMSE), Alzheimer’s Disease Assessment Scale-
Cognitive subscale (ADAS-Cog), Clinical Dementia Rating 
(CDR), Functional Activities Questionnaire (FAQ), Geriatric 
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Depression Scale (GDS), Rey Auditory Verbal Learning Test 
(RAVLT), and Animal Fluency Test (AFT). CSF characteristics 
included CSF Aβ42, Aβ40, p-tau, and t-tau protein levels.

MRI Acquisition and Radiomics Feature Extraction
Structural MRI was performed using a three-dimensional 

magnetization prepared rapid gradient echo sequence or 
equivalent scanning scheme on 3T scanners (261 cases 
from Siemens Medical Solutions, 128 cases from General 
Electric Healthcare, and 83 cases from Philips Medical 
Systems). MRI data acquisition techniques were standardized 
across different scanners according to the ADNI protocol 
(see http://adni.loni.ucla.edu/research/protocols/mri-
protocols/). Detailed imaging parameters were available 
from the ADNI website (http://adni.loni.usc.edu/methods/

documents/). FreeSurfer software (version 6.0; http://
surfer.nmr.mgh.harvard.edu/) was used. FreeSurfer has been 
proven to have good stability in brain segmentation and 
feature extraction [20]. During this study, the computing 
hardware, operating system, and FreeSurfer version remain 
unchanged and run automatically without user intervention. 
Briefly, the procedure included motion correction, removal 
of the skull, Talairach transformation, gray/white matter 
segmentation, intensity normalization, topology correction, 
surface deformation, inflation, registration, and parcellation. 
The whole cortex was divided into 146 cortical regions 
according to the Destrieux Atlas. Indicators including surface 
area, average thickness, standard deviation of thickness, 
integrated rectified Gaussian curvature, integrated rectified 
mean curvature, intrinsic curvature index, folding index, 

Fig. 1. The working flow chart of this study. AD = Alzheimer’s disease, AIC = Akaike information criterion, ATN = amyloid/tau/neurodegeneration, 
AUC = area under the curve, Aβ = amyloid-β, CSF = cerebrospinal fluid, HC = healthy control, LASSO = least absolute shrinkage and selection 
operator, MCI = mild cognitive impairment, p-tau = phosphorylated tau, ROC = receiver operating characteristic, t-tau = total tau
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and gray matter volume were obtained from each cortical 
region. In addition, 14 regions were obtained from the 
subcortical segmentation according to the Desikan-Killiany 
Atlas, including the bilateral thalamus, caudate, putamen, 
pallidum, hippocampus, amygdala, and nucleus accumbens. 
The volume of each subcortical structure was then 
determined. Finally, 1198 image features were extracted.

Radiomics Feature Selection and Model Construction
Standardization in the feature domain was performed 

prior to the feature selection. First, abnormal values 
were replaced by the median. The features were then 
standardized to eliminate the influence of the dimension. 

Dimension reduction was performed, as shown in 
Figure 1. Mann-Whitney U tests were first introduced to 
select features with p < 0.05, as potentially informative 
features. Second, Spearman correlation analysis was used 
to identify redundant features. Highly correlated features 
were eliminated if the correlation coefficient was higher 
than 0.9. Third, the least absolute shrinkage and selection 
operator (LASSO) regression algorithm was applied to select 
features with 5-fold cross-validation. LASSO is a shrinkage 
and selection method for linear regression. It minimizes 
the usual sum of squared errors, with a bound on the sum 
of the absolute values of the coefficients. Regularization 
methods estimate the value of the regression coefficients β 
by minimizing the following objective function:

11 
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where λ is the regression coefficient operating on the 
standardized covariate i, and λ is a penalty term (also 
known as a tuning parameter), which controls the value of 
shrinkage. Fourth, backward stepwise selection based on the 
Akaike information criterion was applied to remove features 
that were not significant. Finally, the most powerful 
radiomics features were utilized to construct a radiomics 
model based on logistic regression. The likelihood ratio 
test with backward step-down selection was applied to the 
multivariate logistic regression model. Then, the radiomics 
score (rad-score) of each individual was calculated through 
a linear combination of selected features multiplied by their 
respective coefficients.

