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in Myasthenia Gravis
Henry J. Kaminski* and Jordan Denk

Department of Neurology and Rehabilitation Medicine, George Washington University, Washington, DC, United States

Chronic, high-dose, oral prednisone has been the mainstay of myasthenia gravis

treatment for decades and has proven to be highly beneficial in many, toxic in some way

to all, and not effective in a significant minority. No patient characteristics or biomarkers

are predictive of treatment response leading to many patients suffering adverse effects

with no benefit. Presently, measurements of treatment response, whether taken from

clinician or patient perspective, are appreciated to be limited by lack of good correlation,

which then complicates correlation to biological measures. Treatment response may

be limited because disease mechanisms are not influenced by corticosteroids, limits

on dosage because of adverse effects, or individual differences in corticosteroids. This

review evaluates potential mechanisms that underlie lack of response to glucocorticoids

in patients with myasthenia gravis.
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INTRODUCTION

Glucocorticoids (GC) are simultaneously the best and worst medications for patients with
myasthenia gravis (MG). Their efficacy cannot be denied based on decades of use in clinical practice
and an extensive evidence base of retrospective studies, expert opinion, and several consensus
guidelines as well as a limited number of randomized trials (1–8). In 1948 ACTH was first used
for MG treatment and many reports in the following two decades appreciated a therapeutic
benefit (9, 10). Chronic prednisone treatment over months to years became the standard of care
during the 1970’s (11). Short high-dose treatment with methylprednisolone has been used (12–14).
However, the usefulness of GCs is diminished by their significant adverse effects. The need to reduce
corticosteroid exposure has led to the use of immunosuppressives, plasma exchange, intravenous
immunoglobulin, and more recently a number of biologics for MG treatment (15, 16). The balance
of effectiveness and adverse effects has led to the reduction of overall prednisone dose as a measure
of efficacy in some clinical trials (17–21).

Regardless of the specific GC preparation and dosing regimen, there is a core of patients
with MG who have a poor clinical response. Two large cross sectional studies of patients
with MG indicated that there was a group of patients not achieving a minimal manifestation
status despite higher prednisone dosage (16). Thus far, there are no patient characteristics
that predict treatment-resistance (6). Shared with MG are most inflammatory or autoimmune
conditions with a core of 20–30% of patients who do not improve with GC treatment (22, 23).
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This review will broadly assess potential mechanisms that limit
treatment response to GC in MG.

THE CHALLENGE OF DEFINING
TREATMENT RESPONSE

A significant challenge for MG and many disorders is
the lack of reliable, objective markers of disease activity.
This is in marked contrast, for example, to autoimmune
thrombolytic anemia in which platelet counts track with
severity of disease manifestations, respiratory parameters
for asthma, or gadolinium enhancing lesions identified by
magnetic resonance imaging in multiple sclerosis. Often disease
severity is assessed by response to a treatment; however, this
approaches a circular argument. If a drug does not work,
it may simply not be targeting disease mechanisms, not
accessing the site of pathology, or achieving appropriate
levels to influence the disease. None of these suggest
that the underlying disease mechanisms themselves are
“more severe”.

Treatment resistance may stem from three broad, and
potentially overlapping, reasons: (1) GC may not impact
fundamental disease mechanisms, (2) excess susceptibility to
corticosteroid adverse effects, which compromise ability to
achieve therapeutic doses, and (3) phenotypic variations among
patients that limit biological response to the GC. All these may be
difficult to differentiate if severity of disease is defined as a lack of
response to GC. For MG, treatment response has been assessed
from various perspectives. Clinical outcome measures for MG
have evolved from simple physician-centric determination of
improvement to standardized strength assessment performed
by trained individuals to patient reported outcomes (24, 25).
Primary outcome measures for randomized trials in MG have
included the total dose of GC over time, the quantitative MG
Score, and the MG-Activities of Daily Living with the last of
which has become the primary measure recommended by the
FDA for drug approval. There has been an assumption that
improvement in standardized assessments of muscle strength,
as done in the QMG, would equate to improvement in patient
reported outcomes, but this is not the case as appreciated by
the relatively poor concordance of clinical outcome measures
(26, 27). The explanation for this discrepancy lies in the
complex interaction of the measurement used, disease pathology,
treatment used with its adverse effects, and the individual
response to disease, which includes social determinants of health
and a person’s personality traits. The expectation that circulating
autoantibodies would be a surrogate for treatment response
has not proven true. The acetylcholine receptor antibody level
does not correlate with improvement (28) and the rate of
change of antibody correlates only roughly (29). Small studies
support muscle specific kinase (MuSK) antibodies associate with
treatment response, but this has not been rigorously evaluated
(30, 31). The decremental response with repetitive stimulation
and abnormalities of the single fiber evaluation also do not
correlate well enough with clinical disease severity to be used as a
surrogate biomarker (17, 32).

