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Evolutionary design of molecules 
based on deep learning 
and a genetic algorithm
Youngchun Kwon1,4, Seokho Kang2,4, Youn‑Suk Choi1* & Inkoo Kim3

Evolutionary design has gained significant attention as a useful tool to accelerate the design process 
by automatically modifying molecular structures to obtain molecules with the target properties. 
However, its methodology presents a practical challenge—devising a way in which to rapidly evolve 
molecules while maintaining their chemical validity. In this study, we address this limitation by 
developing an evolutionary design method. The method employs deep learning models to extract the 
inherent knowledge from a database of materials and is used to effectively guide the evolutionary 
design. In the proposed method, the Morgan fingerprint vectors of seed molecules are evolved using 
the techniques of mutation and crossover within the genetic algorithm. Then, a recurrent neural 
network is used to reconstruct the final fingerprints into actual molecular structures while maintaining 
their chemical validity. The use of deep neural network models to predict the properties of these 
molecules enabled more versatile and efficient molecular evaluations to be conducted by using 
the proposed method repeatedly. Four design tasks were performed to modify the light-absorbing 
wavelengths of organic molecules from the PubChem library.

The discovery of new functional molecules has led to many technological advances and is still one of the most 
crucial ways in which to overcome technical issues in various industries, such as those in the organic semicon-
ductor, display, and battery industries. Although the trial-and-error approach has generally been considered as 
the most acceptable way to develop new materials, computer-aided techniques are increasingly being used to 
enhance the efficiency and hit rate of molecular design1. A typical example is high-throughput computational 
screening (HTCS), which involves the use of virtual chemical libraries for large-scale predictions of material 
properties using simulations or machine learning, allowing a rational sorting of potential candidates for subse-
quent chemical synthesis2,3. However, HTCS is a local optimization technique whose success relies on the quality 
of the chemical libraries, the development of which depends on researchers’ experience and intuition. Thus, 
HTCS has a low hit rate, and in most cases, several iterative enumerations are necessary to generate suitable target 
materials. In this regard, evolutionary algorithms, a type of exhaustive enumeration, can be a viable alternative 
for de novo design. These algorithms are generic population-based metaheuristic optimization techniques that 
use bio-inspired operators, such as reproduction, mutation, recombination, and selection4,5. As design tools for 
materials, they not only optimize the molecular structures but also provide hints for a promising chemical space 
by identifying genetic traits that favor the target properties while maintaining the unique genotypes of ancestors. 
Recent advances in machine-learning algorithms6–19 have led to the proposal of data-driven methodologies.

The development processes of various materials, including organic molecules, metals, ceramics, composites, 
and carbon molecules20,21, have widely adopted evolutionary design methodologies (EDM) in combination 
with property prediction techniques22–29 based on first-principles calculation and machine learning. Specifically 
regarding organic molecules, two major challenges of EDM are to (1) preserve the chemical validity of evolved 
molecules and (2) choose the best-fit individuals in each generation efficiently and accurately according to the 
fitness function. To address the first challenge, heuristic chemical knowledge is generally incorporated. Mol-
ecules expressed as graphs or ASCII strings evolve according to user-defined rules, such as adding, deleting, and 
replacing atoms, bonds, and substructures under chemical constraints. Notably, not only the fragment struc-
tures that serve as building blocks but also their attachment points are specified in advance based on previous 
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experience. This method increases the likelihood of generating more valid and synthetically tractable molecules 
and sometimes accelerates overall stochastic searches by using in-depth domain knowledge. However, predefined 
chemical rules and fragment libraries can lead to bias, and therefore the entire optimization process is at risk of 
converging to local optima. Moreover, every time the application changes, new chemical rules would have to be 
specified. For some emerging areas, it is challenging to determine a well-established guide for structural changes. 
To address the second challenge, simple evaluation methods, such as structural similarity indices, quantitative 
structure–property relationship models, and semi-empirical quantum chemistries, are generally adopted as fit-
ness functions to reduce the computational cost. However, more diverse and complex assessments are needed 
to evaluate the candidates precisely but promptly.