Radiomics Model Evaluation and Optimal CSF Biomarker 
Screening

Logistic regression leveraging 5-fold cross-validation 

was employed to assess the performance of the radiomics 
model. This method randomly separated the data into five 
subsets and used one subset as the validation set and the 
remaining subsets as the training set. This process was 
repeated until all subsets were utilized. The area under 
the curve (AUC), sensitivity, and specificity were used to 
assess the performance of the radiomics model. For each 
CSF biomarker, a receiver operating characteristic (ROC) 
curve was generated, and Youden’s index was calculated 
to determine the optimal biomarker and cutoff value for 
discriminating between HCs and AD patients.

Statistical Analysis
Statistical analysis was performed using IBM SPSS 

Statistics for Windows, version 24.0, (IBM Corp.). Frequency 
(%) and mean ± standard deviation were used to describe 
categorical variables and normally distributed continuous 
variables. The median with interquartile range was used 
to describe non-normally distributed continuous variables. 
One-way analysis of variance and Kruskal-Wallis tests were 
performed for statistical analysis of continuous variables. 
When a statistically significant overall difference was 
detected, pairwise comparisons between groups were 
conducted using Tukey or Nemenyi post-hoc analysis for 
the correction of multiple comparisons. The chi-square test 
and Fisher’s exact test were used for statistical analysis of 
categorical variables. Cognitive progression of MCI patients 
with different ATN profiles was estimated using the Kaplan-
Meier method, and any differences between different ATN 
profile groups were evaluated with a stratified log-rank test 
for overall comparisons and pairwise comparisons adjusted 
by Bonferroni correction.

RESULTS

Participant Characteristics at Baseline
The baseline characteristics of the participants are 

shown in Table 1 and Supplementary Table 1. There were 
no significant group differences in age, sex, or alcohol 
abuse among the three groups. For the neuropsychological 
scales, all groups differed significantly between each other 
regarding MMSE, ADAS-Cog11, ADAS-Cog13, CDR, FAQ, 
RAVLT immediate, RAVLT learning, RAVLT percent forgetting, 
and AFT (all p < 0.05). CSF biomarkers were significantly 
different between the HC, MCI, and AD groups (all p < 0.05). 
The AD group contained the lowest Aβ42 content and the 
highest p-tau and t-tau content. The APOE ε4 also varied 
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among the different groups (all p < 0.05), with the AD 
group containing the highest number of APOE ε4 carriers.

Radiomics Model Construction and Performance 
Evaluation

Using the Mann-Whitney U test and Spearman analysis, 
503 features were obtained from among 1198 features. These 
features were then reduced to 46 with nonzero coefficients 
using the LASSO method (Fig. 2A, B). After the stepwise 
selection based on the Akaike information criterion, 15 
optimal features were obtained to build the radiomics 
model. The optimal features and their coefficients are shown 
in Figure 2C. The ROC curve of the radiomics model is shown 
in Figure 2D. The AUC with 5-fold nested cross-validation 
was 0.998 (sensitivity, 0.969; specificity, 0.973).

Optimal A/T/N Biomarkers and the Frequency of 
Different ATN Profiles among HC, MCI, and AD Subjects

As shown in Figures 3A and 3B, the AUC of CSF Aβ42 was 
0.822, which was higher than that of the CSF Aβ42/Aβ40 
ratio (0.813) and was considered the optimal A biomarker. 
Similarly, the radiomics model showed a higher AUC of 0.998 
(Fig. 2D) than CSF t-tau (0.795; Fig. 3D) and was chosen as 

the optimal N biomarker. According to the ATN classification 
scheme, we classified each participant using the three binary 
categories: A+ referring to Aβ pathology (CSF Aβ42 levels ≤ 
952 pg/mL), T+ referring to pathologic p-tau (CSF p-tau > 
24.38 pg/mL), and N+ referring to the neurodegeneration 
radiomics biomarker (rad-score > 0.4561).