GLUCOCORTICOID MECHANISMS OF
ACTION

Cortisol, the endogenous glucocorticoid, is synthesized and
released by the adrenal glands as regulated by the hypothalamic-
pituitary-adrenal (HPA) axis (Figure 1). Corticotrophin-
releasing hormone (CRH) from the hypothalamus activates
corticotrophic cells of the pituitary leading to release of adrenal
corticotropic hormone (ACTH), which then acts to enhance
synthesis and release of cortisol from the adrenal cortex. Blood
cortisol levels follow a circadian rhythm with an early morning
peak and a nighttime nadir (33), and increase in response to
stress including emotional reactions, physical challenges, and
tissue trauma (23, 34). These diurnal fluctuations also impact
the immune system and likely influence immune reactions
to outside stimuli [infections) and by extension autoimmune
reactions (33). The HPA axis employs a negative feedback
system that occurs at both the levels of the hypothalamus and
the anterior pituitary gland to moderate continued release
in states of GC excess. Additionally, the hypothalamus can
be stimulated by cytokine activation via interleukin-1 (IL-1),
tumor necrosis factor (TNF), and IL-6 (35) as would occur in
inflammatory and autoimmune diseases. Psychological stress
also increases GC production due to increased noradrenaline
levels, which further stimulate CRH and cause an increase in
pro-inflammatory cytokines, all of which stimulate the HPA
axis (33).

Cortisol binds the carrier protein, corticosteroid-binding
globulin (CBG), for its distribution via the circulation. Bound
cortisol is inactive, and only the small fraction of unbound
GC, which is lipophilic, diffuses readily across cell membranes.
Cytoplasmic cortisol binds to the GC receptor (GCR). The
bound GC and GCR impact biological processes through (1)
activity as a transcription factor binding to GC response elements
of numerous genes, (2) interactions with other transcription
factors including nuclear factor-κB (NF-κB) and activator protein
1 (AP-1), and (3) repression of gene transcription through
binding of inhibitory GC response elements and binding of
other transcription factors to prevent their action (35). GCs have
been estimated to impact expression of 20% of the genome (36).
GCs also act through non-genomic mechanisms. The lipophilic
properties of GCs lead to their ability, in the absence of the
glucocorticoid receptor (GR), to enter lipid membrane, which
alters membrane fluidity and interaction with membrane bound
proteins, including ion channels. The alteration of sodium and
calcium transfer appears to be a factor in mediating some
anti-inflammatory effects. To add to the complexity of GC
influences each cell differs in the nature of transcriptional
factors and other proteins for the GC to interact. Given their
numerous tissue targets, excess glucocorticoid states, whether
endogenous as in Cushing’s syndrome or exogenous provided
as prednisone, can lead to numerous adverse effects with
wide inter-individual variation for treatment response. Synthetic
GC, i.e., prednisone and dexamethasone, are not subject to
endogenous inhibitors of cortisol activity making them more
potent anti-inflammatory agents. Prednisone binds the GCR
with higher affinity and mineralocorticoid receptors with lower
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FIGURE 1 | Glucocorticoid Molecular Physiology. Once released from the adrenal cortex, glucocorticoids (GC) travel through blood with the carrier protein,

corticosteroid-binding globulin (CBG). Only 5% of extracellular GCs remain bioactive after binding to CBG. GC diffuse through the cell membrane to either (1) be

converted into inactive cortisone via 11β-hydroxysteroid dehydrogenase 2, (2) have non-genomic effects in the cytosol or mitochondria, or (3) bind to the

glucocorticoid receptor (GCR) as a chaperone complex to later exert genomic effects in the nucleus. When no cytoplasmic bioactive GCs are present, a multiprotein

complex begins GR maturation to prepare for GC binding. Once matured, GCR’s two nuclear localizations signals are exposed, which are then bound by nucleoporin

and importins that translocate cytoplasmic GC into the nuclear membrane. Inside the nucleus, the GCR complex can be released, and the GR can be transported

back to the cytoplasm, or the GR-GC complex can exert its function. Genomic effects include three categories: (1) direct binding to GC response elements (GREs) or

negative GREs (nGREs) which recruit transcriptional co-activators and co-repressors respectively, (2) protein-protein interaction with transcription factors (TF) that

modify transcription, and (3) composite interactions that involve DNA binding to GRE to alter transcription (see text for further details).

affinity than does cortisol, thereby limiting mineralocorticoid-
based complications.

