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Adaptation to criticality through 
organizational invariance in 
embodied agents
Miguel Aguilera   1,2,3 & Manuel G. Bedia1,4

Many biological and cognitive systems do not operate deep within one or other regime of activity. 
Instead, they are poised at critical points located at phase transitions in their parameter space. The 
pervasiveness of criticality suggests that there may be general principles inducing this behaviour, yet 
there is no well-founded theory for understanding how criticality is generated at a wide span of levels 
and contexts. In order to explore how criticality might emerge from general adaptive mechanisms, we 
propose a simple learning rule that maintains an internal organizational structure from a specific family 
of systems at criticality. We implement the mechanism in artificial embodied agents controlled by a 
neural network maintaining a correlation structure randomly sampled from an Ising model at critical 
temperature. Agents are evaluated in two classical reinforcement learning scenarios: the Mountain 
Car and the Acrobot double pendulum. In both cases the neural controller appears to reach a point of 
criticality, which coincides with a transition point between two regimes of the agent’s behaviour. These 
results suggest that adaptation to criticality could be used as a general adaptive mechanism in some 
circumstances, providing an alternative explanation for the pervasive presence of criticality in biological 
and cognitive systems.

Generally, the behaviour of biological and cognitive systems is not steadily poised at one phase or another. 
Instead, living beings operate around points of critical activity, at the boundary separating ordered and disordered 
dynamics. Critical activity, or criticality, refers to a distinctive set of properties found at this transition. Some of 
these properties include the presence of a wide range of scales of activity and maximal sensitivity to external 
fluctuations1,2, facilitating systems at criticality to present optimal responses when facing complex heterogeneous 
environments3. The surprising fact is that, unlike unanimated matter where critical transitions from order to dis-
order take place by fine-tuning of the parameters of the system1, living systems appear to be ubiquitously poised 
near critical points4. For instance, signatures of criticality have been detected in neural cultures5, immune recep-
tor proteins6, the network of genes controlling morphogenesis in fly embryos7 and bacterial clustering8. Indicators 
of critical behaviour have also been observed in the brain9 and cognitive behavioural patterns10.

Although these results suggest that general theoretical principles might underlie biological self-organization, 
there is no well-founded theory yet for understanding how living systems operate near critical points in a broad 
range of contexts. This compels us to ask what type of mechanisms are driving biological systems at a dauntingly 
diverse span of levels of organization to operate near critical points of activity. During the last couple of decades, 
the issue has been popularized as the ‘adaptation to the edge of chaos’11 and different solutions have been tested 
through modelling approaches. However, as we have stated, this question is still unresolved and a general mathe-
matical framework for understanding how living systems are driven to criticality is yet lacking.

If we had to synthesize the approaches that have been proposed so far to explain the presence of criticality 
spreading over such a wide range of natural systems, we could broadly consider two general positions. On the 
one hand, we find approaches assuming that biological systems are self-tuned, either by learning or evolution, to 
regions of the parameter space displaying optimal fitness, and that these optimal points are often placed near crit-
ical points due to the functional advantages of critical behaviour3,12. In other words, criticality is understood as a 
by-product derived from the adaptive or survival processes of living systems. On the other hand, we find different 
views focused on the idea of self-organized criticality systems (SOC), in which criticality emerges spontaneously 
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from simple local interactions, without fine tuning of the parameters of the model. Typically, SOC models exploit 
clever local rules (e.g. in cellular automata) that produce critical behaviour in a specific context13–15.

Nevertheless both approaches present some weaknesses. Understanding criticality in biological systems as an 
indirect consequence of adaptation to external circumstances is not very explanatory and does not provide ways 
to test alternatives. In general, explanations that simply assume that they are the consequence of the ‘survival of 
the fittest’ are often unfalsifiable. With regard to the second approach, it is well known that many SOC models 
are highly idealized and, in many cases, they are not able to capture the basic interactions of living systems, often 
failing to provide general explanations of the ubiquitous emergence of criticality16. For that reason, although both 
adaptive self-tuning and SOC models present interesting insights, they are generally applicable in a relatively 
narrow set of contexts or under highly idealized conditions.

