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Simple Summary: Patient stratification is clinically important because it allows us to understand the
characteristics and establish treatment strategies for a group. Transcriptomic data play an important
role in determining molecular subtypes and predicting survival. In the case of breast cancer, although
the order of prognosis according to molecular subtypes is well known, there is heterogeneity even
within a subtype. Therefore, patient stratification considering both molecular subtypes and survival
outcomes is required. In this study, a methodology to handle this problem is presented. A genetic
algorithm is used to select a set of genes, and a risk score is assigned to each patient using their
expression level. According to the risk score, patients are ordered and stratified considering molecular
subtypes and survival outcomes. Consequently, informative genes for patient stratification with
respect to both aspects could be nominated, and the usefulness of the risk score was shown through
comparison with other indicators.

Abstract: Patient stratification is a clinically important task because it allows us to establish and
develop efficient treatment strategies for particular groups of patients. Molecular subtypes have been
successfully defined using transcriptomic profiles, and they are used effectively in clinical practice,
e.g., PAM50 subtypes of breast cancer. Survival prediction contributed to understanding diseases
and also identifying genes related to prognosis. It is desirable to stratify patients considering these
two aspects simultaneously. However, there are no methods for patient stratification that consider
molecular subtypes and survival outcomes at once. Here, we propose a methodology to deal with
the problem. A genetic algorithm is used to select a gene set from transcriptome data, and their
expression quantities are utilized to assign a risk score to each patient. The patients are ordered and
stratified according to the score. A gene set was selected by our method on a breast cancer cohort
(TCGA-BRCA), and we examined its clinical utility using an independent cohort (SCAN-B). In this
experiment, our method was successful in stratifying patients with respect to both molecular subtype
and survival outcome. We demonstrated that the orders of patients were consistent across repeated
experiments, and prognostic genes were successfully nominated. Additionally, it was observed that
the risk score can be used to evaluate the molecular aggressiveness of individual patients.

Keywords: patient stratification; molecular subtype; survival outcome; genetic algorithm; gene
set selection
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1. Introduction

Patient stratification is clinically important because distinct mechanisms of disease or
specific responses to treatment can be determined [1]. It is clinically effective and useful
to establish a specific treatment strategy for patients by analyzing the common biological
mechanisms of the subgroup. Traditionally, patients were divided into subgroups based
on the insights of clinicians. Advances in high-throughput sequencing technologies allow
researchers to measure transcriptomic molecular profiles for individuals. This valuable
transcriptomic information has made it possible to define molecular subtypes, especially in
cancer studies, since about a decade ago [2–5]. In addition, genes associated with clinical
outcome have been used to predict patient prognosis and revealed molecular mechanisms
of disease [6]. These prognostic genes can also be detected using transcriptome data by
survival analysis [7].

The definition of molecular subtypes using transcriptome data has been successful
in clinical practice. The gene sets used to define molecular subtypes are usually derived
by analysis of differentially expressed genes. Furthermore, sparse logistic regression
(sparse LR) is widely used for gene set selection [8–12]. Usually, molecular subtypes of
cancer have been determined by clustering methods using mRNA expression levels [13].
For example, Prediction analysis of microarray 50 (PAM50) subtypes [14] are widely used in
the clinical setting to characterize breast cancer patients [15]. Another example is consensus
molecular subtypes (CMSs) of colorectal cancer, which displayed well-established clinical
and prognostic relationships with biological characteristics [16].

Survival prediction is one way to evaluate an individual’s prognosis. Prediction of
survival outcome using transcriptome data has also been successful. For lung adeno-
carcinoma, gene expression signatures were successfully used to predict survival in a
multi-institutional setting [17]. Prognosis-related genes are usually identified through sur-
vival analyses, and their combinations are used to predict the survival time of each sample.
The Cox-model-based filter (Cox-filter) is an approach to finding prognostic signatures [18].
Recently, studies using multi-omics for optimal disease models are also being conducted.
For example, Maui [19] is a method for representing multi-omics data as clinically relevant
latent factors using a stacked variational autoencoder. Moreover, deep learning-based
survival prediction methods are being actively studied [20–22].

Breast cancer is one of the most common types of cancer worldwide, with clinical
studies of molecular subtypes and survival outcomes [23,24]. Usually, breast cancers are
divided into four subtypes, luminal A (LumA), luminal B (LumB), her2-enriched (Her2),
and basal-like (Basal) by expression of the immunohistochemistry (IHC) markers (Table 1),
and the order of patient outcomes according to molecular subtypes is well-known [15,25].
Patients with luminal subtypes show a better prognosis and less aggressive characteristics.
On the other hand, patients with the Basal subtype show worse prognosis and more
aggressive characteristics such as a higher potential for metastasis. However, molecular
subtype-based medicine has a limitation in that there is heterogeneity even within a subtype.
For instance, some patients with LumA show a worse prognosis, and some patients with
Basal show a better prognosis.

Table 1. Summary of the molecular subtypes according to immunohistochemistry assay in breast
cancer. ER, PR, HER2, and Ki-67 mean estrogen receptor, progesterone receptor, human epidermal
growth factor receptor 2, and marker of proliferation, respectively.

