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ABSTRACT

ith the burgeoning immunological data in the

scientific literature, scientists must increasingly

rely on Internet resources to inform and enhance
their work. Here we provide a brief overview of the adaptive
immune response and summaries of immunoinformatics
resources, emphasizing those with Web interfaces. These
resources include searchable databases of epitopes and
immune-related molecules, and analysis tools for T cell and B
cell epitope prediction, vaccine design, and protein structure
comparisons. There is an agreeable synergy between the
growing collections in immune-related databases and the
growing sophistication of analysis software; the databases
provide the foundation for developing predictive
computational tools, which in turn enable more rapid
identification of immune responses to populate the
databases. Collectively, these resources contribute to
improved understanding of immune responses and escape,
and evolution of pathogens under immune pressure. The
public health implications are vast, including designing
vaccines, understanding autoimmune diseases, and defining
the correlates of immune protection.

Introduction

The adaptive immune response. The immune system is the
body’s defense against infectious organisms and other foreign
agents. The first line of defense is innate immunity, rapid
nonspecific responses that allow recognition of conserved
signature structures present in many microorganisms, such as
lipopolysaccharides in bacterial cell walls or proteins in
flagella [1]. The second line of defense is the adaptive immune
response, tailored to an individual threat. An infected host
mounts an immune response specific to an infectious agent;
after the infection is resolved, memory cells persist that
enable a more rapid and potent response if the infectious
agent is encountered again.

The adaptive immune response has two major arms: the
cellular immune response of T lymphocytes, and the humoral
immune response of antibody-secreting B lymphocytes. In
both cases the immune response is stimulated by receptor
recognition of a specific small part of an antigen known as an
epitope. Antibodies generally recognize intact proteins. B cell
epitopes can be linear, contiguous amino acids, or they can be
discontinuous amino acids that are brought together spatially
in folded proteins. Discontinuous epitopes are defined
through mutagenesis, competition experiments, modeling, or
through cocrystallization or modeling of protein structure
and docking [2]. Even linear B cell epitopes are often
conformation-dependent, and antibody-antigen interactions
are improved when the epitope is displayed in the context of
the folded protein.

In contrast, T cell epitopes are short linear peptides that
are cleaved from antigenic proteins, although T cell epitope
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generation by protein splicing is also observed [3]. T cell
epitopes are presented in the context of major
histocompatibility complex (MHC) proteins, or, in case of
humans, human leukocyte antigen (HLA) class I or class II
molecules. Epitope presentation depends on both MHC-
peptide binding and T cell receptor (TCR) interactions [4,5].
MHC proteins are highly polymorphic, and each binds to a
limited set of peptides. Thus the particular combination of
MHC alleles present in a host limits the range of potential
epitopes recognized during an infection. The conformation
of a T cell epitope embedded in an MHC protein is critical
for TCR recognition [6,7].

Two fundamental types of T cells are distinguished by
expression of CD8 and CD4 proteins, which dictate whether a
T cell will recognize epitopes presented by class I or class II
molecules, respectively. Underlying this high-level bifurcation
is a complex array of other functional markers. A key effector
function of CD8" T cells is cytolytic activity resulting in
apoptosis of virally infected cells [8], which depends upon the
CDS8" T cell’s previous exposure to antigen and activation
state [9]. The primary function of CD4" T cells is to produce
cytokines that regulate the rest of the immune response.
These functions are not exclusive, however—CD4" T cells can
induce cytolysis [10], and CDS8" T cells can secrete
immunoregulatory factors.

CD4" T cell epitopes are processed after encapsulation by
antigen-presenting cells in membrane-bound vesicles, where
they are degraded by proteases into the peptide fragments
that bind to MHC class II proteins. Then they are delivered to
the cell surface, where class II-peptide complexes can be
recognized by the CD4" TCRs [5]. In contrast, CD8™ T cells
generally recognize viral or self antigens expressed from
within a cell [11], proteins that are cleaved into short peptides
in the cytosol by the immunoproteasome [12] at the C-
terminal end of the peptide [13]. The N terminus is later
trimmed by proteases in endoplasmic reticulum [14]. After
cleavage, peptides are translocated by the transporter
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associated with antigen processing (TAP) into the
endoplasmic reticulum for loading onto HLA class I
molecules [12,15], although other transport pathways can be
used [16]. The MHC class I-peptide complex is then presented
on the cell surface, allowing recognition by epitope-specific
TCRs on CD8" T cells [5,12].