In this paper, we explore an alternative approach to examine how a system can display critical activity in a 
wide variety of situations. We propose a model that, using only general local mechanisms, is aimed to adaptively 
maintain the behaviour of the system around a critical point of its parameter space by maintaining certain rela-
tional invariants. In other words, instead of thinking about criticality as a by-product of adaptation to complex 
environments or a spontaneous property of certain systems, we inquire into the possibility that biological systems 
might are equipped with adaptive mechanisms aimed to preserve an internal equilibrium near critical points 
while they interact with their environment. Among other outcomes, the existence of cheap learning mechanisms 
maintaining the parameters of a system around regions of criticality could drastically reduce the cost of search-
ing large parametric spaces for finding fit solutions, or even generate interesting solutions in an unsupervised 
manner.

The paper is structured as follows. First, we propose a novel method that appears to be capable of driving a 
system near critical points by maintaining certain relational invariants. In our case, these invariants are extracted 
from the correlation structure of a well-known model operating at a critical point, where correlations scale with 
distance according to a power law function. Second, we propose a simple learning rule maintaining this corre-
lation invariance, and hypothesize that it could be used for driving systems in different contexts to operate near 
critical points. We test the model using two classical examples of learning and control: the Mountain Car and 
a double pendulum. We show evidence suggesting that the general rule proposed here is able to drive adaptive 
agents with no free parameters towards critical points of operation. At the same time, the agents themselves are 
poised at points of behavioural transition, where they are able to exploit a broad span of dynamic possibilities 
available in their environment, suggesting a link between an internal search of critical points and the exploration 
of external behavioural points of transition. Finally, we suggest further tests of criticality and discuss the limi-
tations and possible generalization of this synthetic approach as a contribution towards understanding deeper 
principles governing biological and cognitive systems.

Model
Inspired by the ideas described above, we present a novel simple mechanism designed to test whether a general 
adaptive system is able to drive a neural controller near criticality by imposing certain patterns in the organiza-
tional structure of the system. This focus on the system’s organization instead of the mechanistic properties of its 
components is supported by the existence of well-known universality classes that provide a unified expression for 
families of systems operating under criticality17.

In physics, the concept of universality allows to group a great variety of different critical phenomena into 
a small number of universality classes in such a way that all systems belonging to a given universality class are 
essentially identical near the critical point. Thus, systems belonging to the same universality class, even if defined 
by very different material parameters or physical properties, have the same critical exponents characterizing 
diverging observables. For example, in different spin and percolation models, we find that the family of all bidi-
mensional lattices (square, triangular, hexagonal and so forth) spatial correlations follow the asymptotic form 
c(r) ∝ 1/rη near the phase transition point, where η is the same for all lattice structures of dimension 2 in a par-
ticular model.

This surprising property provides a perspective on criticality in terms of universal relations, suggesting that 
we could model criticality using simple and non-specific mechanisms independently of the individual parameters 
of the system. Our hypothesis is the following: if all systems belonging to the same universality class present the 
same distribution of correlations at criticality, adjusting an arbitrary system to reproduce the same distribution of 
correlations might drive the system to a similar critical point. If, as we have said, in the neighborhood of critical 
points, critical exponents assume the same universal values for a particular class, it could be enough to use in our 
analysis a very simple (but nontrivial) model. Looking for generality, we use the least structured statistical model 
(i.e. a maximum entropy model) of a network of interacting units, constrained only by pairwise correlations 
between them. This is known as the Ising model in physics or the Boltzmann Machine in computer science18. The 
interest of using it is that it is also one of the simplest models of criticality that that can be solved analytically19.

An Ising model can be specified as a neural network of N binary variables only constrained by pairwise cor-
relations. Units can have a value of +1 or −1 and are affected by local bias hi and couplings Jij between pairs of 
units. These parameters take continuous values and we assume couplings to be symmetric with Jii = 0. In order to 
simulate the behaviour of the model, units are updated sequentially in a random order using Glauber dynamics, 
by which each unit is activated with a probability that follows a sigmoid function:

+ = + β− + −P s t e( ( 1)) [1 ] (1)i
H t s t2 ( ) ( 1) 1i i

where = + ∑H s h J s t( ) ( )i i j ij j  is the effective field received by neuron i summing the internal field and inputs from 
other neurons (and 2Hi(s)si(t + 1) is the energy difference required to flip the sign of unit i). The state of the model 
will be updated by sequentially applying Glauber dynamics (i.e. Equation 1) each simulation step to all units of the 
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network in a random order. When updated sequentially, an Ising model with symmetric couplings will reach an 
equilibrium maximum entropy distribution:
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where the distribution follows an exponential family = β−P s e( )
Z

E s1 ( ) and Z is a normalization value. The energy 
E(s) of each state of size N is defined in terms of the bias hi and couplings Jij between pairs of units, with β = 1/(TkB), 
being kB the Boltzmann’s constant and T the temperature of the system. Without loss of generality we can set an 
operating working temperature such that β = 1.