Stratified by cognitive stage, A-T-N- was the most 
common ATN profile in HCs. In contrast, the A-T+N+, 
A+T-N+ and A+T+N+ profiles were the least common profiles 
in HC, accounting for less than 1%. Among MCI individuals, 
the group with the highest proportion was A-T-N- (21.3%), 
followed by A+T+N- (19.8%) and A+T+N+ (19.8%). The 
prevalence of A+T+N+ was dominant in patients with AD, 
with a high proportion (64.8%). In addition, no participant 
showed a biomarker combination of A-T-N- or A-T-N+ in AD 
(Table 2).

Predictive Value of a Single A/T/N Biomarker for the 
Cognitive Progression of MCI Individuals at Five-Year 
Follow-Up

During the five-year follow-up period, the cognitive 
progression rates of different ATN profiles varied. The 
A+T+N+ profile and A-T-N- profile showed the highest 

Table 1. Baseline Characteristics of HC, MCI, and AD Groups
HC (n = 147) MCI (n = 197) AD (n = 128) P Post-Hoc Test

Age, year 73.7 ± 6.3 72.2 ± 7.1 73.7 ± 8.4 0.106
Sex, male 72 (49.0) 114 (57.9) 74 (57.8) 0.200
Education, year 16.59 ± 2.53 16.20 ± 2.75 15.48 ± 3.06 0.004 b
Alcohol abuse 7 (4.8)   9 (4.6) 10 (7.8) 0.407
BMI 27.21 ± 4.28 27.82 ± 5.08 25.89 ± 5.10 0.002 c
APOE ε4 carrier 40 (27.2) 105 (53.3) 86 (67.2) < 0.001 a, b, c
MMSE 29.08 ± 1.15 27.68 ± 1.81 23.35 ± 2.05 < 0.001 a, b, c
ADAS-Cog11   5.87 ± 3.10 10.75 ± 4.78 20.35 ± 6.92 < 0.001 a, b, c
ADAS-Cog13   9.05 ± 4.49 17.32 ± 7.23 30.60 ± 8.13 < 0.001 a, b, c
CDR 0.00 (0.00, 0.00) 0.50 (0.50, 0.50) 1.00 (0.50, 1.00) < 0.001 a, b, c
FAQ 0.00 (0.00, 0.00) 2.00 (0.00, 5.50) 13.00 (8.00, 18.00) < 0.001 a, b, c
GDS 0.00 (0.00, 1.00) 2.00 (1.00, 3.00) 1.00 (1.00, 2.00) < 0.001 a, b
RAVLT immediate   46.22 ± 10.18 33.42 ± 9.67 22.52 ± 6.93 < 0.001 a, b, c
RAVLT learning   5.90 ± 2.39   4.07 ± 2.62   1.82 ± 1.69 < 0.001 a, b, c
RAVLT forgetting   3.84 ± 2.67   4.96 ± 2.41   4.39 ± 1.56 < 0.001 a
RAVLT percent forgetting   36.00 ± 27.32   65.28 ± 31.12   88.69 ± 20.06 < 0.001 a, b, c
AFT 21.54 ± 5.43 16.85 ± 4.98 12.30 ± 4.68 < 0.001 a, b, c