Both B cell and T cell epitopes are constrained by sequence
specificity, and mutations within and external to epitopes can
result in immune escape. Obviously, mutations within an
epitope can directly impact antibody-antigen interactions or
epitope-MHC and TCR interactions. Mutations outside of the
epitope can inhibit antibody binding through
conformational changes, or inhibit proper cleavage and
processing of T cell epitopes [17,18]. TAP also binds peptides
somewhat selectively [19]. While there is a predilection for
certain peptides to be processed for MHC binding and
presentation, processing steps must be general enough to
accommodate a wide variety of potential epitopes so as to not
excessively constrain T cell immunity.

Pathogen- and cancer-related immune responses are being
characterized at a remarkable pace, with precise mapping of
well-characterized epitopes and increasing use of full genetic
typing of HLA-epitope presenting molecules,
characterization of accompanying crystal structures, and
definitions of escape mutations. As these elements are
defined piece-by-piece in the literature, it becomes
increasingly valuable to assemble the data into searchable
databases and to provide computational tools to assist in
interpretation of this complex information. Defining epitope
sequence specificity (including cleavage and transport signals
and MHC binding) presents a tantalizing problem for
computational biologists. The predictive amino acid patterns
associated with these events are subtle, requiring
sophisticated pattern recognition methods to infer directly
from protein sequences which peptides have the potential to
become epitopes. The complexity is compounded by the fact
that recognition patterns might not be encoded by the
contiguous primary sequence, but rather in local three-
dimensional structure. The response to this challenging
problem has resulted in an abundance of Web-based methods
enabling the exploration of immunologically relevant data
from a variety of perspectives. This review summarizes a
sampling of particularly useful and user-friendly Web-based
computational tools and searchable databases. The
computational methods and databases are described and
referenced in the text, and Web links are provided in
summary tables. As a cautionary note, the authors have not
directly tested that the functions contained in these resources
will produce meaningful results, nor have we done systematic
comparisons of the output of the different analysis tools;
users would benefit by reading the primary literature
regarding the different analyses methods if they decide to use
one or more in their own work.

Tools for predicting potential T cell epitopes in protein
sequences. The most thoroughly studied step of T cell epitope
generation is peptide binding to MHC molecules, and the
Web-based databases that include peptide-MHC data enable
binding predictions. The MHCPEP database [20], for
example, contains 13,000 MHC-binding peptides. Each entry
contains the peptide sequence, its MHC specificity and, when
available, experimental methods, observed activity, binding
affinity, source protein, anchor positions, and references.
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This database, however, has been static since 1998. MHCBN
[21] includes 18,790 MHC-binding peptides, 3,227 MHC-
nonbinding peptides, 1,053 TAP binders and nonbinders, and
6,548 T cell epitopes. A beta-version of the new Immune
Epitope Database and Analysis Resource (IEDB) has recently
come online that will focus on epitopes in potential
bioterrorism agents or emerging infectious diseases [22].
More databases are available, and some are discussed below
together with relevant prediction tools.

Peptide-MHC binding is the most predictable aspect of T
cell epitope generation. MHC class I and class II genes are
highly polymorphic, and the majority of their variable
positions are located in binding pockets that restrict peptide
interactions to those with particular amino acids at
characteristic positions (Figure 1); the set of amino acids that
are well tolerated in these binding pockets are called anchor
motifs. The search for epitopes in full-length proteins or
within the context of a reactive peptide can be narrowed
through a search for MHC-appropriate anchor motifs.
Primary HLA class I anchor positions are generally located at
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Figure 1. Interaction of an Epitope with an MHC Class | Protein

Ribbon representation of the 1.65 A resolution X-ray crystal structure of
the MHC | allele B¥5703 in complex with the KAF-11 peptide
(KAFSPEVIPMF) derived from the HIV-1 p24 capsid protein. The blue
ribbon indicates the alpha chain, the red chain is beta-2 microglobulin,
and the molecule in the binding cleft is the antigenic peptide. The red
and blue-green spheres mark the alpha carbons of the canonical
peptide-binding B- and F-pocket residues, respectively. The green
spheres represent the alpha carbons of the peptide anchor residues at P2
and P11.
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the C terminus and a middle position of a peptide; as optimal
epitope lengths vary between 8 and 12 amino acids long, the
spacing between these two positions varies [23,24]. The first
MHC allele-specific motifs were defined for murine class II
molecules [25]. Tracking anchor motifs patterns alone was
soon found to be of limited predictive value [26], while
including more extensive binding patterns using quantitative
matrices representing the frequency and weight of every
amino acid in every position enabled the prediction of
epitope locations in protein sequences with somewhat
greater [24,27-31], although still limited [32], accuracy.