Subtype ER and/or PR HER2 Ki-67

Luminal A (LumA) ER+ or PR+ HER2− Ki-67−
Luminal B (LumB) ER+ or PR+ any Ki-67+
Her2-enriched (Her2) ER− and PR− HER2+ any
Basal-like (Basal) ER− and PR− HER2− any



Cancers 2022, 14, 4120 3 of 19

Nevertheless, there is no patient stratification method that considers molecular subtype
and survival outcome simultaneously. The previous methods only focus on one of the two
aspects. For instance, PAM50 defines subtypes of breast cancer, but it has limited power in
predicting an individuals prognosis (Figure S1). The Stemness index is a useful measure
for oncogenic dedifferentiation, and it showed a correlation between tumor pathology
and clinical outcome [26]. Therefore, the stemness index can be used to predict survival
outcomes, but it does not discriminate well-defined subtypes (Figure S2). Therefore,
a technique for optimizing subtype information and survival outcome at the same time
is required.

The goal of this study is to develop a methodology that stratifies patients, considering
molecular subtype and survival outcome simultaneously. Our method calculates risk scores
by considering the expression level of a gene set for a linear ordering of patients considering
both perspectives. However, finding the optimal order is to explore N! space for N patients,
which is infeasible even for a small number of patients. Ordering patients is undertaken
using gene expression quantities; thus, the selection of genes for patient stratification
adds much more complexity to the already huge search space. To handle the huge search
space, we used a genetic algorithm (GA) [27], which selects an appropriate gene set from
transcriptome data. From the gene set, the risk score was calculated for each patient,
and the samples were ordered and stratified according to the risk score. We applied this
methodology to breast cancer patients and evaluated the results in an independent cohort.
In this experiment, we were able to stratify patients in terms of both molecular subtype
and survival outcome. The result would be useful for clinical applications by combining
molecular subtype-based medicine and survival-based prognosis prediction. In addition,
since this methodology is based on a gene set, informative genes related to prognosis while
distinguishing molecular subtypes were identified. Finally, it was observed that the risk
score could be used to evaluate the molecular aggressiveness of individual patients.

2. Materials and Methods

In this section, we introduce a novel computational methodology for patient stratifica-
tion to calculate patient risk for simultaneous learning of molecular subtypes and survival
information. Figure 1 shows the overall methodology for calculating the risk score via GA
utilizing transcriptome data for given patient samples. The key is to calculate patients’
risk score, taking into account gene expression patterns and gene combinations. Using
the risk scores, patients are sorted and stratified. In addition, important genes associated
with patient risk can be provided. In the following section, we describe the details of the
GA for patient stratification, considering both molecular subtypes and survival outcomes,
from chromosome representation to evolutionary process.

2.1. Breast Cancer Patient Data Collection

As for breast cancer data, two data sets were collected: The Cancer Genome Atlas-
Breast invasive Carcinoma (TCGA-BRCA) [28] and Sweden Cancerome Analysis Network-
Breast (SCAN-B) [29]. The RNA sequencing-based gene expression profiles of TCGA-BRCA
were downloaded from UCSC Xena [30]. The subtype information corresponding to the
samples in the gene expression data was obtained from the supplementary material from
Berger et al. [31]. Clinical data, including overall survival information, were acquired from
UCSC Xena and TCGA-CDR [32]. All data of SCAN-B are available from the NCBI Gene
Expression Omnibus (GEO) under the accession number GSE96058. Gene expression levels
in both data sets were measured by FPKM, and the chromosomes in GA were constructed
with 23,550 genes, which were measured in both data sets. Among survival information,
overall survival information in both data sets was used. The number of samples with
subtype information is summarized in Table 2, and restricted mean survival time and the
number of samples treated with therapy are summarized in Tables S1 and S2.
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Figure 1. Overview of the genetic algorithm (GA) for patient ordering. (a) Chromosome representation.
ck indicates the k-th chromosome in the population. gk,i indicates i-th genes in the chromosome. Red
colored genes mean that the genes are selected to be related to worse prognosis when its expression is
high. Blue colored genes imply that the genes are selected to be associated with a worse prognosis
when their expression is low. White colored genes stand for unselected genes. (b) Patient ordering
from a chromosome. Each patient is characterized by a risk score. Patients are ordered by each
selected gene expressed as a ternary representation. For genes related to worse prognosis when its
expression level is high, the lower the patient’s expression level, the higher the rank is given (green
box). On the contrary, for genes associated with a worse prognosis when its expression quantity is
low, the higher the patient’s expression level, the lower the rank is given (violet box). Then, the ranks
are averaged for each patient, and it is considered a risk score. Finally, the patients are ordered by
the score. (c) The stratification score is calculated as Kendall’s tau-b correlation between the vector
of subtype corresponding to ordered patients (sc ), and the vector stratified completely according
to subtype order (sref ). (d) The survival score is computed by analyzing the survival of the groups
divided within each subtype. Groups within each subtype are defined through logistic regression
with risk score as a variable.