a, HC vs. MCI; b, HC vs. AD; c, MCI vs. AD. Data are shown as the mean ± standard deviation, number (%), or median (interquartile 
range). Chi-square tests with Bonferroni correction were used for analysis of sex, alcohol abuse, and APOE ε4 carriers. One-way analysis 
of variance with Tukey’s post hoc test was used for analysis of education, BMI and AFT. The Kruskal-Wallis H test followed by the Nemenyi 
test was used for analysis of other continuous variables. AD = Alzheimer’s disease, ADAS-Cog = Alzheimer’s Disease Assessment Scale-
Cognitive subscale, AFT = Animal Fluency Test, APOE = apolipoprotein, BMI = body mass index, CDR = Clinical Dementia Rating, FAQ = 
Functional Activities Questionnaire, GDS = Geriatric Depression Scale, HC = healthy control, MCI = mild cognitive impairment, MMSE = 
Mini-Mental State Examination, RAVLT = Rey Auditory Verbal Learning Test
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(92.3%) and lowest (11.9%) progression rates, respectively. 
For the Alzheimer’s continuum, there was no significant 
difference in the progression rate of the A+T-N- and A-T-N- 
profiles (p > 0.05). The A+T+N- and A+T-N+ profiles both 
had significantly higher progression rates than the A+T-N- 
patients (both p < 0.05). The progression rate of the 
A+T+N+ profile was significantly higher than that of the 
A+T+N- (p < 0.001) or A+T-N+ profile (p < 0.05). For the 
MCI of SNAP, patients with A-T-N+ (p < 0.05) and A-T+N+ 

(p < 0.001) profiles showed significantly higher progression 
rates than those with A-T-N-. There was no significant 
difference in the progression rates of the A-T+N- and A-T-N- 
profiles (p > 0.05) (Table 3, Fig. 4).

DISCUSSION

Neurodegeneration is a characteristic of pathological 
changes in AD and is closely related to symptoms [21]. 

Fig. 2. Radiomics feature selection and model construction. 
A. The tuning parameter λ selection in the LASSO model used 5-fold CV via the minimum criteria. Mean square error was plotted vs. log (λ). The 
dotted vertical lines were drawn at the optimal values using the minimum criteria and the 1-standard error criteria. B. LASSO coefficient profiles 
of the radiomic features. A vertical line was drawn at the value selected using 5-fold CV in the ln(alpha) sequence, and 15 non-zero coefficients 
are indicated. C. A histogram displays the 15 optimal radiomics features for AD diagnosis from HCs and their coefficients. D. The ROC curve of the 
radiomics model for discrimination between AD patients and HCs. AD = Alzheimer’s disease, AUC = area under the curve, CV = cross validation,  
HC = healthy control, LASSO = least absolute shrinkage and selection operator, ROC = receiver operating characteristic
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Brain atrophy can reflect the degree of neurodegeneration, 
and can be detected using MRI. Most previous studies 
only used a single indicator of the volume or thickness 
of AD-specific regions, such as the hippocampus and 
temporal lobe, to evaluate N biomarkers [6-11]. Many other 
important brain areas and features have been ignored. As 
a new discipline, radiomics can extract a large number of 
high-throughput imaging features from traditional medical 
images and use machine learning to establish an artificial 
intelligence model to improve the accuracy of identification. 
In recent years, radiomics has been widely used in the 
diagnosis, classification, and prognosis prediction of 

neurodegenerative diseases, such as AD and Parkinson’s 
disease [22-26]. To our knowledge, this is the first time 
that a radiomics method based on MRI of the whole brain 
has been used to evaluate N biomarkers. The sensitivity 
and specificity of the discrimination between HCs and AD 
were 0.969 and 0.973, respectively, which were higher than 
the hippocampal volume (sensitivity, 0.673; specificity, 
0.803) or brain mean cortical thickness (sensitivity, 0.833; 
specificity, 0.859) reported previously [6]. Different MRI 
indices can reflect brain atrophy from different aspects. Our 
combined multiple indicators included cortical thickness, 
cortical area, cortical curvature, and subcortical volume 

Fig. 3. ROC curves of the CSF biomarkers for discrimination between Alzheimer’s disease and healthy controls. 
A. ROC curve of CSF Aβ42. B. ROC curve of CSF Aβ42/Aβ40. C. ROC curve of CSF p-tau. D. ROC curve of CSF t-tau. AUC = area under the curve, Aβ = 
amyloid-β, CSF = cerebrospinal fluid, p-tau = phosphorylated tau, ROC = receiver operating characteristic, t-tau = total tau
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of several brain regions, which could comprehensively 
reflect degenerative changes in the brain. Most radiomics 
features were located in the temporal, frontal, and parietal 
cortices. Structural changes in these cortical regions have 
been reported in patients with AD pathology and have been 
shown to be associated with disease progression [27-29]. 
In typical cases of AD, abnormalities of amyloid plaques 
or neurofibrillary tangles usually first appear in regions 
of the temporal lobes and hippocampus and progressively 
spread to the frontal lobes and other areas of the cortex 
[30]. The parietal lobe is considered to be a multimodal 
area of cognition. Parietal lobe dysfunction may be one of 