For many MHC alleles, both simple and extended motifs
are characterized and used to predict potential epitopes. For
example, the SYFPEITHI database [33] contains extensive
information on MHC class I and class II anchor motifs and
binding specificity, and includes more than 4,500 entries of
MHC proteins and aligned sequences of their epitopes and
natural ligands, with source proteins, organisms, and
publication references for each peptide. The SYFPEITHI
epitope prediction server [33] uses a frequency-based scoring
system for every amino acid position within a peptide. The
SYFPEITHI database allows, through examination of aligned
peptides known to bind the HLA molecules, appreciation of
the relative level of conservation of anchor motifs, as well as
the number of peptides that bind despite imperfect motifs.

The Los Alamos HIV/HCV databases offer a simple tool
(MotifScan) for identifying HLA anchor-binding motifs in
query proteins, highlighting them on a protein or protein
alignment [34,35]. This tool is based on motif libraries
included at the SYFPEITHI site, assembled by S. Marsh and
colleagues [23,24], and motifs extracted from the primary
literature. The more sophisticated MHC-peptide binding
prediction approaches have generally been applied to limited
numbers of MHC proteins, so MotifScan provides a more
comprehensive, but less reliable, exploration of potential
HLA-binding peptides. The input protein sequences can be
automatically uploaded from predefined sets of HIV or HCV
proteins, or the user can input any protein sequence or
sequence alignment. MotifScan is taken one step further for
HIV and HCV through the Epitope Location Finder (ELF)
[36], where HLA anchor motifs are mapped onto proteins or
peptides in conjunction with known epitopes taken from
extensive database listings of class I HIV and HCV T cell
epitopes and their presenting HLAs [37,38]. Currently the
HIV CD8" T cell epitope database contains 3,150 entries
describing 1,600 distinct MHC class I-epitope combinations
(a single epitope can have multiple entries); the HCV
database contains 510 entries describing 250 distinct MHC
class I-epitope combinations. These databases include
detailed biological information regarding the response to the
epitope, including its impact on long term survival, common
escape mutations, and whether an epitope is recognized in
early infection; links to the primary literature; and curated
alignments summarizing the epitope’s global variability.

A central assumption of the traditional prediction methods
based on motif frequencies is that each position contributes
independently to binding. Interactions at one site, however,
can affect interactions in another site [27,39]. Statistical
classifiers such as Hidden Markov Models have better success
rates at MHC-binding predictions, and machine learning
methods such as artificial neural networks and support vector
machines can recognize nonlinear sequence-dependent
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correlated effects in MHC binding. Machine learning
methods as well as statistical methods are also useful for
defining characteristic sequences related to TAP binding, and
for addressing the complexity of proteasome cleavage [40-
47]. These methods, however, require large numbers of well-
characterized peptides as training sets [32]. One comparative
analysis suggested that motifs gave the most accurate MHC-
binding predictions with limited data, but as the data
increases, machine learning methods become more reliable
predictors [48]. In another comparative study, a support
vector machine outperformed other methods [40]. Both
motif-based and machine learning methods for prediction of
different steps of T cell epitope generation are available
(Table 1) [49], often offered in combination with databases of
MHC-ligand interactions (Table 2). Below we discuss some of
the Web sites that are particularly helpful for T cell epitope
prediction, many of which incorporate all three elements:
immunoproteasome cleavage, TAP binding, and MHC
binding.

The Edward Jenner Institute for Vaccine Research
maintains the AntiJen database, which contains quantitative
experimental binding data for peptides that bind to MHC,
TAP, TCR-MHC complexes, T cell epitopes, and B cell
epitopes; it also offers data on immunological protein-
protein interactions. It includes more than 24,000 entries.
The MHCPred [50,51] tool predicts the energetics of protein-
ligand interactions related to the free energy of binding, and
takes into account individual amino acids and contributions
from side chain-side chain interactions, allowing peptide-
MHC and peptide-TAP binding predictions. This site also
allows the prediction of high affinity peptides by comparing
the predicted binding affinities of the original and the
mutated peptides. PREDEPP [52,53] relies on the structural
conservation and interactions observed in crystal structures
of peptide-MHC complexes. A peptide’s compatibility for
binding is evaluated statistically by pairwise potentials. The
Web site also predicts proteasomal cleavage sites [54].