Table 2. The number of samples for each subtype of breast cancer data. Values in parentheses mean
the proportion of each subtype in the data sets.

Subtype TCGA-BRCA SCAN-B

LumA 563 (53.98%) 1709 (53.67%)
LumB 206 (19.75%) 767 (24.09%)
Her2 82 (7.86%) 348 (10.93%)
Basal 192 (18.41%) 360 (11.31%)

Total 1043 3184

Based on the fact that the results of some previous biomarker studies are difficult to
be reproduced in other data sets [33], external validation of results in other independent
cohorts is very important [34]. This being so, we devised an experimental setting where
a gene set was selected using TCGA-BRCA data, and the gene set was validated on
independent SCAN-B data.

2.2. Chromosome Representation for Gene Combination

Given transcriptome data of patient samples, each patient can be expressed as a value
from gene combinations. To select an informative gene set with respect to molecular sub-
types and survival information, basically, a chromosome can be represented as a binary
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vector of genes (i.e., 0: not selected and 1: selected). However, since high or low expression
of a gene can be associated with a poor prognosis, it is necessary to consider the quantity
of the expression level. For example, high expression of Ki-67 is related to poor progno-
sis [35], and low expression of TP53 is associated with poor prognosis [36]. Thus, a novel
chromosome representation was devised to select a gene set using a ternary representation.

ck = (gk,1, gk,2, · · · , gk,n) (1)

gk,i ∈ {+1, 0,−1}, (2)

where ck indicates the k-th chromosome in the population, and gk,i indicates i-th gene in ck.
For gk,i, when gk,i is +1, it means that the gene is selected as having an association with
a worse prognosis when its expression is high. On the contrary, −1 implies that the gene
is selected as having an association with a worse prognosis when its expression is low.
When gk,i is 0, it stands for an unselected gene. In Figure 1a, +1 is expressed in red, −1 is
expressed in blue, and 0 is expressed in white, and n is the number of genes in a data set.

2.3. Deriving Patient Risk Score from Chromosome

The risk score of patients is drawn from the configuration of the chromosome. For each
selected gene in the chromosome, the patients are ranked by gene expression level according
to the value encoded in the gene gi. As shown by a green box in Figure 1b, if gi has a
value of +1, the lower the expression in the patient, the higher the patient’s rank. On the
other hand, if gi takes a value of −1, the higher the expression in the patient, the higher
the patient’s rank. This case is indicated by a violet box in Figure 1b. Then, the ranks from
the selected genes are averaged for each patient, and the average values are considered a
risk score for patients. Finally, the patients are ordered in accordance with the assigned
risk score.

2.4. Fitness Function for Evaluating Order of Patients

A fitness function F takes the order of patients as input which is derived from the risk
scores of patients. It gives output as a value of how well the order reflects the subtypes and
survival outcomes simultaneously. In order to achieve two objectives, the fitness function
is composed of two terms: stratification score and survival score. The stratification score is
to evaluate the order in terms of subtype. The survival score is a score to assess that the
groups of patients are well ordered and stratified according to prognosis. Thus, the fitness
function can be represented as follows.

F = (stratification score) + λ× (survival score), (3)

where λ is a coefficient to modulate the balance between the effects of the two scores on F.
In practice, in this study, it was set to 0.5 by considering the scale of stratification score and
survival score.

Stratification score is to evaluate whether the patient order reflects the molecular
subtypes well (Figure 1c). Let the subtype order corresponding to the patient order be a
vector, sc, and sref is a vector containing subtype order when the patients are completely
stratified according to the predefined subtype order. For example, if there are four subtypes
and their order is S1 < S2 < S3 < S4, sref is presented as follows.

sref = (S1, · · · , S1︸ ︷︷ ︸
N1

, S2, · · · , S2︸ ︷︷ ︸
N2

, S3, · · · , S3︸ ︷︷ ︸
N3

, S4, · · · , S4︸ ︷︷ ︸
N4

), (4)

where Nk indicates the number of patients with subtype Sk in the data set. For breast
cancer, LumA, LumB, Her2, and Basal correspond to S1, S2, S3, and S4, respectively. This
is from the fact that the order of patient outcomes according to breast cancer molecular
subtypes is well-defined [15,25]. Then, the stratification score is computed as Kendall’s
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tau-b coefficient [37] between sc and sref since Kendall’s tau-b statistic makes adjustments
for ties.

(stratification score) =
P−Q√

(P + Q + T)× (P + Q + U)
(5)

P is the number of concordant pairs, Q is the number of discordant pairs, T is the number
of ties only in sc, and U is the number of ties only in sref. If a tied pair arises in both sc and
sref, it is not added to either T or U.