The GCR is key in mediating many of the actions of GC.
The protein has three functional regions. (1) The constitutively
active ligand-independent activation domain (AF-1) is located
in the N-terminal region and is bound by the transcriptional
machinery and coregulators. (2) The DNA-binding domain
allows for binding of the GR to DNA and regulatory proteins.
(3) Ligand-binding domain of the C-terminus also serves to
interact with other transcriptional proteins, chaperone proteins,
and coregulators. The GR protein activity is subject to regulation
by phosphorylation, ubiquitination, and acetylation. The human
GR gene transcript undergoes alternative splicing to generate
GRα and GRβ isoforms, each with specific activity. The isoforms
are nearly identical through amino acid 727, but GRα contains

an additional 50 amino acids, and GRβ differs with an additional
15 non-homologous amino acids. GRβ is present in the nucleus
and is transcriptionally active with the capability to repress
or activate genes regulated by GRα. GRβ can inhibit GRα

activity. Proinflammatory cytokines and other signals increase
the expression of GRβ and mediate GC resistance (37). Other
GCR isoforms exist but are less well understood and have not
been associated with GC resistance. There are an increasing
number of proteins being identified, which bind the GCR and
its complex with GC and are likely to influence GC activity. A
detailed discussion of these is beyond the scope of this review and
reader should see the excellent summary of Petta et al. (35).

The GCR suppresses pro-inflammatory pathways supported
by NF-κB, AP-1, and MAPK (23). Each of these major pathways
influence cell survival, apoptosis, proliferation, differentiation
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and production of activate cytokines, chemokines, and other key
aspects of inflammation. Although all have predominant pro-
inflammatory, a chronic high level of NF-κB activity may lead
not only to chronic inflammation, but also to GC resistance
by blocking the GCR signaling pathway. Such chronic low
level inflammation has been implicated in the pathogenesis
of many diseases (38). GC also has pro-inflammatory effects
in certain situations including the dose of GC and timing
during the development of inflammation (39). For example, low
dose GC will enhance delayed-hypersensitivity in rat models,
but their chronic, high dose administration will enhance the
response (40).

GC have significant influences on cellular immunity. GC
inhibit dendritic cell maturation through reduction of expression
of MHC class II and costimulatory molecules. They also have
complicated effects on T cells, which include interference in TCR
signaling leading to reduced T cell activity, but GC appears to
have a suppressive effect on Th1 and Th17 cells, but promote
Th2 and Treg cells. GC treatment increases frequencies of
circulating Treg cells, which is likely GC mediated increase in
forkhead box P3 (FOXP3) through upregulation of GILZ87 (23).
Thymocytes are particularly sensitive to GC-mediated apoptosis.
The details of GC effects on B cells is being elucidated. GC
treatment reduces antibody concentrations in circulation and
immature B cells, which express GCR, are particularly sensitive
to induced apoptosis in contrast to more mature B cells and
plasm cells. However, emerging literature supports that GC can
have pro-inflammatory effects. GC enhances sensitivity of some
cytokine receptors, while reducing circulating levels of these
cytokines. Expression profiling indicates that gene expression of
innate immunity including complement components, receptors
of chemokines and cytokines, are upregulated, while T cell
pathway genes are increased. Cain and Cidlowski propose that
in the normal condition immune cells are sensitized to detected
infections and other harmful signals leading to tissue damage
and thereby the immune system can react rapidly (23). In
a pro-inflammatory state, stress-induced increases in cortisol
or exogenous GC will reduce the acute immune response.
This dual state of pro- and anti-inflammatory effects leads
to the complicated effects of exogenous GC treatments in
autoimmune diseases and the impact of GC dosage and duration
of treatment.

STEROID-RESISTANCE IN MYASTHENIA
GRAVIS

A detailed analysis of MG pathophysiology is beyond the
scope of this discussion but are reviewed in the context of
treatment resistance. The authors recommend readers see a
recent review by Huijbers et al. (41). As mentioned above,
there are three categories of explanation why patients with
MG would not respond to GC treatment. The disease-
causing mechanisms are not influenced by GC, the adverse
effects of GC are not tolerated leading to an inadequate
dose, or there are individual traits which limit the effect of
GC treatment.

