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Abstract: Drug–drug interactions (DDIs) can cause drug toxicities, reduced pharmacological effects,
and adverse drug reactions. Studies aiming to determine the possible DDIs for an investigational
drug are part of the drug discovery and development process and include an assessment of the DDIs
potential mediated by inhibition or induction of the most important drug-metabolizing cytochrome
P450 isoforms. Our study was dedicated to creating a computer model for prediction of the DDIs
mediated by the seven most important P450 cytochromes: CYP1A2, CYP2B6, CYP2C19, CYP2C8,
CYP2C9, CYP2D6, and CYP3A4. For the creation of structure–activity relationship (SAR) models
that predict metabolism-mediated DDIs for pairs of molecules, we applied the Prediction of Activity
Spectra for Substances (PASS) software and Pairs of Substances Multilevel Neighborhoods of Atoms
(PoSMNA) descriptors calculated based on structural formulas. About 2500 records on DDIs medi-
ated by these cytochromes were used as a training set. Prediction can be carried out both for known
drugs and for new, not-yet-synthesized substances. The average accuracy of the prediction of DDIs
mediated by various isoforms of cytochrome P450 estimated by leave-one-out cross-validation (LOO
CV) procedures was about 0.92. The SAR models created are publicly available as a web resource
and provide predictions of DDIs mediated by the most important cytochromes P450.

Keywords: drug interaction; DDI; computational prediction; in silico; QSAR; drug metabolism;
ADME; pharmacokinetics; CYP; polypharmacy; metabolic DDI; P450; 1A2; 2B6; 2C19; 2C8; 2C9;
2D6; 3A4

1. Introduction

For the treatment of complex disorders, patients often take multiple medications at
the same time, which potentially cause drug–drug interactions (DDIs). Usually, DDIs are
divided into three types: pharmaceutical, pharmacodynamic, and pharmacokinetic [1].
Pharmaceutical DDIs may appear due to physical or chemical interactions, for example,
when drugs are mixed in a syringe before infusion, and such DDIs are rare. Pharmaco-
dynamic DDIs may occur when a pair or more co-administered drugs act on the same
physiological system or target. Pharmacokinetic DDIs are very common and occur when
one of the drugs (“violator” or “precipitant” drug) affects the absorption, distribution,
metabolism, or excretion of another drug (“victim” or “object” drug). Such DDIs provoke
an increase or a decrease in the exposure of an object drug and lead to a change in drug
pharmacological action. In this study, we focused on the pharmacokinetic DDIs at the
metabolism level (biotransformation), the so-called “metabolic DDIs.”

The most common drug-metabolizing enzymes (DMEs) in the first phase of xenobiotic
metabolism in the human body are several isoforms of the cytochrome P450 superfam-
ily. The U.S. Department of Health and Human Services Food and Drug Administra-
tion Center for Drug Evaluation and Research (FDA CDER) requires determining which
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drug-metabolizing enzymes (CYP3A, CYP2D6, CYP2C19, CYP2C9, CYP2C8, CYP2B6, or
CYP1A2) metabolize the investigational drug during in vitro studies of metabolic DDIs
estimates [2].

In silico methods can help prioritize drug discovery efforts by guiding, but not replac-
ing, in vitro and in vivo experiments. Previously, we presented a comprehensive review
of the methods for predicting the DDIs related to the inhibition or induction of DMEs [3].
Most of such in silico methods predict DDIs indirectly. A recently presented machine
learning (ML) method used different molecular fingerprints to classify compounds as
inhibitors or noninhibitors of five major cytochrome P450 isoenzymes [4]. Ligand-based
and structure-based methods dealing with substrates, inhibitors [5,6], and inducers [7] of
particular DMEs. Results of prediction could help to determine possible DDIs. However,
such conclusions are not sufficiently reliable, as the pairs of substances that are substrates
and inhibitors (or inducers) of DMEs may not exhibit DDIs. On the other hand, DDIs
have often occurred between substances that could act as substrates, inducers, and in-
hibitors (that may act by various inhibition mechanisms); for example, this is a widespread
case for cytochrome P450 CYP3A4 [8]. At best, a pair of potentially exhibiting DDI sub-
stances should be considered together during prediction as the whole entity. However,
previously developed ligand-based and structure-based computational methods did not
consider two substances in pairs simultaneously. Direct DDIs estimation methods for
the pairs of substances include structure resemblance and functional similarities methods
and literature-based DDIs prediction methods [9–14]. These methods deal with the pairs
of substances but require information about the pharmacokinetics and pharmacodynam-
ics [9,14], interaction profile, target and side-effects [10,13], and the phenotypic, therapeutic,
chemical, and genomic properties [11] of substances or medical records [12]. It is clear that
for new, not-yet-synthesized, and virtual substances, such information does not exist. The
results of predictions of this group of methods [9–14] have often been presented as data sets
containing a bulk conglomerate of information about potential DDIs predicted between
the existing drugs. Such examples include 430,128 [10], 145,068 [13], and over 250,000 [14]
records of unknown potential DDIs in the sets of predicted results. However, this bulk of
information concerning drug pairs is provided without assessment of the possibility of
DDIs manifestation.