To overcome these demanding limitations, we devised an evolutionary molecular design method based on 
deep learning. Instead of graphs or ASCII strings, a bit-string fingerprint vector is used as a molecular descriptor 
to evolve molecules. Then, the evolved fingerprint vectors are converted into actual molecular structures using a 
recurrent neural network (RNN) model30, which acts as a decoder. This approach enables us to prevent explicit 
chemical knowledge from intervening during a molecular evolution while ensuring the molecules are chemi-
cally valid. Moreover, deep neural network (DNN) models31, aided by quantum chemical calculations, are used 
to evaluate the evolved molecules with more complex criteria.

The effectiveness of the entirely data-driven evolutionary approach was validated by conducting various 
molecular design tasks on data in the PubChem library to change the wavelengths at which organic molecules 
absorb the maximum amount of light32. The deep learning models learn implicit knowledge from this rich library 
of materials and successfully guide the automatic evolution of seed molecules without heuristic intervention.

Computational methods
Workflow of the evolutionary design.  The evolutionary design framework where a genetic algorithm 
(GA) finds the design route towards the target under the guidance of deep learning models is illustrated in Fig. 1. 
This approach automatically optimizes the structure of seed molecules via the collaborative work of an encoding 
function e(∙), decoding function d(∙), and property prediction function f(∙). As illustrated in Fig. 1a, the encoding 
function e(∙) transforms the molecular structure m, which exists in a canonical simplified molecular input line 

Figure 1.   Schematics of the deep learning-based evolutionary molecular design. (a) Molecular representations 
and their relationships with the encoding, decoding, and property prediction functions. (b) Detailed workflow 
of the evolutionary design. (c) Iteration loop of the evolutionary design.
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entry system (SMILES)33 string format, into the corresponding extended-connectivity fingerprint (ECFP)34 vec-
tor x. Then, the decoding function d(∙) converts the bit-string ECFP vector x into the SMILES string m to enable 
it to be recognized as a real chemical structure. The property prediction function f(∙) predicts the molecular 
property t using the ECFP vector as an input. The decoding and property prediction functions are derived by the 
RNN and DNN, respectively, and consequently, lead the overall workflow shown in Fig. 1b.

First, the molecular structure of a seed molecule m0 in SMILES format is transformed into the correspond-
ing ECFP vector x0 using the encoding function e(∙). Then, the evolution procedure begins with the generation 
of a population of vectors P0 = {z1, z2,∙…∙, zL} through the mutation of x0. Following the conversion of each 
vector zi into a SMILES string mi by d(zi), the validity of the decoded SMILES strings is inspected in terms of 
grammatical correctness with the RDKit library, e.g., additional open/close parentheses, unclosed rings, and 
Kekulization feasibility. This serves to evaluate the fitness of the molecules by predicting the molecular properties 
with ti = f(e(mi)). Subsequently, the top three ECFP vectors based on fitness are selected as parents for further 
evolution into the new population of vectors Pn = {zn

1, zn
2,∙…∙, zn

L} via crossover and mutation. Notably, the 
assessment of the chemical validity and fitness evaluation are performed once again, and the best-fit molecule in 
the nth generation is chosen. Generated molecules that overlap with molecules that already exist in the database 
are removed from the candidate list. Successive iterations of this procedure gradually refine the properties and 
automatically optimize the molecular structures to meet the target.

During the evolution, additional constraints, such as the presence or absence of specific substructures, can be 
imposed on the molecular structure depending on the design purpose. However, in this study, three simple struc-
tural constraints were specified in the form of a blacklist. Newly generated molecular structures that included 
these blacklisted substructures were then excluded from the list of candidate materials. The first constraint 
specifies that the size of fused rings in molecules generated with such rings be limited to between four and seven. 
Second, the maximum number of fused rings in the molecules is restricted to six, and finally the maximum length 
of an alkyl chain is limited to six carbon atoms. Third, to maintain the form of the seed molecule, we remove 
the following newly generated molecules: those for which the maximum number of rings exceeds those of the 
seed molecule by two and those for which the minimum number of rings is two fewer than those in the seed 
molecule. These structural restrictions made it possible to obtain novel molecules with appropriate properties 
via natural evolution without significantly deviating from the shape of the initial seed.