Underlying Pathology Does Not Respond
to Corticosteroids
Among the best examples of apparently similar inflammatory
diseases with contrasting responses to GC treatment are
inflammatory pulmonary conditions, which account for about
60% of prescriptions for oral GC in the United Kingdom
(42). Asthma, chronic obstructive pulmonary disease, interstitial
pulmonary fibrosis, and cystic fibrosis demonstrate inflammatory
infiltrates (43) in the lung with an expectation that GC therapy
would moderate the severity of each disease, but a significant
benefit is only appreciated in patients with asthma.

As an autoimmune disease with a preponderance of patients
improving with GC treatment, there appears to be no a priori
reason for GC to be unable to target the immunopathology of
MG. However, the possibility that some mechanisms driving
pathology, which are not amenable to GC treatment should
not be discounted. MG is not a single disease, but rather has
subgroups defined by age, thymic pathology and autoantibody
status. Existing data supports MuSK MG being primarily a
disease of short-lived plasma cells, which are more sensitive to
GC treatment, compared to long-lived plasma cells of AChR
antibody positive MG (31, 44). The better response to anti-
CD20 treatment of MuSK MG than AChR MG supports that
short-lived CD20 expressing plasma cells are critical in disease
pathology compared to long-lived plasma cells, which do not
express CD20 (45, 46). GC-resistance may change over time with
the potential for long-lived plasma cells becoming the major
driver of pathology, compared to earlier in the disease may also
induce resistance itself. Other than plasma cell lineage factors
disease factors, which are not amenable to GC sensitivity are
not known.

Adverse Effect Susceptibility
One aspect of GC resistance, which should not be overlooked,
is the variation in susceptibility to adverse effects, which then
compromises ability to achieve therapeutic doses. Despite the
well-appreciated adverse effects of GC treatment, there is limited
data on the inter-individual susceptibility to adverse effects.
Upwards of one to two thirds of patients with MG hav e adverse
effects related to GC therapy (19, 47). The major risk factor
for GC morbidity is the cumulative dose of GC, but even with
lower dose regimens of 20–30mg of prednisone vs. the historical
standards 60–80mg per day dosing, intolerable adverse effects
occur (16, 48, 49). The most common adverse effects are weight
gain, Cushingoid appearance, and skin changes including acne,
while more medically severe effects, but rare complications,
include gastric and esophageal irritation, compression fractures,
and aseptic necrosis of the femoral head. Between these ends
of severity are worsening hypertension, diabetes, glaucoma and
cataract formation. Poorly-documented adverse effects, which
occur in essentially all patients, are insomnia and mood changes
from irritability and various degrees of depression. A study
of over a thousand rheumatoid arthritis patients found a
dose-dependent relation with Cushingoid features, peripheral
edema, skin bruising and threshold effect of 7.5mg per day
with glaucoma, depression and hypertension, while even five
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mg per day increased incidence of weight gain and even
a lower dose of cataract formation (50). McDowell et al.
evaluated adverse effects in a population of patients with severe
asthma and using a quantitative instrument specific for GC
treatment complications confirmed significant inter-individual
variability in adverse effects, which is consistent with the long-
standing clinical impression. The inter-individual susceptibility
to adverse effects and treatment resistance are intertwined from
the clinician and patient perspective but biological mechanisms
that drive improvement vs. complications are likely distinct.
GC differentially influence gene expression of pathways, which
moderate inflammatory and adverse effects (51) with adverse
effects primarily associated with the transactivation of genes
by the corticosteroid, which has led to attempts to engineer
compounds that support suppression of pro-inflammatory gene
transcription, but limit transactivation (52–54).

Sensitivity to Treatment Effect of
Glucocorticoids
As should be clear from the summary of GC action, there is the
potential for GC efficacy to be compromised at many steps from
administration to final effector mechanisms. Below we review the
presently known mechanisms of GC resistance that may impact
efficacy for MG.