The current study aimed to create the computational structure–activity relationship
(SAR) models to predict metabolic DDIs mediated by CYP1A2, CYP2B6, CYP2C19, CYP2C8,
CYP2C9, CYP2D6, or CYP3A4. We have previously developed models for DDIs sever-
ity prediction [15,16] that used the PASS (Prediction of Activity Spectra for Substances)
program and PoSMNA (Pairs of Substances Multilevel Neighborhoods of Atoms) substruc-
tural descriptors. These models were able to predict the classes of DDIs severity for pairs of
molecules according to OpeRational ClassificAtion (ORCA). In the current study, we used
the same methods and descriptors but implemented them to predict whether two molecules
would manifest metabolic DDIs mediated by the seven cytochromes mentioned above.
Due to the limited possibilities of creating an appropriate training set, the stereochemical
features of molecules were not taken into account by our descriptors. In addition, in the cur-
rent realization of the method, DDI predictions were obtained in qualitative mode (“YES”
or “NO”). Unlike other ligand-based and structure-based methods [4–8], our approach
operated with two substances in pairs at once. This is reasonable for the DDI phenomenon,
in which two substances interact simultaneously. It gives a direct indication of DDIs for
the pairs of molecules without suggestions of the role of particular compounds, which
is not always obvious (without consideration of inhibition or induction of a particular
enzyme). In contrast to structure resemblance, functional similarities, and literature-based
DDIs prediction methods [9–14], our prediction method uses only structural formulas
of compounds; it does not require any information about their biological activity. This
means that our method can be applied for not-yet-investigated, new, and virtual substances.
Moreover, our method provides a probabilistic assessment of possible DDIs and evaluates
the possibility of DDIs manifestation for predicted pairs.
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2. Materials and Methods
2.1. Information on DDIs and Training Set Creation

We used DDIs data collected from two sources of information. The first source was
DrugBank Version 4.1 (University of Alberta and The Metabolomics Innovation Centre,
Edmonton, AB, Canada) [17] that contains information about interactions derived from
public drug databases. The second source of DDIs data was the Fujitsu ADME Database
(Chemistry & Life Science Group, Fujitsu, Tokyo, Japan) [18].

The final data set includes information from both sources. It was used to create
the training set containing information about 2345 pairs of single-component organic
compounds that interacted due to CYP1A2, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6,
or CYP3A4. The detailed information is presented in Table 1.

Table 1. The number of drug–drug interactions (DDIs) mediated by various isoforms of cytochrome
P450 in the training set.

Isoforms of Cytochrome P450 Number of DDIs

CYP1A2 132
CYP2B6 27

CYP2C19 80
CYP2C8 55
CYP2C9 204
CYP2D6 231
CYP3A4 1616

It is well known that CYP3A4 is the major isoform of human cytochrome P450 involved
in drug metabolism and pharmacokinetic DDIs. As we can see from Table 1, the number of
DDIs associated with CYP3A4 in the training set is twice as high as the number of pairs for
the remaining six cytochromes. It fully reflects the real situation and illustrates that the
training set is representative.