The BIMAS tool [31,55] ranks potential peptides based on a
predicted half-time of disassociation from HLA class I
molecules, based on coefficient tables deduced from the
published literature. The Max Planck Institute for Infection
Biology offers MAPPP software [56] that combines either
BIMAS or SYFPEITHI MHC-binding prediction with the
proteasome cleavage software FRAGPREDICT [57].
FRAGPREDICT predicts potential proteasomal cleavage sites
based on a combination of two algorithms. A statistical
analysis of cleavage-determining amino acid patterns is
performed [57], followed by predictions of major proteolytic
fragments based on a kinetic model of the 20S proteasome
describing the time-dependent digestion of smaller (up to 40
residues long) peptide substrates [58].

The following three suites of tools allow MHCl/class I
epitope prediction through a combination of cleavage
prediction, TAP binding, and MHC binding. The Center for
Biological Sequence Analysis offers the NetChop tool [44,59]
for predicting proteasomal or immunoproteasomal cleavage
using a nonlinear neural network, trained on in vitro
experimental cleavage data or MHC class I ligand data,
respectively. NetMHC [60-62] predicts binding of peptides to
HLA supertypes (groups of HLA proteins that are likely to
cross-present epitopes because of similarity in allowed
binding motifs) or to 120 individual HLA alleles, using
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Table 1. Web-Based Interactive Tools for T Cell Epitope Prediction

Database URL Summary of Output Last Update®
BIMAS http://thr.cit.nih.gov/molbio/hla_bind Predicts HLA/peptide half time of disassociation
ELF http://www.hiv.lanl.gov/content/hiv-db/ MotifScan summaries, integrating known epitopes and 07 April 2006
ELF/epitope_analyzer.html HIV/HCV proteome epitope maps
EpiVax® http://www.epivax.comb Prediction of class | and Il conserved and promiscuous epitopes
CTLpred http://www.imtech.res.in/raghava/ctlpred Prediction of CTL epitopes based on artificial neural networks
and support vector machines
FRAGPREDICT http://www.mpiib-berlin.mpg.de/MAPPP/ Prediction of proteasome cleavage sites
cleavage.html
IEDB Binding, http://www.immuneepitope.org/analyze/ Prediction of class I-peptide binding using three different methods
MHC Class | html/mhc_binding.html
IEDB Binding, http://www.immuneepitope.org/tools/ Prediction of class Il-peptide binding
MHC Class Il matrix/iedb_input
IEDB Binding http://www.immuneepitope.org/analyze/ CD8™ Tcell epitope prediction based on IEDB MHC class-I peptide binding
html/mhc_processing.html prediction, proteasomal/immunoproteasomal cleavage, TAP binding
iMAPPP http://www.mpiib-berlin.mpg.de/MAPPP All predicted epitopes based on FRAGPREDICT and SYFPEITHI
or BIMAS and predicted MHC-peptide binding propensity
MHCPred http://www.jenner.ac.uk/MHCPred Predicted MHC/peptide or TAP/peptide IC50 binding values 28 April 2005
MHC2Pred http://www.imtech.res.in/raghava/mhc2pred Prediction of promiscuous MHC class Il binders
MMBPred http://www.imtech.res.in/raghava/ Prediction of promiscuous MHC class | binders and prediction
mmbpred of mutations that will allow high affinity binding
MotifScan http://www.hiv.lanl.gov/content/ Summary and location of anchor motifs
immunology/motif_scan
NetChop http://www.cbs.dtu.dk/services/NetChop Predicted proteasome or immunoproteasome cleavage 05 January 2006
NetCTL http://www.cbs.dtu.dk/services/NetCTL CTL/HLA-supertype epitope prediction, predicting NetMHC suptertype 05 January 2006
binding, TAP binding, and NetChop proteasome cleavage scores
NetMHC http://www.cbs.dtu.dk/services/NetMHC Predicts MHC binding propensity of peptides 09 August 2005
PAProC http://www.uni-tuebingen.de/uni/kxi Human and yeast proteasome, or immunoproteasome cleavage 22 April 2005
Pcleavage http://www.imtech.res.in/raghava/pcleavage Predicted proteasome or immunoproteasome cleavage
PREDEPP http://margalit.huji.ac.il Predicted MHC-peptide binding based on structure
ProPred http://www.imtech.res.in/raghava/propred Predicted MHC class Il-peptide binding (there are other
related tools at the imtech Web site)
ProPred-| http://www.imtech.res.in/raghava/propred1 Predicted MHC c lass I-peptide binding, optional proteasome/
immunoproteasome cleavage filter
SYFPEITHI http://www.syfpeithi.de Predicted epitopes, binding motifs, epitope alignments for MHC proteins
TAPPred http://www.imtech.res.in/raghava/tappred Prediction of binding affinity of TAP proteins
TEPITOPE® http://www.vaccinome.com Prediction of promiscuous class Il epitopes

For the corresponding published references, please see the descriptions of the tools in the text. To use the imtech resources you must first register at: http://www.imtech.res.in/errors/

noauth.html.