Next, the survival score is computed to evaluate whether the order of patients well
divides patients with good prognosis and patients with poor prognosis within each subtype
(Figure 1d). In order to divide patients into groups in each subtype, the boundaries are de-
termined by logistic regression. The risk score is used as a feature, and the probability value
for the boundary was set to 0.5. Since the boundaries are determined in one-dimensional
space, subtypes at both ends are divided into two groups, and the others are divided into
three groups. If there are four subtypes as in the previous example, S1 and S4 are split into
two groups ((S1,L and S1,H) and (S4,L and S4,H)), respectively, and S2 and S3 are divided into
three groups ((S2,L, S2,I and S2,H) and (S3,L, S3,I and S3,H)), respectively. Here, subscript L, I,
and H are to indicate the comparative risk within each subtype, and are abbreviations of
Low, Intermediate, and High, respectively. Then, the survival score is computed as follows.

(survival score) =
1
6
{ f (S1,L, S1,H) + f (S2,L, S2,I) + f (S2,I , S2,H) + f (S3,L, S3,I) + f (S3,I , S3,H) + f (S4,L, S4,H)}, (6)

where f is a function to evaluate whether the order of two adjacent groups is correct and to
determine whether their prognosis is different. The value of this function is calculated as
the product of two values, as shown below.

f (A, B) = c× l (7)

The value of c is to judge whether the order of the two groups (A and B) is correctly
arranged. The value of l is to determine whether the groups are significantly separated
according to prognosis. c and l are computed through statistical methods, which are used
in survival analysis, and their values are calculated as follows.

c =

{
1 if HR(B) > HR(A)

−1 otherwise
(8)

l =

{
− log10(p) if p > b
− log10(b) otherwise

, (9)

where HR is the hazard ratio, which is the result of Cox’s proportional hazard model [38].
p is the p-value of the log-rank test result between A and B, and b is lower bound to ensure
that all results are significant without focusing on a few parts. In other words, if the p-value
is less than or equal to b, the value is clipped and b is used. It was set to 0.01 in this study.

Last but not least, in the initial iterations, it is difficult to set the boundaries properly
since the order of elements of sc is random. Therefore, λ is set to 0 at the start to focus
on subtype stratification during a few iterations. When the proportion of chromosomes
that exceeds a certain stratification score (e.g., 0.75) exceeds a certain proportion in the
population (e.g., 0.95), the survival score starts being considered in the fitness function.

2.5. Biological Operators in GA

Biological operators, which are essential components in GA [27], were used to find
gene combinations that are better suited to compute the risk scores of patients. After the
fitness values are calculated for all chromosomes in the population, parent chromosomes
are selected to find more suitable gene sets in the next generation. Elitism and tournament
selection were used to compose mating pools, and uniform crossover and mutation give
opportunities by changing genes on the chromosomes. The GA was terminated when there
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was no improvement in the best fitness value within the population for 10 iterations. In ad-
dition, the concept of subpopulation [39] was utilized to find gene sets efficiently. In this
study, the number of subpopulations in the population and the number of chromosomes in
each subpopulation were empirically determined to be 10 and 150, respectively.

2.6. Comparison with Existing Approaches

Since there is no patient stratification method that simultaneously optimizes molecular
subtype and survival outcome, we compared our method with the PAM50 gene list [14],
widely used gene set selection methods [8,18], and gene sets for prognostic predictors of
breast cancer [40–44]. For sparse LR and Cox-filter, gene sets were extracted using TCGA-
BRCA data. In order to compare whether the gene sets divide the prognosis well within
each subtype, k-means clustering and the log-rank test were performed. Clustering was
used for grouping because it was not possible to know simply whether the expression level
of a gene was associated with a poor prognosis. For comparison with our method, LumA
and Basal were each divided into two clusters, and LumB and Her2 were divided into three
clusters each. Moreover, logistic regression with 5-fold cross-validation was performed
with 100 different data splits for comparison to evaluate the usefulness of the gene sets in
subtype classification. For clustering and classification, log2-transformed FPKM was used
after being standardized for each gene in the training data.

3. Results
3.1. Patient Stratification Considering Molecular Subtype and Survival Outcome Simultaneously
3.1.1. Our Method Stratified Patients Considering Simultaneously Molecular Subtypes and
Survival Outcomes

As a result of the GA, 690 genes were selected, and the patients in TCGA-BRCA data
were stratified and ordered via the risk score with respect to both subtype and survival
outcome. Among the 690 genes, 340 genes were selected as +1 value and 350 genes were
selected as −1 value. By using this gene set, the order of patients in the SCAN-B data
set was determined. Figure 2 shows the order of patients of TCGA-BRCA and SCAN-B
data sets with respect to the molecular subtype. It was satisfactorily ranked in the order
of the subtypes. In TCGA-BRCA data, the stratification score was 0.80 (correlation test
p-value = 2.85× 10−191), and in SCAN-B data, the stratification score was 0.68 (correlation
test p-value < 10−277).

0 500 1000
Rank

LumA

LumB

Her2

Basal

S
ub

ty
pe

Rank of Patients (TCGA-BRCA)
(a) (b)Discovery set Validation set

0 1000 2000 3000
Rank

LumA

LumB

Her2

Basal

S
ub

ty
pe

Rank of Patients (SCAN-B)

Figure 2. (a) TCGA-BRCA (discovery set). (b) SCAN-B (validation set). Ranking of patients deter-
mined by risk score. The lower the risk score, the higher the rank. Risk scores were computed from
the 690 genes obtained from the genetic algorithm. The left edge of the box represents the first quartile
(Q1), and the right edge represents the third quartile (Q3). The vertical line inside the box represents
the median. Interquartile range (IQR) is defined as (Q3−Q1), and outliers are the samples outside
1.5 times the IQR above Q1 and below Q3. The whisker on the left goes from Q1 to the minimum,
excluding outliers, and the whisker on the right goes from Q3 to the maximum, excluding outliers.