2.2. PASS

The PASS software (Laboratory of Structure-Function Based Drug Design, Institute
of Biomedical Chemistry, Moscow, Russia) [19] is based on the advanced naïve Bayes
classifier and predicts the profiles of biological activity for drug-like compounds. The
PASS algorithm creates a classification model of structure–activity relationships based on
the training set with structures and known biological activities of known pharmaceutical
agents. The PASS prediction results are presented as a ranked list of various biological
activities with calculated probabilities Pa (“to be active”) and Pi (“to be inactive”). The most
probable activities are those predicted with the maximum value ∆P = Pa − Pi. Currently,
PASS predicts more than 8000 types of biological activities, including pharmacological
effects, mechanisms of action, influences on gene expression, toxic and adverse effects, and
interactions with metabolic enzymes and transporters. Biological activities for particular
molecules in the PASS program are represented qualitatively as “active” or “inactive.”
The structural formulae of drug-like organic compounds are described by Multilevel
Neighborhoods of Atoms (MNA) descriptors.

The prediction of DDIs occurring due to interactions with various cytochrome P450
isoforms is similar to the prediction of biological activity using the PASS software. For DDIs
prediction mediated by cytochrome P450 isoforms, the input data are represented by the
pairs of structural formulas of studied drug-like compounds. The prediction results for each
pair of compounds are presented by the probabilities Pa and Pi lists, which estimate DDIs
that may occur due to interactions with CYP1A2, CYP2B6, CYP2C19, CYP2C8, CYP2C9,
CYP2D6, and CYP3A4.
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2.3. Pairs of Substances Multilevel Neighborhoods of Atoms Descriptors

To describe the structures of drug pairs, we used PoSMNA descriptors instead of the
MNA descriptors applied in the standard PASS software version [19]. PoSMNA descriptors
can be used to predict various phenomena, e.g., synergistic effects of two drugs or the
prediction of DDIs. Initially, we developed and used PoSMNA descriptors to predict
DDIs severity [15,16]. The set of PoSMNA descriptors is the direct product of a combi-
nation of two sets of MNA descriptors for each molecule in the DDI pair as {a,b,c, . . . }
× {d,e,f, . . . } = {ad,ae,af, . . . , bd,be,bf, . . . , cd,ce,cf, . . . }. MNA/2 (second level of MNA
descriptors) for non-hydrogen heavy atoms is used for PoSMNA creation. The MNA
descriptors are ordered lexicographically for each pair of compounds, for example, from
string “C(C(CCC)C(CC-H)C(CC-H)) C(C(CCC)C(CC-H)O(CC))” to “-O(-C(-C-C-O)) -O(-
C(-C-O-O))” (see the examples of PoSMNA descriptors for warfarin and naproxen in
Figure 1).
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Figure 1. Representation of the warfarin and naproxen molecules by Pairs of Substances Multilevel Neighborhoods of
Atoms (PoSMNA) descriptors.

To create the models for DDIs prediction, PoSMNA descriptors were generated for all
pairs of compounds with known DDIs mediated by CYP1A2, CYP2B6, CYP2C19, CYP2C8,
CYP2C9, CYP2D6, or CYP3A4 isoforms of cytochrome P450 in the training set.

3. Results

To evaluate the DDIs prediction accuracy, the IAP (Invariant Accuracy of Prediction)
values were calculated using leave-one-out cross-validation procedures (LOO CV). The
IAP criterion is numerically equivalent to the AUC ROC (Area Under Curve of the Receiver
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Operating Characteristic) [19]. The IAP value is a sample estimate of the probability
randomly selected from an independent test set that will correctly classify positive and
negative examples. The accuracy of the prediction of DDIs caused by different isoforms of
cytochrome P450 is presented in Table 2.

Table 2. Accuracy of the DDIs prediction.

Isoforms of Cytochrome P450 IAP

Interaction CYP1A2 0.95
Interaction CYP2B6 0.91

Interaction CYP2C19 0.82
Interaction CYP2C8 0.98
Interaction CYP2C9 0.95
Interaction CYP2D6 0.90
Interaction CYP3A4 0.93

Average 0.92

The developed models showed good accuracy varying from 0.82 (for CYP2C19 DDIs)
to 0.98 (for CYP2C8 DDIs) with an average IAP of about 0.92. It is essential that the accuracy
for DDIs mediated by CYP3A4 is high (0.93) because interactions on the level CYP3A4
can cause severe DDIs that must be detected and avoided during the investigation of new
drugs. Thus, the accuracy of SAR models is adequate to use this method for practical tasks
of drug discovery and development.