the causes of cognitive dysfunction in early AD [31]. The 
volume of the amygdala is also a retained feature. Previous 
studies have reported that a decrease in amygdala volume 
is related to cognitive dysfunction and can be used as a 
marker of dementia severity in patients with AD [32,33]. In 
the ATN system, neurodegeneration can be evaluated using 
CSF t-tau or brain imaging. In this study, the accuracy of 
the radiomics model was significantly higher than that of 
the CSF t-tau. A possible rationale is that brain atrophy on 
MRI reflects the cumulative loss and damage of nerve cells, 
while t-tau in CSF only reflects the damage of neurons at a 
certain time point.

According to the ATN system, excessive Aβ deposition 
Table 2. The Frequency of the 8 ATN Profiles and 3 Biomarker 
Categories in HC, MCI, and AD Groups

HC
(n = 147)

MCI
(n = 197)

AD
(n = 128)

ATN profiles
A-T-N- 77 (52.4) 42 (21.3) 0
A-T+N- 31 (21.1) 18 (9.1) 0
A-T-N+ 5 (3.4) 13 (6.6) 7 (5.5)
A-T+N+ 0 13 (6.6) 20 (15.6)
A+T−N- 21 (14.3) 17 (8.6) 2 (1.6)
A+T+N- 12 (8.2) 39 (19.8) 3 (2.3)
A+T-N+ 0 16 (8.1) 13 (10.2)
A+T+N+ 1 (0.7) 39 (19.8) 83 (64.8)

Biomarker categories
Normal 77 (52.4) 42 (21.3) 0
SNAP 36 (24.5) 44 (22.3) 27 (21.1)
Alzheimer continuum 34 (23.1) 111 (56.3) 101 (78.9)

Data are shown as the number (%). AD = Alzheimer’s disease, 
ATN = amyloid/tau/neurodegeneration, HC = healthy control,  
MCI = mild cognitive impairment, SNAP = suspected non-Alzheimer 
pathology
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Fig. 4. Kaplan-Meier curves illustrate the 5-year probability of 
no progression to AD of eight ATN profiles of mild cognitive 
impairment patients. AD = Alzheimer’s disease, ATN = amyloid/tau/
neurodegeneration

Table 3. The 1-, 3-, 5-Year Probabilities of No Cognitive Progression and 5-Year Cumulative Progression Rates of 8 ATN Profiles of 
Mild Cognitive Impairment Patients

ATN Profile N
Probability of Remaining Without Progression to AD

5-Year Progression (%) P < 0.05*
1-Year (%) 3-Year (%) 5-Year (%)

A-T-N- 42 95.2 92.9 88.1 11.9 a, b, c, d, e
A-T+N- 18 88.9 83.3 77.8 22.2 f, g, h, i
A-T-N+ 13 92.3 69.2 61.5 38.5 j
A-T+N+ 13 84.6 53.8 30.8 69.2 k, l
A+T-N- 17 94.1 76.5 70.6 29.4 m, n, o
A+T+N- 39 92.3 56.4 33.3 66.7 p
A+T-N+ 16 87.5 37.5 37.5 62.5 q
A+T+N+ 39 74.4 15.4 7.7 92.3