GC Metabolism
Despite decades of use, there is relatively poor characterization
of the impact of GC metabolism on therapeutic benefit. Efficacy
properties of any drug begin with its pharmacokinetic profile.
Exogenous GC are not subject to endogenous moderators
of cortisol (55). Prednisone and prednisolone are the most
frequently used GC in treatment of MG with both drugs
rapidly absorbed after oral ingestion. Prednisone is converted
to prednisolone rapidly by the action of 11β-hydroxysteroid
dehydrogenase with a peak blood concentration within 3 h.
High inter-individual difference in bioavailability of prednisone
has been documented (56). Prednisone is cleared primarily
by hepatic metabolism by the P450 system and drugs, which
block or enhance P450 enzymes will modify the half-life of the
drug. Prednisone itself may modify xenobiotic pathways that
metabolize the drug, which further enhances the complexity of
inter-individual variation of efficacy (57). In addition, both the
GCR and xenobiotic receptor activation inhibit the activity of
NF-κB, a master regulator of the immune response (58). Also,
NF-κB activation reciprocally inhibits xenobiotic metabolism,
creating a complex feedback loop. The simple variation of
metabolism of prednisone could impact its efficacy in individual
patients with MG. Genetic differences in drug metabolism are
being appreciated but have not yet reached an understanding to
guide GC therapy.

Pharmacogenetics and Glucocorticoid Resistance
Genetic variations are well-appreciated to influence drug
responses or adverse effects to GC but have yet to be defined
well enough to guide practice. Polymorphisms in the GCR
gene are associated with response to GC in ulcerative colitis
and rheumatoid arthritis (59–61), and we also found this to

be the case in GC treatment response in patients with MG
(62) (Table 1). The only other gene with genetic polymorphisms
associated with treatment response in MG is osteopontin (63).
Circulating GRβ levels have been found to be associated with
GC resistance in rheumatoid arthritis, SLE, and asthma (64–
66). Hypomethylation of NLRP3 gene promoter discriminates
glucocorticoid-resistant from GC-sensitive idiopathic nephrotic
syndrome patients (67). P53 interacts with GR to promote anti-
inflammatory pathways and patients with rheumatoid arthritis
who did not respond to GC treatment showed reduced p53
expression levels in blood mononuclear cells (68). Genetic
variations, including ones that vary in significance based on sex,
are increasingly being appreciated in response to GC therapy
but have yet to guide treatment decisions. The response to GC
therapy may wane over time appreciated for some conditions is
produced by a downregulation of the GRα (69).

Lymphocyte Sensitivity
Investigations of cultured lymphocytes of patients with
rheumatoid arthritis, inflammatory bowel diseases and
systemic lupus demonstrate a sensitivity to in vitro lysis
when cultured with GC, which correlates with the clinical
benefit observed in these patients (42, 70, 71). Of note, the
in vitro sensitivity is observed in non-disease control subjects
and therefore is not a function of disease activity. Studies of
African Americans with asthma show less in vitro sensitivity
to GC, which again correlates with poorer clinical response to
GC therapy (72). Glycosphingolipid metabolism, urea cycle,
and pentose phosphate pathways are associated with in vitro
glucocorticoid resistance in pregnant African American women
(73). Differences in transcription of NF-κB and other genes
are associated with the degree of lymphocyte sensitivity to
glucocorticoids (70, 74).

Sex and Gender Differences in Autoimmunity and

Glucocorticoid Resistance
Sex refers to characteristics specific to biologically determined
properties of the sex chromosomes. Gender encompasses

TABLE 1 | Examples of genes with single nucleotide polymorphisms associated

with GC resistance.

Gene Protein Disease GC Resistance

NR3C1 Glucocorticoid Receptor MG, pediatric nephrotic

syndrome

FKBP5 FK506 binding protein 5 Inflammatory bowel disease

IL-4 Interleukin-4 Nephrotic syndrome

IL-6 Interleukin-6 Nephrotic syndrome

MIF macrophage migration

inhibitory factor

inflammatory bowel disease,

rheumatoid arthritis

GLCCI1 Glucocorticoid Induced 1 Asthma

MDR1 P-glycoprotein Nephrotic syndrome,

inflammatory bowel disease,

rheumatoid arthritis

NR1I2 Pregnane X receptor Nephrotic syndrome

Frontiers in Neurology | www.frontiersin.org 5 April 2022 | Volume 13 | Article 886625