Encoding, decoding, and property prediction functions.  ECFP is a circular topological fingerprint 
that has been successfully applied to represent organic molecules in vector forms. The encoding function e(∙) 
uses a hash function to map the structural features of a molecule into a fixed-length ECFP vector representation. 
In this study, we employ an ECFP with a neighborhood size of 6 and a length of 5000. Therefore, the encoding 
function encodes each atom and its circular neighborhoods with a diameter of six chemical bonds for a mol-
ecule m and transforms the SMILES into a 5000-dimensional vector x. Regarding the decoding function d(∙), 
an RNN composed of three hidden layers with 500 long short-term memory units35 is modeled to obtain the 
SMILES string from the ECFP vector. SMILES represents a molecular structure as a compact variable-length 
sequence of characters using simple vocabulary and grammar rules. As proven in recent studies, the RNN can 
generate SMILES strings because it effectively captures the long-term dependence of sequences. This occurs via 
the recurrent connections of units across the sequence steps. We form an RNN as a language model that gener-
ates a single-step moving window sequence of three-character substrings for each SMILES string. Here, the next 
substring in the sequence is predicted by conditioning the current substring and the given ECFP vector. This 
conditional generation of three-character substrings usually reduces the ratio of invalid SMILES by imposing 
additional restrictions on the subsequent character. The grammatically incorrect SMILES strings are deleted in 
the inspection step.

To obtain the property prediction function f(∙), a five-layer DNN was built with 250 hidden units in each layer 
to identify the nonlinear relationship between molecular structures and their properties36.

In the RNN, the output layer is a softmax activation function to indicate the probability distribution of sub-
strings. As for a DNN, all hidden layers use a logistic sigmoid activation function, and the output layer employs 
a linear function. The inputs of the RNN and DNN are 5000-dimensional ECFP vectors. All neural networks are 
trained by backpropagation using the Adam optimizer37 with a mini-batch size of 100 and 500 training epochs. 
Each input and hidden layer in the neural networks is followed by a dropout layer with a dropout rate of 0.5 
to prevent overfitting. Suppose that a dataset of k molecules and their annotated properties D = {(mi, ti)}i=1–k is 
given. Subsequently, the RNN is trained on DRNN = {(e(mi), mi)}i=1–k by minimizing the cross entropy between 
the softmax output and mi, aiming at fulfilling the functional relationship d(e(mi)) = mi. In addition, the DNN 
is trained on DDNN = {(e(mi), ti)}i=1–k by minimizing the mean squared error between f(e(mi)) and ti. All neural 
networks were implemented using the Keras library based on the GPU-accelerated Theano library.

Genetic algorithm.  The GA procedure was implemented using the Distributed Evolutionary Algorithms 
(DEAP) library in Python. The size of the population, crossover rate, and mutation rate are set to 50, 0.7, and 0.3, 
respectively. Following an initial mutation in each generation (P0 in Fig. 1b), a tournament selection with a size 
of 3 is conducted to select parents for further evolution with crossover and mutation. For the former, we used 
a uniform crossover with a mixing ratio of 0.2 between two parent individuals. For the latter, we used Gaussian 
mutation that adds random values drawn from N(0, 0.22) to elements chosen with a ratio of 0.01 in an individual 
ECFP vector. The overall evolution was terminated when (1) the number of generations reached 500 and (2) the 
fitness was not enhanced during 30 consecutive generations. The default values in the DEAP library were used 
for the additional settings.
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Quantum chemistry.  All quantum chemical calculations were performed with the Gaussian 09 program 
suite38. The molecular geometries were optimized by density functional theory (DFT) using the hybrid B3LYP 
functional and all-electron 6-31G basis sets. A single-point time-dependent DFT calculation was performed 
with this geometry to calculate the vertical excitation energies to the lowest singlet state (S1). Symmetry con-
straints were not imposed in any of the calculations.