a, A-T-N- vs. A-T-N+; b, A-T-N- vs. A-T+N+; c, A-T-N- vs. A+T+N-; d, A-T-N- vs. A+T-N+; e, A-T-N- vs. A+T+N+; f, A-T+N- vs. A-T+N+; g, A-T+N- 
vs. A+T+N-; h, A-T+N- vs. A+T-N+; i, A-T+N- vs. A+T+N+; j, A-T-N+ vs. A+T+N+; k, A-T+N+ vs. A+T-N-; l, A-T+N+ vs. A+T+N+; m, A+T-N- vs. 
A+T+N-; n, A+T-N- vs. A+T-N+; o, A+T-N- vs. A+T+N+; p, A+T+N- vs. A+T+N+; q, A+T-N+ vs. A+T+N+. A Log rank test was used to compare 
survival curves among different ATN profiles. AD = Alzheimer’s disease, ATN = amyloid/tau/neurodegeneration
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(A+) is a biomarker of Alzheimer’s pathologic changes. 
In this study, we found that during the 5-year follow-
up period of the MCI population, patients with only A 
biomarker positivity (A+T-N-) clinically progressed at a 
rate similar to that of patients with the A-T-N- profile. Our 
findings suggest that the isolated amyloid abnormality 
(A+) indicates a relatively stable state rather than a sign of 
accelerated cognitive decline. In fact, amyloid deposition 
is the initial event of AD-related pathophysiologic change 
[34], which can last for 5–10 years or longer before the 
onset of dementia symptoms [35]. Based on the abnormal 
Aβ plaques, each added biomarker of T or N increases the 
recent progression rate of MCI patients. Interestingly, a 
similar risk of progression was observed between A+T+N- 
and A+T-N+, suggesting that T and N may play equal roles 
in the prediction of progression. A previous study suggested 
that A+T+N- and A+T+N+ should be combined into a single 
group because of their similar baseline characteristics [9]. 
However, in this study, we found that for A+T+N+ patients, 
the overall cognitive impairment was more serious, and the 
risk of cognitive progress was higher. There were significant 
differences in baseline status and prognosis between the 
two groups. A+T+N+ patients should receive more attention 
and timely interventions.

Suspected non-Alzheimer’s disease pathophysiology 
(SNAP) is considered an important category, which refers to 
individuals without excessive amyloid deposition (A-) but 
with tau pathology (T+) and/or neurodegenerative disease 
(N+). SNAP does not represent preclinical AD but includes 
one or more neuropathological processes or diseases other 
than AD [36]. During follow-up, we found that the N 
biomarker evaluated by radiomics features was sensitive 
in predicting recent cognitive decline in SNAP MCI. A 
variety of non-AD processes, such as TDP-4, hippocampal 
sclerosis, or cerebrovascular disease, may contribute to 
neurodegeneration in these individuals [37,38]. Neuronal 
loss and atrophy are common features of these diseases. 
In contrast, most MCI patients with A-T+N- characteristics 
in SNAP showed clinical stability, indicating that a single 
CSF p-tau abnormality does not lead to further cognitive 
decline. This may be because p-tau in SNAP mostly reflects 
age-related neurofilament angle pathology rather than AD-
related neuronal degeneration.

However, there are several limitations to our study. First, 
the ADNI is a large multicenter database with participants 
from more than 50 hospitals in the United States and 
Canada. Heterogeneity between different scanners is 

inevitable. Second, due to our strict inclusion criteria, 
the sample size of this study was not large enough. Third, 
considering the limitations of clinical applications, PET 
biomarkers were not included. Finally, our analysis was 
limited to observing the relationship between baseline 
biomarker status and progression risk of MCI patients, 
and no longitudinal analysis was performed. Future 
research should overcome these limitations and analyze 
the relationship between the dynamic changes in these 
indicators and the progression of cognitive impairment by 
using larger samples.

In conclusion, we proposed a new radiomics-based 
improved N biomarker and clarified the value of a single 
A/T/N biomarker for predicting the cognitive progression 
of MCI. For MCI patients on the Alzheimer’s continuum, 
isolated A+ was an indicator of cognitive stability, while 
abnormalities in T and N, respectively, or simultaneously, 
indicated a high risk of progression. For MCI patients with 
SNAP, isolated T+ indicated cognitive stability, while the 
appearance of the radiomics-based N+ indicated a high risk 
of progression.
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