Furthermore, it showed significant results in the SCAN-B data set as well as the TCGA-
BRCA data set when log-rank tests were performed among groups divided within each
subtype (Figures 3 and S3). Therefore, an appropriate order for each data set was obtained
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considering subtype and prognosis. In addition, significant results were observed even in
the independent cohort.
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Figure 3. Kaplan–Meier curves for predicted risk groups within each subtype in SCAN-B data.
Significant differences were observed among groups in the order of risk. In the TCGA-BRCA data set,
the survival score was 2.00, and in the SCAN-B data set, the survival score was 1.22. The number
in parentheses means the number of samples. p-values were results of multivariate log-rank tests.
The results for TCGA-BRCA data are shown in Figure S3.

3.1.2. Previous Methods Do Not Consider Molecular Subtype and Survival
Outcome Simultaneously

Existing patient stratification methods do not take account of molecular subtype
and survival outcome at the same time. For example, even the well-established subtype
of breast cancer, the PAM50 subtype, does not consider individual survival outcomes.
Furthermore, as a result of clustering within each subtype using PAM50 genes, the gene
set did not show significant results in dividing the group according to survival outcome
(Figure S1). In other words, the PAM50 gene set is not suitable to distinguish between a
group with a better prognosis and a group with a worse prognosis within each subtype.
In addition, mRNAsi, which showed a correlation with tumor pathology and clinical
outcome [26], is difficult to use for distinguishing LumB and Her2 (Figure S2a). It was
also not suitable to show significant differences in survival outcomes within each subtype
(Figure S2b). Moreover, although similar performance was shown in subtype classification
when our methodology was compared with other gene set selection algorithms and gene
sets for prognostic predictors of breast cancer, only our method showed significant results
in prognostic stratification for all subtypes (Table 3).

3.2. Robustness of the Methodology for Constant Patient Ordering

In order to evaluate the stability of the methodology for constant ordering for pa-
tient stratification, 100 experiments were conducted with different random seeds. Then,
Spearman’s rank correlation coefficients (SCCs) were computed for all pairwise combi-
nations of patients’ order (Figure S4). As a result, the order of the patients was consider-
ably constant. The median SCC for the TCGA-BRCA data set was 0.85 (correlation test
p-value < 8.33× 10−289), and the median SCC for the SCAN-B data set was 0.76 (correlation
test p-value < 4.43× 10−290). Thus, this methodology showed a robust result in finding an
order that considers subtypes and survival simultaneously.
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Table 3. Performance comparison on SCAN-B data set. For prognosis stratification, the p-value of
the log-rank test result within each subtype is shown, and significant results are marked in bold
(p-value < 0.05). The results of the TCGA-BRCA data set are shown in Table S3.

Log-Rank Test (p-Value)

LumA LumB Her2 Basal

GA (Ours) 0.033 0.002 0.026 0.029

PAM50 [14] 0.248 0.267 0.780 0.894

sparse LR [8] 0.166 0.802 0.803 0.571

Cox-filter [18] 0.330 0.823 0.012 0.196

EndoPredict [40] 0.120 0.159 0.171 0.033

GENE70 [41] 0.140 0.094 0.845 0.570

GENE76 [42] 0.082 0.061 0.995 0.414

GENIUS M1 [43] 0.452 0.019 0.014 0.285

GENIUS M2 [43] 0.515 0.371 0.253 0.063

GENIUS M3 [43] 0.050 0.544 0.529 0.788

GGI [44] 0.282 0.637 0.810 0.584

3.3. Usefulness of Fitness Function

Thus far, we have seen that the fitness function learned subtype information and
survival information well. Meanwhile, it is necessary to investigate how GA learns subtle
relationships between subtype information and survival outcomes. It can be demonstrated
by the change of the stratification score and the survival score according to iteration
(Figure 4). The survival score was calculated from the 15th iteration. Before that, the stratifi-
cation score increased considerably. After that, as the survival score started to be considered,
the survival score increased fairly, and the stratification score showed a tendency to de-
crease. As the survival score began to saturate, the stratification score showed a tendency
to increase again. Consequently, after the subtype order was arranged, the prognostic order
was well learned, and when the prognostic order was established reasonably, the subtype
order was well learned again.