Last known update as of 02 May 2006. Empty cells indicate that updates were not readily available.
PThese tools do not have a Web-based interface, but access may be requested by contacting the design companies.

DOI: 10.1371/journal.pcbi.0020071.t001

artificial neural networks. NetCTL [63,64] predicts epitopes
by combining predictions of peptide-HLA-supertype binding
(NetMHC), proteasomal C-terminal cleavage (NetChop), and
TAP transport efficiency using a weight-matrix based method
[65]. The Bioinformatics Centre Institute of Microbial
Technology has also developed a suite of servers [21,40-
42,66,67] designed for predicting immunologically interesting
features in antigen sequences. ProPredl and ProPred, along
with a series of related programs using different strategies,
predicts specific MHC-binding peptides in proteins [67,68].
Promiscuous binders can be predicted using a support vector
machine by MHC2Pred for MHC class II, or quantitative
matrices by MMBPred for MHC class I [69]. Pcleavage uses a
support vector machine to predict proteasomal cleavage
based on in vitro data, or immunoproteasomal cleavage data
based on MHC class I ligand data [42]. TAPPred predicts
binding to TAP [41]. CTLpred predicts CTL epitopes in an
antigen sequence by combining the processing and binding
prediction methods [40]. IEDP also offers a suite of tools for T
cell epitope prediction. Their peptide-MHC class I binding
prediction tool allows the options of using an artificial neural
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net, average relative binding [70], or a stabilized matrix
method [71]. A comparison of the accuracy of these methods
is underway by the IEDP team. These three methods also use
the average binding method for the prediction of MHC class
II peptide binding [70]. Their MHC class I-peptide binding
prediction can be combined with immunoproteasome
cleavage [72] and TAP transport predictions [65], to predict
MHC class I epitopes.

Many of the sites listed are convenient for large-scale
calculations. Some, for example SYFPEITHI and MHCPred,
allow one to incorporate multiple HLA alleles for epitope
prediction, while others, such as NetChop, NetMHC, NetCTL,
FRAGPREDICT, and IEDP tools allow one to upload protein
alignments. MotifScan, MAPPP, and the ProPred series allow
both. These methods are currently being applied to peptide
vaccine design and can be used to identify epitopes that have
the desirable properties of promiscuous presentation by
many HLAs and relative conservation [69,73,74]. We have
recently taken a very different approach to T cell vaccine
design and developed a computational method for designing
polyvalent protein cocktails that provide maximum peptide
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Table 2. T Cell-Related Immunological Databases and Tables

Database

URL

Summary of Output Last Update®

Allele
Frequencies

AntiJen

dbMHC

dbMHC
Anthropology
HIV Immunology
HCV Immunology
IEDB

IMGT/HLA

IMGT/TR
MHCBN

MHC Haplotype
Project

MHCPEP
MotifScan

PDB

SYFPEITHI

http://www.allelefrequencies.net

http://www.jenner.ac.uk/antijen

http://www.ncbi.nlm.nih.gov/projects/mhc
http://www.ncbi.nlm.nih.gov/projects/mhc/
ihwg.cgi?ID=9&cmd=PRJOV
http://www.hiv.lanl.gov/immunology
http://hcv.lanl.gov/immuno/
http://epitope2.immuneepitope.org/home.do
http://www.ebi.ac.uk/imgt/hla/allele.html

http://imgt.cines.fr/textes/IMGTrepertoire
http://www.imtech.res.in/raghava/mhcbn

http://www.sanger.ac.uk/HGP/Chr6/MHC
http://wehih.wehi.edu.au/mhcpep
http://www.hiv.lanl.gov/content/
immunology/motif_scan

http://http://www.rcsb.org/pdb/Welcome.do

http://www.syfpeithi.de

HLA frequencies in worldwide populations and

polymorphism frequencies in immunologically.