Following the intuition introduced above about universality classes, we are looking for a model that preserves 
certain structure in the correlations of the system. There is some experimental evidence showing that, given 
an Ising model near a critical point, one could build a family of models by learning correlations drawn at ran-
dom from the original system, which will be poised near a critical point20. Inspired by this idea, we propose to 
reproduce and support criticality by maintaining a distribution of correlations of a particular universality class. 
Interestingly, the Ising model is a well-studied example of a universality class. In the case of bidimensional lattices, 
pairwise correlations follow the asymptotic form c(r) ∝ 1/rη, where η = 1/42, and r is the distance between units.

However, instead of restricting a model to a particular set of mechanisms or a given topology, we decide to 
design a learning rule that preserves a distribution of correlations of a critical point belonging to a specific uni-
versality class. This could capture some of the properties of that universality class without choosing a specific 
topology or parametrical configuration. The next goal would be to test whether this adaptive mechanism has the 
capability of driving an arbitrary system to a critical point. And, in case it were so, the system poised near a critical 
point should display interesting features of adaptive behaviour as maximal sensitivity or a wide dynamic range 
of behaviours.

In order to test this idea we design a simple learning rule to adjust the parameters of an arbitrary Ising model 
to the desired distribution of correlations. In a nutshell, the learning rule will operate as follows: (1) The distribu-
tion of correlations of a finite square lattice Ising model is calculated, (2) the new model is defined by assigning 
each neuron reference correlation values for its synapses randomly sampled from the previous distribution, (3) 
during learning, each neuron sorts its synapses by their correlation strength, and adjusts these correlations to the 
reference values assigned using an inverse Ising learning rule. We proceed now to explain these points in detail.

First, since the size of the models employed here is far from the thermodynamic limit, instead of directly using 
the diverging asymptotic form c(r) ∝ 1/rη, we approximate it by computing the correlation structure of a finite 
model operating at a known critical temperature. One of the few cases where the Ising model presents an exact 
solution is a model with zero fields and a bidimensional square lattice connectivity, in which a critical point 
appears at β= +J log (1 2 )/(2 )19. Exploiting this, we build a 20 × 20 square lattice Ising model operating at 
critical temperature with periodic boundary conditions to generate reference correlations to be used by the learn-
ing rule. We simulate the model using Glauber Dynamics, generating 106 samples, after an initial run of 105 
updates from a random state. From this simulation, we obtain the distribution of correlations in the system P(cij), 
where cij = 〈sisj〉, observed in Fig. 1. Since the fields hi of all units are zero, the means mi = 〈si〉 of all units are also 
zero.

Second, once the distribution of correlations has been obtained, we generate new models by adjusting their 
correlations to match the distribution P(cij). For doing so applying only local information, we assign each neuron 
a set of correlation values = ...∗c k N, 1ik  drawn at random from P(cij). At each step, we will compute the actual 
correlations between a neuron i and its neighbours j as cij

m, and generate reference values for learning by sorting 
∗cik to match the order of cij

m. We will denote the sorted reference values as ∗cij . All the values of ⁎mi  will be set equal 
to zero. The reason for sorting the values of the correlations is to give more flexibility to the rule, since we are only 
interested in maintaining a c(r) ∝ 1/rη relation, independently of which connection holds each value.

For the third step, the problem is that it is not trivial finding which combination of hi and Jij generates a spe-
cific combination of mj and cij. This is known as the ‘inverse Ising problem’, which can be solved by using a simple 
gradient descent rule18:

Figure 1.  Distribution of correlation values used for learning, generated from a 20 × 20 lattice Ising model at 
critical temperature.
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where μ is a constant learning rate, ⁎mi  and ⁎cij  are the reference mean and correlations of the learning algorithm, 
and mi

m and cij
m are the mean and correlations of the model for the current values of hi and Jij. Generally, perform-

ing each learning step is computationally expensive, since it requires summing over all possible states of s, 
although approximate methods such as Monte Carlo sampling are generally used to speed up learning. Similarly, 
we compute the approximate correlations by simulating our networks using the Glauber dynamics in Equation 1 
for a number of steps.

Now, before jumping to the main results, we will present a test of the model under idealized conditions and 
describe the embodied agents we use for evaluating the performance of the presented learning rule.