Results and discussion
Performance of deep neural networks.  The effectiveness of the deep learning-based evolutionary 
design was verified by applying it to real-world problems. The aim was to change the maximum light-absorbing 
wavelengths in terms of the S1 energy. Accordingly, the RNN and DNN models were trained with a chemi-
cal library that comprises 10,000 to 100,000 molecules (with molecular weights between 200 and 600 g/mol) 
randomly sampled from the PubChem database32. Each molecule was labeled with the excitation energy (S1), 
molecular orbital energies (highest occupied molecular orbital (HOMO), and lowest unoccupied molecular 
orbital (LUMO)) by the DFT calculation. As the amount of training data increases, the performance of the 
RNN and DNN models improves accordingly, as summarized in Table 1. In the case of 100,000 training data 
points, the validity of RNN decoding was 88.8%, the reconstructability was 67.4% and the correlation coeffi-
cients between the DNN predictions and simulated values of S1, HOMO, and LUMO were 0.977, 0.948, and 0.96, 
respectively, in a tenfold cross-validation (also refer to Fig. S1 in the Supplementary material). The dataset was 
partitioned into training (90%) and test sets (10%). For each data split, we trained the prediction model using 
the training set and evaluated its prediction performance on the test set. The validity of RNN decoding, which 
refers to the proportion of chemically valid molecules, was assessed during the RDKit inspection step. In the 
case of reconstructability of RNN decoding, input descriptor was evaluated by trying to retrieve the molecules 
that was represented by them. By identifying the sampled canocnical SMILES string in 10,000 generated strings 
given seed molecules from the test dataset, almost 62.4% of the consisted of strings with the same canonical form 
as the molecule behind the seeding ECFP.

Evolutionary design for S1 change without any constraints.  Fifty seed molecules were randomly 
selected from the chemical library and evolved in both.

directions by increasing and decreasing S1. The S1 values of the seed molecules are between 3.8 eV and 4.2 eV. 
Figure 2 shows the average rate of change of S1 for the 50 seed molecules when the number of training data 
samples increases from 10,000 to 50,000. The average fitness improves with the number of generations when S1 
is increased or decreased, indicating that the proposed workflow has successfully evolved the seed molecules 

Table 1.   Performance of DNN based on the number of training data. R is the correlation coefficient between 
DNN predictions and simulated values, and MAE (eV) is the mean absolute error in the tenfold cross-
validation.

Number of training data Validity (%) Reconstructability (%)

Prediction accuracy of DNN (R, MAE)

S1 HOMO LUMO

100,000 88.8 62.4 0.977, 0.185 0.948, 0.168 0.960, 0.195

50,000 86.7 60.1 0.973, 0.198 0.945, 0.172 0.955, 0.209

30,000 85.3 59.8 0.930, 0.228 0.934, 0.191 0.945, 0.224

10,000 83.2 55.7 0.913, 0.278 0.885, 0.244 0.917, 0.287

Figure 2.   Average rates of change of S1 for the 50 seed molecules during the evolutionary design involving 
increasing and decreasing S1.
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toward those with the required target properties. In the early stage, S1 changes fast, where after the change is 
relatively slow. Moreover, a larger amount of training data results in a higher rate of S1 change.

In the increasing direction, the average S1 increases by approximately 60% for 50,000 training data; however, 
it increases by merely 45% for 10,000 training data. This seems to suggest that these results reflect the difference 
in the performance of the RNN models. The RNN model trained with a larger dataset learns more decoding rules 
and would decode fingerprints into more diverse molecular structures to meet the goals. Overall, the evolution 
trend tends to become almost saturated when approximately 50,000 training data samples are used. Thus, in this 
design circumstance, 50,000 data samples are sufficient to train deep learning models.

In the decreasing direction, the maximum rates of change in S1 are slightly lower than those in the increas-
ing direction, which may be caused by the S1 distribution of the training data. As shown in Fig. 2, in the case of 
50,000 samples of training data, the S1 distribution is skewed and is higher than the median S1 value of the seed 
molecules, i.e., 4.0 eV. The average S1 values are 4.4, 4.3, and 4.4 eV for 10,000, 30,000, and 50,000 samples of 
training data, respectively. Owing to the characteristics of the training data, S1 is more likely to change its value 
in the increasing direction. Although not included in Fig. 2, the S1, HOMO, and LUMO distributions for 10,000 
and 30,000 samples of training data are similar to those of the 50,000 samples of training data.

Evolutionary design for S1 change using the HOMO and LUMO as constraints.  In an additional 
design task, we evolve molecules by using the HOMO and LUMO energies as constraints. The seed molecules 
are the same as before, and the amount of training data is fixed at 50,000 samples. We apply the constraints 
of − 7.0 eV < HOMO <  − 5.0 eV and LUMO < 0.0 eV for the generated molecules.