Important alleles like KIR and different cytokines

Quantitative binding data for MHC-ligand interactions,
TCR-MHC complexes, TAP

HLA alignments and tools for typing

HLA anthropology database with many populations represented
by genetic typing, and quick views of HLA frequencies

CD8" and CD4" T cell HIV epitopes, proteome epitope maps 01 May 2006
CD8" and CD4™ T cell HCV epitopes, proteome epitope maps 20 April 2006
Beta-version of biothreat pathogen T cell epitope database Beta release February 2006
Aligned and annotated HLA sequences following the 06 April 2006

World Health Organization nomenclature

Aligned and annotated T cell receptor sequences
MHC-peptide binders and nonbinders, TAP-peptide
binders and nonbinders, T cell epitopes

The haplotype of MHC-linked-diseases, with complete
genomic sequences, variations (SNPs and DIPs) and
ancestral relationships.

23 September 2004

15 February 2006

MHC-presented epitopes June 1998
Genotype/serotype/supertype conversion tables

HLA-specific primary anchor motifs

Structural database and viewing tools, MHC/peptide/ 02 May 2006

TCR combinations
MHC-presented epitopes, MHC-specific anchor and auxiliary motifs

For citations and summaries, see text.

Last known update as of 02 May 2006. Empty cells indicate that updates were not readily available.

DOI: 10.1371/journal.pcbi.0020071.t002

coverage (where peptides are set to a user-specified length,
for example nine amino acids) in a population of diverse
proteins [75]. The mosaic proteins we create resemble real
proteins, as they are assembled using a genetic algorithm by
in silico homologous recombination of natural strains, and
sets of mosaics are created based on the optimizing their
combined population coverage. While no Web interface has
yet been built for this code, the two related programs are
freely available. One program enables an exploration of the
peptide coverage in any set of natural proteins by a prototype
vaccine strain or combinations of strains, while the other
designs sets of mosaic proteins for a polyvalent vaccine that
will maximize population coverage. These tools could be
applied to any variable pathogen for vaccine design, or used
to design sets of reagents to probe the immune response.
HLA-related databases and Web services. The number of
genetically defined MHC and HLA alleles continues to
expand, with a corresponding evolving and expanding
nomenclature. The European Bioinformatics Institute
maintains the IMGT/HLA sequence database [76], which
includes HLA allele listings as defined in the World Health
Organization Nomenclature Committee Reports. The reports
include previous designations, accession numbers, references,
and information on the source of the allele. This Web site has
sequences and alignments from HLA class I and II loci, from
the related MICA and MICB loci and from TAP1 and TAP2.
To find Protein Data Bank (PDB) structures of MHC alleles in
complex with peptides and/or the TCR domain, one easy
method is to perform a BLAST search using the MHC alpha
chain on PDB itself. There are about 100 available structures
of MHCs in complex with peptides (mostly A alleles for MHC

@ PLoS Computational Biology | www.ploscompbiol.org

class I), and 20 of MHC, peptide, and TCR complexes (mostly
involving HLA A2-related alleles).

The National Center for Biotechnology Information (NCBI)
maintains dbMHC [77], which includes summaries of the
genetic organization of the HLA region, genetic sequence
alignments, and tools for HLA typing. It also houses the HLA
anthropology database, where individual allele and haplotype
frequencies can be retrieved from many different populations,
nations, or geographic areas. The Allele Frequencies in
Worldwide Populations project also offers summaries of HLA
frequencies, as well as polymorphisms in cytokines and KIR
alleles. The Sanger MHC haplotype project offers information
on MHC related disease haplotypes, sequences,
polymorphisms, and ancestral relationships [78,79].

Tools to assist the experimental T cell immunologist.
Experimental T cell response mapping efforts recently have
been scaling up, including additions of variant peptides to
better probe responses to variable pathogens and extensions of
T cell response mapping studies to span the full proteome of
pathogens for large study populations (for one example of a
population study incorporating Elisot mapping of T cell
responses to HIV, see [80]). Complete datasets for several of
these large T cell peptide response studies for HIV are available
(http:/lwww.hiv.lanl.gov/content/immunology/hlatem/index.
html). These efforts have led the HIV/IHCV database team to
develop computational tools to facilitate study design and
analyses of experimental data of this nature. These tools could,
for the most part, be applied to any pathogen or protein.
PeptGen [81] enables a user to design overlapping peptide sets
of any length and overlap, using a single sequence or an
alignment if a variable pathogen is being studied and peptide
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variants are desired. If an alignment is used, insertions or
deletions in the sequence are handled sensibly, and a ready-for-
ordering peptide list is created, organized so that identical
peptides between need only be ordered once. If a population
with known HLA typing is screened, for example by EliSpot,
Hepitope allows a rapid search for HLAs that are enriched
among people that react with each peptide in the study, and
provides anchor motif searches for the enriched HLAs. For
HIV- or HCV-related studies, ELF [36] can be combined with
Hepitope to map previously described CDS8" T cell epitopes
onto a reactive peptide.