Next, we conducted an experiment where only molecular subtypes were considered
by setting λ to 0 (Figure S5). As a result, the order of patients was well arranged according
to subtype. However, the order did not reflect the prognosis of the patients. In addition,
the change of each score according to the λ value was observed (Figure S6). As a result,
as the λ value increased, there was a tendency to further increase the survival score.
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Figure 4. Scores of the best chromosome in each iteration. TCGA-BRCA is a discovery data set, and
SCAN-B is a validation data set. The black dashed line stands for the point at which the survival
score started to be calculated. (a) The stratification score tended to increase considerably before the
survival score was considered. As the survival score started to be calculated, the stratification score
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decreased. As the survival score was saturated, the stratification score increased again. (b) The sur-
vival score increased significantly when it started to be considered in the fitness value. Although the
survival score was not initially used to evaluate the order of patients, the values were computed and
displayed. (c) As the population evolved, the fitness value increased not only in the discovery data
but also in the validation data.

3.4. Frequently Selected Genes

The most selected genes among many genes would be important for distinguishing
subtypes and associated with survival outcomes. Frequently selected genes showed signifi-
cant differences in expression levels between subtypes or in groups within each subtype
according to the predicted risk (Figures 5 and S7). In addition, when the samples were
divided into two groups based on average expression levels, significant differences were
observed between the two groups (Figure S8).

Among the genes related to worse prognosis with high expression, PTTG1, CENPL,
CCNB2, FBXO5, UBE2C, and UBE2T were selected more than 10 times out of the 100
experiments. PTTG1, UBE2C, and UBE2T are also included in the PAM50 gene list. PTTG1
is well known for promoting the growth of breast cancer [45–47]. Moreover, CENPL was
detected as one of the novel hub genes and served as a prognostic marker candidate in
breast cancer [48], and high expression of CCNB2 in breast carcinoma showed an association
with disadvantageous clinical outcomes [49]. Furthermore, it was demonstrated that a
higher expression level of FBXO5 was significantly associated with a worse prognosis
in breast cancer patients [50]. In addition, overexpression of UBE2C and UBE2T, which
are ubiquitin conjugating enzymes, are known for promoting cell proliferation in breast
cancer [51–53].

Among the genes related to worse prognosis with low expression, LINC00160, RAI2,
PVRL2 (NECTIN2), PRKAG2-AS1, and MAPT-AS1 were selected more than 10 times out of
the 100 experiments. LINC00160 was served as a putative biomarker for ER-positive breast
cancers by epigenetic analysis [54] and indicated prognostic significance in connection with
the survival of breast cancer patients [55]. In addition, low expression of RAI2 was reported
as a poor prognostic marker in breast and colorectal cancer [56,57]. In hepatocellular
carcinoma, low expression of PVRL2 is associated with poor survival [58], and an antisense
lncRNA PPKAG2-AS1 inhibits malignant behaviors [59]. Furthermore, it was shown that
an increased level of MAPT-AS1 is related to better survival in breast cancer patients [60].

Among the genes related to poor prognosis with high expression, 168 genes were
selected more than six times. Among the genes related to poor prognosis with low ex-
pression, 195 genes were selected. There was no intersection between the two gene sets.
Additionally, gene set enrichment analyses were performed based on the biological process
of gene ontology (GO) [61] using Enrichr [62], and p-values were adjusted for multiple
comparisons by the Benjamini–Hochberg method. First, the analysis was carried out with
168 genes related to poor prognosis with high expression. As a result, 64 significant terms
were enriched (adjusted p-value < 0.05). The enriched terms were mainly related to the
cell cycle. On the other hand, when the analysis was performed with 195 genes related to a
worse prognosis with low expression, there were no significant terms.

In addition to using TCGA-BRCA as discovery and SCAN-B as validation, it would
be useful to reverse the application to see if the gene set discovered by the SCAN-B data
set is similar to the set of genes discovered by the TCGA-BRCA data set. Similar to when
the TCGA-BRCA data set was used for discovery, 100 experiments were performed with
different random seeds. The genes selected more than 10 times are listed in Table S5.
PTTG1 and MAPT-AS1 were again nominated as frequently selected genes. Furthermore,
EXO1, KIF2C, MAPT, NAT1, and PTTG1 belonging to the PAM50 gene list were frequently
selected. Among the frequently selected genes, it was reported that cancer cells are kept
from oncogene-induced replication stress by overexpression of CLSPN [63]. Furthermore,
FOXM1 is a well-known transcription factor that is upregulated and overexpressed in
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aggressive phenotypes and has a poor prognosis in most human cancers as well as breast
cancer [64–66].

LumA LumB Her2 Basal
Subtype

0

25

50

75

FP
K
M

PTTG1

LumA LumB Her2 Basal
Subtype

0

20

40

FP
K
M

RAI2

LumA LumB Her2 Basal
Subtype

0

25

50

75

FP
K
M

* ns
*****

********PTTG1

Low
Intermediate
High

LumA LumB Her2 Basal
Subtype

0

20

40

FP
K
M

ns ns
***

********RAI2

Low
Intermediate
High

(a) (b)

(c) (d)