In the increasing direction of S1, the molecules that evolve without any constraints exhibit higher rates of 
S1 change than those that evolve within the constraints, as shown in Fig. 3a. Generally, S1 is proportional to 
the energy gap between HOMO and LUMO. Under the constraints, the maximum LUMO is fixed at 0.0 eV, as 
depicted in Fig. 3b. Therefore, increasing S1 requires the HOMO energy to be lowered. However, the minimum 

Figure 3.   Effect of HOMO and LUMO constraints on the evolutionary design. (a) Average rates of change of S1 
for the 50 seed molecules. (b) Schematics of the change in the molecular orbital energy when S1 is increased and 
decreased.
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HOMO energy is also limited to − 7.0 eV. These constraints are therefore responsible for suppressing the increase 
in S1.

Interestingly, the use of constraints does not significantly affect the rate at which S1 is decreased. To decrease 
S1, the energy difference between HOMO and LUMO must be reduced. Under the constraints, LUMO is still 
assigned a maximum value of 0.0 eV, as delineated in Fig. 3b; however, LUMO can freely move in a downward 
direction. Moreover, although the maximum HOMO is limited to − 5.0 eV, the distributions of the training data 
in Fig. S2 and indicate that the constraints allow sufficient room in which to decrease the energy gap between 
HOMO and LUMO. The constraints in the form of the HOMO and LUMO energies thus have the opposite effect 
on the increasing and decreasing S1 energy.

Examples of the molecules that evolved from two seed molecules, in the absence and presence of the con-
straints, are summarized in Fig. 4. Local exceptions occurred in a few of the generations. Nevertheless, the overall 
evolution proceeds as anticipated. The molecules evolve through structural modifications, such as the addition, 
deletion, and substitution of atoms and substructures. As the number of generations increases, the structural 
changes accumulate, and a wider variety of moieties are introduced towards attaining the target property.

As a result, the deep learning-based functions, d(∙) and f(∙), enable successful molecular evolution by acquiring 
the knowledge latent in the molecular data. In most cases, multiple evolutions of the same seed molecule occur 
along different design paths owing to the randomness of GA. Therefore, more diverse offspring can be obtained 
using an iterative approach.

Evolutionary molecular design outside the scope of the training data.  The data-driven approach 
is heavily influenced by the training data. The challenge would therefore be to obtain a group of molecules out-
side the scope of the specified target property. As a final experiment, to generate a molecular structure with prop-

Figure 4.   Examples of evolved molecules for two seed molecules (A, B) in the absence and presence of 
constraints. The DFT-simulated and DNN-predicted (in parentheses) energy values are annotated together.
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erties in the extrapolation area, we added a process that repeatedly calculates newly generated molecules and 
re-trains the RNN and DNN models. To create a group of molecules with S1 values smaller than 1.77 eV using 
data with an S1 distribution above 1.77 eV, we selected the 30 molecules with the smallest S1 values in the train-
ing data as seed molecules. Based on the sampled 30 molecular seeds, the process of generating new molecules 
was repeated 300 times to derive new molecules with S1 lower than 1.77 eV. We calculated the new molecules 
by DFT and then re-trained the RNN and DNN models, similar to the initial training process. We defined this 
iterative process as a “phase” and repeated it three times. When proceeding with the next phase, we selected the 
30 molecules with the lowest S1 values as the seed, including the new molecules created in the previous phase. 
This yielded an average S1 value for the training data of 4.91 eV, and the variance is 2.11. However, the aforemen-
tioned process produces new molecules for which the S1 distribution is relatively lower than that of the training 
data, as shown in Fig. 5a. The average S1 of the molecules produced in the first phase is 2.20, and the variance is 
1.40. The averages in the second and third phases are 2.22 and 2.31, with variances of 1.38 and 1.36, respectively. 
Although the average value rises slightly as the number of phases increases, the variance gradually decreases. 
This intensifies the creation of molecular structures with the desired physical properties.

Figure 5.   Percentage of molecules generated with evolutionary design vs. the density of the training dataset (a) 
and the number of new molecules generated in repeated phases (b).
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As shown in Fig. 5b, as the number of phases increases, the number of new molecules with S1 values that are 
relatively lower than those in the previous phase increases. After the first phase, the number of newly generated 
molecules with S1 values lower than 1.77 eV is 12. In the second and third phases, this number becomes 37 and 
58, respectively. This process makes it possible to secure a group of potential new materials with properties that 
are not in the training data without significant changes in the shape of the molecular structure (Fig. 6). The pre-
dicted accuracy is low because of the relatively small number of molecules with very low S1 values in the overall 
data distribution. However, as the process continues to accumulate sufficient data, the predicted accuracy is likely 
to increase, and this would enable candidate materials with new values to be obtained.