There is growing interest in defining and comparing HLA
allele frequencies in study populations where vaccine trials
are planned; thus we have made a suite of tools to compare
HLA frequencies in two populations, to identify alleles in
linkage disequilibrium, and to fill in estimates of missing HLA
information if full genetic typing is not feasible (Note: we will
add a URL if the beta-version is ready in time, and delete this
section otherwise). Because of the high cost of genetic HLA
typing, although it is desirable, the reality is that often only
partial HLA genetic typing of key alleles is available. A
partially described data set could provide the basis for
informed guesses of the HLA genotypes superimposed onto
two-digit typing—for example, by utilizing available four-
digit data genetic typing data at dbMHC for different
populations or a cohort subset that is fully genetically typed.
Thus we have created a computational tool in which four-
digit HLA allele designations are estimated from a
combination of two-digit and four-digit HLA typing data. A
maximum likelihood probability is assigned to each four-digit
estimate, based on a combination of allele frequencies in the
population and linkage disequilibrium patterns.

Tools for predicting B cell epitopes and related Internet
resources. The conformational aspects of antibody binding
complicates the problem of B cell epitope prediction, making
it less tractable than T cell epitope prediction. Indeed, Blythe
and Flower [82] recently undertook an exhaustive assessment
of amino acid propensity scales using the AntiJen B cell
epitope database, and even the best combinations performed
only marginally better than random [83]. If one wishes to
explore antigenic propensity using traditional methods,
however, IEDB provides tools for predicting five features that
have been proposed to relate to B cell antigenicity, including
beta turn prediction [84], surface accessibility [85], flexibility
[86], and hydrophilicity [87]; it also includes an antigenicity
predictor based on amino acid frequencies in antigenic
domains and chemistry [88]. An alternative strategy for
predicting linear B cell epitopes, ABCpred, uses a neural
network trained and tested on the BCIPEP B cell epitope
database [66].

Although antibody epitope prediction is difficult, many
other antibody-specific resources are available on the Web
(Table 3). If the variable region sequence of a monoclonal
antibody is obtained, ABcheck [89] enables a rapid crosscheck
against the Kabat antibody database to identify unusual
residues that might be a sequencing artifact. (As a historical
aside, the Kabat database was an early immunological
database compiled to provide researchers with a
comprehensive comparison of antibody sequences. It was
available as a book long before the Internet enabled Web-
searchable molecular databases, at a time when GenBank, a
resource that originated at Los Alamos National Laboratory,

@ PLoS Computational Biology | www.ploscompbiol.org

was still in its early, groundbreaking stages. GenBank
eventually moved to the National Library of Medicine.
Similarly, the Los Alamos HIV database, the first pathogen-
specific sequence database, was initially available only as a
book of aligned viral sequences.) The sequence could then be
submitted to DNAPLOT, alignment software that enables
rearranged V genes to be reliably assigned to their closest V,
D, and J segment germline counterparts. The most
comprehensive data for crystallographic structures can be
found at the molecular modeling database (MMDB) [90],
summaries of antibody crystal structures are maintained at
SACS [91], and both structures and alignments are available
through the antibody group (ABG). The ImMunoGeneTics
(IMGT) database provides annotated listings and alignments
of both immunoglobulins and TCR binding regions [92,93] .

We maintain comprehensive Web-searchable databases of
pathogen-specific HIV [37] and HCV antibodies [38]. These
are listings of monoclonal and polyclonal responses to the
proteomes of these pathogens, including information
regarding epitope location and variation, escape mutations,
structure, biological impact of antibody responses, keywords,
and links to PubMed. The HIV database currently contains
1,273, and the HCV database 120, unique antibody entries.
Antibody entries are associated with multiple publications;
for some of the more intensively studied HIV neutralizing
monoclonal antibodies, more than 130 papers are cited, each
with a brief summary of what was learned about the specific
antibody in that paper. It is difficult to track a given
monoclonal antibody in the literature by other means, as
often many antibodies are used in a single study so are not
named in an abstract. To compound the problem, the name
of a monoclonal antibody often “mutates” as it is exchanged
between different labs, so is not readily searchable by
traditional means.