The models created are freely available via the Internet on the Way2Drug.com web por-
tal on the DDIs web-service [20] that allows for the prediction of various DDIs parameters
and does not require registration or log-in. The combinations of warfarin taken regularly
(widely used anticoagulant with narrow therapeutic index) with various nonsteroidal anti-
inflammatory drugs (NSAIDs) are common and can increase the risk of gastrointestinal
bleeding [21]. As an example for illustrating the web-service analysis, the potential DDI
for a pair of warfarin and naproxen (one of the commonly used NSAIDs) was predicted
(see Figure 2).
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The results of the prediction displayed in the block “Prediction of DDIs mediated
by P450 (PASS double mol) (7 CYP)” show that the maximum ∆P value (0.364) was
calculated for cytochrome P450 CYP2C9 (see Table 3). Therefore, the DDI for warfarin and
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naproxen is most likely to occur at the level of biotransformation carried out by cytochrome
P450 CYP2C9.

Table 3. DDI prediction for warfarin and naproxen at the level of cytochrome P450 isoforms.

Isoforms of Cytochrome P450 Pa Pi ∆P

Interaction CYP2C9 0.382 0.018 0.364
Interaction CYP2C19 0.174 0.346 −0.172
Interaction CYP2C8 0.017 0.313 −0.296
Interaction CYP2D6 0.057 0.406 −0.349
Interaction CYP2B6 0.04 0.553 −0.513
Interaction CYP1A2 0.011 0.617 −0.606
Interaction CYP3A4 0.004 0.739 −0.735

Negative ∆P values for the other six isoforms of cytochrome P450 indicate that these
enzymes are not involved in DDIs at the level of warfarin and naproxen biotransformation.

4. Discussion

Because of polypharmacy, when several drugs are taken simultaneously, the phe-
nomenon of metabolic DDIs may appear. DDIs manifest in the mutual influence of drugs
on their biotransformation, its slowdown, or acceleration, and leads to a change in the
pharmacological action of drugs.

To avoid drug withdrawal from the market due to DDIs, pharmaceutical companies
perform in vitro and in vivo studies. Physiologically based pharmacokinetic (PBPK) mod-
eling is the in silico method of DDIs prediction that has already proved its applicability in
the drug discovery and development process. It is clear that in silico methods will be used
more intensively to reduce investigation costs [3].

The main problem we consider is the study and use of the relationship of chemical
compound structure and the phenomenon of metabolic DDIs mediated by the seven
isoforms of cytochrome P450 most involved in drug metabolism. The models created
can be applied for virtual and not-yet-synthesized molecules using only their structural
formulas. The implementation of PoSMNA descriptors and the PASS program algorithm
for DDIs prediction at the level of cytochromes P450 makes it possible to consider a pair
of molecules interacting as one entity without specifying the roles (substrate, inhibitor
or inducer, “object” or “precipitant” drug) of particular substances in the DDI process.
Such an approach is unique and has already been used to create models for DDIs severity
prediction [15,16]. However, when predicting the DDIs severity without taking into account
concrete pharmacokinetic or pharmacodynamic DDIs mechanisms, the accuracy of the
prediction was not high enough, as compared to that obtained in the current study that
considers only pharmacokinetic DDIs mediated by the seven cytochrome P450 isoforms
(0.84 for three classes and 0.75 for five classes of severity vs. 0.92 for DDIs prediction
mediated by cytochrome P450 isoforms). Such a lower accuracy may be explained by the
unclear separation of DDIs of these severity classes among themselves and the cases of
DDIs in neighboring classes in the training set and by neglecting the DDIs mechanisms. In
this study, the average accuracy of DDIs prediction at the level of cytochrome P450 isoforms
is higher (0.92) due to the structural specificity of substances from the pairs that interact at
a particular level of the cytochrome P450 isoform. Further research should combine the
prediction of DDIs severity at the level of a particular metabolic enzyme. To achieve this
goal, it is necessary to expand, improve, and refine the training sets.
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