Figure 5. The gene expression levels of frequently selected genes in SCAN-B data (validation data).
(a) Gene expression levels of PTTG1 for each subtype. (b) Gene expression levels of RAI2 for each
subtype. (c) Gene expression levels of PTTG1 for the risk groups predicted within each subtype.
PTTG1 was selected as a gene related to poor prognosis when its expression level is high. (d) Gene
expression levels of RAI2 for the risk groups predicted within each subtype. RAI2 was selected
as a gene associated with poor prognosis when its expression is low. The p-values are the results
of the t-test with Bonferroni correction. Since all pairwise comparisons were significant (adjusted
p-value < 0.05) in (a,b), the significant levels were omitted. Outliers were omitted, and the plots for
other frequently selected genes are shown in Figure S7. (ns: non-significant, *: p < 0.05, **: p < 0.01,
***: p < 0.001, ****: p < 0.0001)

In Figure 6, the expression patterns of frequently selected genes for 40 samples are
indicated. The samples were the five patients with the lowest risk scores and the five
patients with the highest risk scores within each subtype. In each subtype, the five patients
with the lowest risk scores had low expression levels of genes related to poor prognosis
with high expression. Among the Basal patients, the patient F462 with the lowest risk score
(highlighted in an orange box in Figure 6) had considerably high expression levels of RAI2.
Similarly, F2331, which was a sample with the lowest risk score among the Her2 patients
(highlighted in a purple box in Figure 6), showed a relatively high expression levels of
RAI2 and PVRL2. F1299, which belonged to a high risk group in LumB (highlighted in a
black box in Figure 6), showed high expression levels of genes, which were related to worse
prognosis with high expression, and low expression levels of genes, which were related
to worse prognosis with low expression. Although it is difficult to interpret a patient’s
prognosis as the effect of a single gene, the results suggest that our methodology is useful
for nominating novel marker genes for disease subtyping and survival modeling.
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Figure 6. Expression patterns of frequently selected genes for the five patients with the lowest
risk scores and the five patients with the highest risk scores within each subtype in SCAN-B data
set. The amounts of gene expression were normalized for each gene within the entire data set.
Among Basal patients, the F462 patient had the smallest risk score and is highlighted with an orange
box. F462 had significantly high expression of the RAI2 gene. Among Her2 patients, the F2331 patient
had the smallest risk score and is highlighted in a purple box. F2331 had relatively high expression of
the RAI2 gene and PVRL2 gene. F1299 patient in the high-risk group of LumB is highlighted with
a black box. F1299 showed high expression levels of genes that were related to worse prognosis
with high expression and low expression levels of genes that were related to worse prognosis with
low expression.

3.5. Comparison of Risk Score with Other Indices

The Stemness index is a value to measure oncogenic dedifferentiation and is increased
in metastatic tumors [26]. It showed a significant correlation with the risk score calcu-
lated for each patient (Figure 7a). Therefore, the patient risk scores indirectly reflected
metastatic potential.
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Figure 7. Scatter plots represent the relationship between the risk score and other indices. (a) The
stemness index is a value to measure oncogenic dedifferentiation. The risk score showed a strong
positive correlation with the mRNA stemness index (p = 9.62 × 10−140). (b) SAS is a score to
measure the degree of activity of a subsystem (e.g., pathway). The risk score showed a strong positive
correlation with one carbon pool by folate pathway (hsa00670) (p = 1.56× 10−135). (c) The risk score
showed a strong negative correlation with nitrogen metabolism (hsa00910) (p = 2.69× 10−92). r
indicates Pearson’s correlation coefficient, and p-values are the results of two-tailed correlation tests.

Additionally, Pearson correlation coefficients between the risk score and subsystem
activation scores (SASs) of KEGG pathways were calculated. SAS is a score for measuring
the degree of activity of a subsystem such as a pathway for each sample [67]. Among the
pathways, one carbon pool by folate (hsa00670) showed the greatest positive correlation
with the risk score (r = 0.673; Figure 7b). That is, samples with a high risk score show
high activity of this pathway. One carbon pool by folate pathway is one of the pathways
known to be reprogrammed in cancer as a prognostic canonical pathway [68]. On the
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other hand, nitrogen metabolism (hsa00910) showed a high negative correlation with
risk score (r = −0.579; Figure 7c). Nitrogen metabolism is related to cancer cell growth
and proliferation [69], and it is controlled by glutamine [70–72]. GLUD1 is included in
the pathway, and its low expression is positively correlated with the activity of nitrogen
metabolism and poor prognosis of breast cancer (Figure S9) [73,74].

4. Discussion

In this study, we proposed a novel computational methodology to stratify patient
samples using transcriptome data, taking into account molecular subtypes and survival
outcome simultaneously. Molecular subtype-based medicine has a limitation in that there
is heterogeneity even within a subtype. For instance, some patients with LumA subtype
have higher potentials of metastasis, while some patients with aggressive Basal subtype
have lower metastasis potentials. Our methodology could overcome this limitation and
would be useful for clinical practice by combining well-established molecular subtype-
based medicine and survival-based prediction. The risk scores of patients considering
both aspects can help establish diagnosis and treatment strategies for precision medicine.
When a new patient visits a medical institution, it can help clinicians make decisions at the
individual level.