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Kaminski and Denk Corticosteroid Treatment-Resistance in Myasthenia Gravis

biological differences coupled with social and cultural factors,
which define women and men. Under the age of 40 years
about two thirds of patients with MG are women while with
advancing age the gender discrepancy begins to shift toward
men. Rheumatoid arthritis and multiple sclerosis share a similar
distribution, in contrast, women account for over 90% of
cases of SLE and Sjogren’s. These observations support that
there are fundamental gender differences in susceptibility to
initiation and maintenance of autoimmune disorders that are
dependent on the specific disease. There is an ever-increasing
appreciation of the differences in the immune responses of
females and males, which span species from Drosophila to
humans. Females develop more intense innate and adaptive
immune reactions than males allowing for better clearance of
infectious agents as well as greater responses to vaccinations;
however, this comes at the price of greater susceptibility to
autoimmune process (75, 76). Sex hormones and immune
system related genes on the X chromosome hosts are factors,
which drive these differences. The impact of sex hormones
on autoimmunity is illustrated by the general observation that
disease severity is reduced during pregnancy and exacerbate
post-partum. Pregnancy also leads to the transmission of fetal
cells to the mother and these foreign cells can persist for
decades. Maternal cells also persist in individuals at very low
levels throughout postnatal development. The maternal receipt
of fetal cells likely expands immune tolerance in the mother
during pregnancy, but they may also contribute to increased risk
of autoimmune disease in women of child bearing years (77).
Epigenetic factors impact gene expression on the X chromosome
and thereby provide mechanisms on how the environment may
shape gender differences in autoimmunity (78–80).

The severity of autoimmune diseases vary based on gender.
Men with psoriasis, multiple sclerosis and SLE have a worse
prognosis, in contrast to there not being a difference in
rheumatoid arthritis (79). Young women also have a poorer
response compared to men to GC therapy for inflammatory
bowel disease (81). Mortality rates generally are higher
among women with autoimmune diseases, but this data
is difficult to interpret as to whether biological, social,
comorbidies, or other factors drive these observations. A
patient reported registry study indicated that women with
MG have a poorer quality of life (82), but there is limited
data as to whether women respond less well to treatment.
Women report a poorer response to overall treatments for
MG and have greater adverse effects from prednisone (82,
83). Endogenous and exogenous GC influence gene expression,
including those of the immune system, in a sex specific
manner (84).

CLINICAL CONSEQUENCES

Identifying treatment-resistant patients prior to initiation of GC
is presently not possible and therefore, the clinician needs to be
proactive in discontinuation of prednisone treatment to prevent
greater adverse effects than can be balanced by benefit. Consensus
guidelines recommend moving to alternative therapies when

initial GC therapy at “adequate” dosing does not improve or
worsens the patient’s condition or if adverse effects are deemed
intolerable by patient or physician (8). The consensus guideline
provides options of slow, alternate dose escalation or a high-
dose rapid induction. No specific time-frame for improvement,
level of response, or severity of adverse effects is defined. A
responsive patient to prednisone usually does so in 4–6 weeks
after prednisone initiation. This may not be complete, but
physician and patient should expect a situation close to minimal
manifestations. Again, both patient and clinician should guard
against being content with significant improvement from a poor
baseline and accepting disability.

The MG community is blessed with therapeutic options
for GC treatment resistance, which are detailed in a number
of recent reviews (15, 21). For all AChR-Ab positive patients
under 65 years of age as was defined in the MGTX study this
would mean a thymectomy regardless of response to prednisone
(19). Relatively, rapidly acting approaches as intravenous
immunoglobulin, plasma exchange, complement inhibition or
FcRn blockers, should be used for patients presenting with
significant disability and an initial poor response to prednisone.
However, none of these treatments will lead to remission
and therefore, for long-term reduction of antibody producing
cells, immunosuppressives and B cell ablation therapy should
be considered. Tapering of prednisone should begin with
initiation of additional therapies and its speed dependent on
the nature of the additional treatment and the expected onset
of action.

CONCLUDING REMARKS

MG therapeutic development is making incredible advances
(21) with agents that specifically target effector mechanisms
as well as autoantibody producing cells and attempts to
reestablish tolerance. Despite the new drugs approved, and
ones on the horizon, GC treatment will continue to be the
primary therapy used for MG care for the foreseeable future (8).
Detailed investigation of patients who demonstrate differential
responses to GC offer a powerful set of experiments to
understand MG mechanisms and further define differences,
which will allow development of personalized medicine
for patients. The application of broad spectrum proteomic,
genomic, metabolomic, and microbiome approaches
linked to precise clinical characterization will be key to
elucidating subtle differences in disease mechanisms and
treatment response.
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