Goal‑Directed Benchmarks.  We compared the proposed method with previous generative models by 
testing it on goal-directed tasks defined in the GuacaMol8,12 scoring suite. The comparison involved using the 
proposed method to generate novel molecules with the desired properties. The two main objectives of validation 
of the GuacaMol test are rediscovery and property satisfaction benchmarks. Specifically, the rediscovery task is 
defined as the maximization of the similarity between the ECFP fingerprints of the structures of the generated 
molecules and that of the target. We employed celecoxib, troglitazone, and thiothixene as benchmarks for the 
rediscovery tasks, such as baselines. To apply the EDM model to the GuacaMol task, we newly trained our RNN 
model using the ChEMBL25 training dataset12. Unlike baselines such as cRNN12, the EDM has to redefine the 
range of characters with which to train the RNN model because ours trains three consecutive characters of the 
SMILES string as one unit character. The baselines used prior knowledge in the form of the 100–300 known 
highest-scoring molecules from the ChEMBL dataset as initial points for the rediscovery task. They also adapted 
the target of interest via the scoring function. For fair comparison, the EDM model chooses the 256 highest-
scoring molecules in the test dataset. The model then generates approximately 500 SMILES strings using the 
same conditional seed for each seed molecules, in which case the rediscovery is awarded a score of 1.0 for all 
three conditions.

Regarding the property satisfaction benchmarks, the EDM model was trained on the two logP targets, as 
well as on the topological polar surface area (TPSA), quantitative estimate of drug-likeness (QED), and the 
central nervous system multi-parameter optimization (CNS MPO) tasks. In addition, we also selected the 100 

Figure 6.   Two examples of the process of keeping the shape of the initial seed molecules while exploring the 
training data of the properties of S1.
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top-scoring molecules from the ChEMBL25 test dataset as conditional seed to compare with the baselines. The 
EDM model generated a single batch of 500 SMILES strings. The performance of the model was similar to that 
of the cRNN in that they generated SMILES strings by extracting the ECFP that satisfied the initially constrained 
properties. Overall, the validation results confirm that the EDM method delivers performance comparable to 
that of the cRNN and other algorithms by achieving the maximum score for all eight of the given tasks. These 
results are summarized in Table 2.

Conclusions
An entirely data-driven evolutionary molecular design methodology based on deep learning models was devel-
oped in this study. In the proposed method, a GA along with RNN and DNN models were used to evolve the 
fingerprint vectors of seed molecules. The RNN decoder reconstructed chemically valid molecular structures 
in the SMILES format from the evolved fingerprint vectors without resorting to predefined chemical rules. In 
addition, the DNN efficiently evaluated the suitability of the evolved molecules even within a more complex 
range of properties.

The closed-loop evolutionary workflow guided by deep learning automatically and effectively derived target 
molecules and discovered rational design paths by elucidating the relationship between the structural features and 
their effect on the molecular properties. Furthermore, owing to the inherent nature of data-driven methodologies, 
the molecular design performance can be influenced by the characteristics of the training data. Therefore, the 
training data should be prepared carefully according to the design purpose and situation. Unlike the test cases 
used illustratively in this study, the data to train the RNN and DNN need not be the same and could perhaps 
be configured differently depending on the design target. Moreover, traditional generative models based on 
data-driven approaches have limited ability to design new molecules with properties that are not included in 
the training datasets. In contrast, the proposed method can be designed to produce a new group of candidates 
by repeating the generation and calculation in that direction even if the molecules with the desired range of 
chemical characteristics are not included in the training data.

Lately, various computer-aided techniques for designing materials, such as inverse designs, exhaustive enu-
merations, and molecular structure optimization models, have been proposed. Because each method has its 
advantages and disadvantages, the methods may act synergistically when used together rather than alone. In 
this respect, our evolutionary design method is also expected to be a promising tool with which to explore the 
enormous chemical space and facilitate the discovery of novel materials.
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