Most of the previous studies that used GA for gene set selection formulated genes
using binary representation in chromosomes [75–77]. We devised a ternary representation
to consider not only selection but also the direction of association for prognosis. Thus,
it allowed to automatically determine the direction and increase the interpretability of
the results without post-processing. Furthermore, the proposed method can be used to
determine genes related to other clinical information as well. For example, age, cancer grade
and stage are also important features in evaluating a patient’s condition and establishing
treatment plans. Moreover, if these clinically important variables are available together,
more precise patient stratification will be possible.

There are some limitations in GA. Since better solutions are only compared to other
solutions, the stop criterion is unclear. Furthermore, GA tends to converge to local optima or
arbitrary points. These limitations can lead to inconsistent results and the selection of false
positives. However, by performing GA several times and analyzing frequently selected
genes, we were able to nominate useful novel genes for modeling subtypes or survival.
For example, RAI2, which does not belong to the PAM50 gene list, was selected in the
analysis, and it could play a role in helping to classify molecular subtypes of breast cancer.

We applied our methodology to breast cancer in this study. It was possible because the
order of prognosis according to molecular subtype is well-defined for breast cancer [15,25].
However, this method can also be applied in other diseases where subtype ordering is
possible. For instance, in colorectal cancer, it is known that the survival outcome is poorer
in the order of CMS2, CMS3, CMS1, and CMS4 [16]. Moreover, there are some parts of
our methodology that can be further modified or extended. For Cox’s proportional hazard
model, which was used to compute survival score, we did not control other covariates
that might affect prognosis, including age or stage at diagnosis. Additionally, transcrip-
tomic data-based, not IHC-based, subtype information was utilized for validation. These
would potentially confound the ability to extract prognosis-related genes because they may
induce a bias or disconnection with a clinical practice [78]. Therefore, there is room for
improvement in the selection of prognostic genes by considering non-molecular covariates
as additional variables. In addition, logistic regression can be replaced by other more accu-
rate classification algorithms for determining boundaries among subtypes. Furthermore,
other clinically important attributes of an ordinal data type, such as cancer grade, can
be utilized in the replacement of subtype information. This can also be applied to other
diseases for which there is no well-defined subtype order. In such a case, it would be
possible to stratify the patients and find important genes considering both clinical features
and survival outcome.
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In summary, we addressed the challenge of patient stratification for simultaneous
learning of molecular subtypes and survival outcomes. However, there are still limitations
to the proposed method. When calculating the risk score, patients were ranked based on the
expression level of each gene. Although the rank-based methods are more robust to outliers,
platforms and batches, there may be a loss of quantity information by converting the
expression quantity to a rank. Therefore, a method using the expression quantity of the gene
itself or a method applying the differential privacy mechanism for individuals privacy [79]
could be more effective for representing individual patients. Next, interactions among
genes were not directly considered. Network-based methods can be more powerful than
methods of analyzing individual genes independently. Accordingly, as a follow-up study,
we plan to investigate a network-based patient stratification method that simultaneously
considers molecular subtypes and survival outcomes.
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Abbreviations
The following abbreviations are used in this manuscript:

Basal Basal-like
BRCA Breast Invasive Carcinoma
CCNB2 Cyclin B2
CENPL Centromere Protein L
CLSPN Claspin
CMS Consensus Molecular Subtype
Cox-filter Cox-model based filter
ER Estrogen receptor
EXO1 Exonuclease 1
FBXO5 F-Box Protein 5
FOXM1 Forkhead Box M1
FPKM Fragments Per Kilobase of transcript per Million mapped reads
GA Genetic Algorithm
GEO Gene Expression Omnibus
GLUD1 Glutamate Dehydrogenase 1
GO Gene Ontology
H High
Her2 Human epidermal growth factor receptor 2
HR Hazard Ratio
I Intermediate
IHC Immunohistochemistry
KEGG Kyoto Encyclopedia of Genes and Genomes
KIF2C Kinesin Family Member 2C
L Low
LINC00160 Long Intergenic Non-Protein Coding RNA 160
LumA Luminal A
LumB Luminal B
lncRNA long non-coding RNA
MAPT Microtubule Associated Protein Tau
MAPT-AS1 MAPT Antisense RNA 1
mRNA messenger RNA
mRNAsi mRNA stemness index
NAT1 N-Acetyltransferase 1
NCBI National Center for Biotechnology Information
PAM50 Prediction Analysis of Microarray 50
PR Progesterone receptor
PRKAG2 Protein Kinase AMP-Activated Non-Catalytic Subunit Gamma 2
PRKAG2-AS1 PRKAG2 Antisense RNA 1
RAI2 Retinoic Acid Induced 2
RNA Ribonucleic acid
PTTG1 Pituitary Tumor Transforming Gene 1
PVRL2 Poliovirus Receptor-related 2
SAS Subsystem Activation Score
SCAN-B Sweden Cancerome Analysis Network - Breast
SCC Spearman’s Correlation Coefficient
sparse LR sparse Logistic Regression
TCGA The Cancer Genome Atlas
TP53 Tumor Protein P53
UBE2C Ubiquitin Conjugating Enzyme E2 C
UBE2T Ubiquitin Conjugating Enzyme E2 T
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