Discussion

This review is intended as a portal to some of the most useful
online immunological software and searchable databases. This
is a rapidly expanding area—experimental advances have
moved immunology into population-based studies and
simultaneously have brought us to the brink of
comprehensively characterizing an individual’s immune
response to infection. Extensive listings of T cell epitopes and
HLA-binding peptides, as well as peptides that do not bind,
have been an invaluable resource for motif resolution and
epitope prediction. Epitope prediction in turn facilitates
detection of new epitopes, vaccine design, site-directed
mutagenesis (to make proteins less immunogenic), potential
autoantigen identification, and the design of immune-based
cancer therapies. Given the compelling nature of the problem
and its suitability for computational methods, many scientists
have developed interesting alternative approaches to epitope
prediction in silico, and have made their methods freely
available through the Web (Table 1). We applaud this effort,
but have the nagging concern that as the number of epitopes
defined after an initial computational prediction prescreening
grows, the resulting sets of experimentally defined epitopes
may bias subsequent predictors in ways that traditional
protein scanning with overlapping peptides would not.

Promiscuous HLA presentation and epitope prediction
offers one sensible strategy for the creation of T cell vaccines
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Table 3. B Cell/Antibody-Related Databases and Analysis Tools

Database URL Summary of Output Last Update®

ABcheck http://www.bioinf.org.uk/abs/seqtest.html Alignment of new antibody sequences against the 12 April 2006
Kabat database to identify sequencing errors

ABCpred http://www.imtech.res.in/raghava/abcpred/ Artificial neural net linear B cell epitope predictor

ABG http://www.ibt.unam.mx/vir/structure/ Directory of antibody structures and sequence alignments February 2006

structures.html

Antilen http://www jenner.ac.uk/antijen/ Quantitative binding data for B cell epitopes

BCIPEP http://www.imtech.res.in/raghava/bcipep B cell epitope database

DNAPLOT http://vbase.mrc-cpe.cam.ac.uk Align the nucleotide sequence of a rearranged V gene to 24 February 2005
the closet V, D, and J segment germline counterparts

IEDB http://epitope2.immuneepitope.org/home.do Beta-version of biothreat pathogen B cell epitope database Beta release February 2006

IEDB Ab Epitope http://www.immuneepitope.org/tools/ Calculates antigenic propensity scores based on

Prediction beell/iedb_input amino acid properties

IMGT/IG http://imgt.cines.fr/cgi-bin/IMGTlect.jv Immunoglobulin structures and annotated sequences

HaptenDB http://www.imtech.res.in/raghava/ A listing of haptens, structural similarity searches,

HIV Immunology

HCV Immunology

haptendb/
http://www.hiv.lanl.gov/immunology

http://hcv.lanl.gov/immuno/

MMDB http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db=Structure
SACS http://www.bioinf.org.uk/abs/sacs

and antibody and biological information

B cell HIV epitopes, pathogen proteome linear epitope
maps, extensive literature citations regarding monoclonal
antibodies, curated epitope alignments

B cell HCV epitopes, pathogen proteome linear epitope
maps, extensive literature citations regarding monoclonal
antibodies, curated epitope alignments

The most comprehensive listing of crystal structures
available, including antibodies and HLA, and TCRs
Summary of antibody structures

01 May 2006

15 April 2006

15 August 2005

For citations and summaries, see text.

Last known update as of 02 May 2006. Empty cells indicate that updates were not readily available.

DOI: 10.1371/journal.pcbi.0020071.t003

[69,73,74]. Alternatively, a rational epitope-informed peptide
vaccine design can utilize the data in specialized pathogen-
specific databases to focus on epitopes with the most
biological promise to be beneficial [94]. Finally, for a highly
variable pathogen, we are trying approaches intended to
improve the coverage of potential epitopes in the population,
for example by using a single consensus or ancestral sequence
[95-97] or a computationally designed polyvalent vaccine that
will maximize epitope coverage [75].

Understanding the impact of host immune-pathogen
interactions on pathogen evolution, pathogenesis, and
immunogen design depends on coordinated global efforts to
gather and share data and requires the combined expertise of
experimental and computational scientists. Only through this
type of cooperation will we fully harvest the knowledge
implicit in the data. The computational tools presented here
are not yet ready to supplant experiment, rather they should
assist in experimental design and interpretation of data. We
clearly do not know all of the rules yet, for instance in
peptide-MHC binding, and key questions such as what
determines immunodominance in T and B cell responses are
still unanswered. Yet the range and power of the tools already
available through the Internet, many representing global
networks and collaboration, is a testimony to the substantial
progress we have made in facing emerging infectious diseases
and potential biothreats with broader and deeper collective
knowledge. m

Supporting Information
Accession Numbers

The Protein Data Bank (http:/lwww.rcsb.org/pdb) accession number of
HIV-1 p24 capsid protein is 2BVO.
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