Testing adaptation to criticality in isolated networks
As a demonstration of our method, we apply the learning rule to 10 different networks for sizes N = 4, 8, 16, 32, 
64 assigning them means and correlations drawn at random from the distribution found for the 20 × 20 lattice 
Ising model. For each network, we apply Equation 3 for learning ∗ ∗m c,i ij , estimating the actual mi

m and cij
m with 

Glauber dynamics.
In order to simplify the process, we have made some operative decisions. For instance, since precision of learn-

ing is not important (the objective is to capture the overall distribution), we do not wait for convergence of the 
algorithm and simply update the learning rule 1000 times. We use a learning rate μ = 0.01 and compute 1000N 
samples for each learning step, being N the size of the system. For simplicity also, instead of the critical tempera-
ture of the lattice Ising model, we set an arbitrary inverse temperature of β = 1. Note that the choice of operating 
temperature is irrelevant, since it only implies a rescaling of the parameters that the algorithm will compensate.

For each network, we test if it is near a critical point by computing its heat capacity. A divergence in the heat 
capacity is a sufficient indicator of a continuous phase transition indicating the presence of a critical point with 
maximal sensitivity to parametrical changes1. In our model, the heat capacity is represented by β β= − =

β
∂
∂

C( ) H

β 〈 〉 − 〈 〉E s E s( ( ) ( ) )2 2 2 , where = −∑ − ∑ <E s h s J s s( ) i i i i j ij i j is the energy of the Ising model and = −∑H P s( )s
P slog ( ( )) is the entropy of the system. So we test if a system is at criticality by using the entropy H of the system as 

an order parameter and looking for continuous phase transitions associated with critical points. We detect a con-
tinuous phase transition if the entropy presents a sharp but continuous transition in which the derivative of the 
entropy (the heat capacity) diverges as the system size increases.

We simulate each network for 105 steps for different values of β, and we find that all the heat capacity of the 
10 networks diverges at the operating temperature β = 1 (Fig. 2A), showing values similar to those of the original 
lattice Ising model with periodic boundaries. Let us point out that although the distribution of correlations is 
similar to the lattice Ising model, the structure of the network is radically changed. Instead of the original ordered 
structure of a uniform lattice, we now have a disordered distribution of couplings Jij (Fig. 2B), including both pos-
itive and negative values. Also, each execution of the learning algorithm yields a completely different arrangement 
of values of couplings Jij.

In the following section, we test the capacity of this learning rule for driving the neural controller of an 
embodied agent towards a critical point. In order to do so, we need to take into account the environment during 
learning. If we consider two interconnected Ising models (one being the neural controller and other being the 
environment) Equation 3 holds perfectly if we only apply it to the values of i and j corresponding to units of the 
neural controller. In our case, we do not use an Ising model as an environment but instead we use two classical 
examples in reinforcement learning with the goal of testing a more realist scenario. Therefore, our learning rule 
will be valid as long as the statistics of the environment can be approximated by an Ising model with an arbitrary 
number of units. Luckily, Ising models in the form of Boltzmann machines are universal approximators21 and the 
stationary distribution of any arbitrary environment can be approximated by an equivalent Ising model.

Figure 2.  (A) Divergence of the heat capacity in 10 models after learning random correlations sampled from 
Fig. 1. Maximum and minimum values are shown by the grey area. (B) Distribution of the values of the coupling 
matrix Jij of a 64 units Ising model after learning correlations sampled from Fig. 1. (the order of the nodes in the 
coupling matrix has been arranged using hierarchical clustering). Values of Jij correspond to the values in the 
colour bar.
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Embodied model: Mountain Car and Acrobot
In order to evaluate the behaviour of the proposed learning rule, we test it in two embodied situations using the 
OpenAI Gym toolkit22. We define a neural network consisting of an Ising model defined as in Equation 2, describ-
ing a network of N = 6 + Hh units, with Nh hidden units, 2 motor units and 4 sensor units. Motor units define the 
actions performed by the agents. In sensor units, the magnetic field of the unit is not a fixed parameter but it is be 
updated with the value of an external input hi = Ii. Sensor units and motor units are only connected to hidden 
neurons, while hidden neurons are connected to all other neurons (Fig. 3A). We choose this configuration 
because it is widely used in neural networks and allowed recurrence in the connectivity of hidden units, although 
the architecture choice is not restrictive. All units are assigned reference ∗cik value (selected at random from distri-
bution P(cij) shown in Fig. 1), and all units except sensor units are assigned an objective mean value =∗m 0i . 
During learning, the agent applies the rule in Equation 3 for adjusting its means and correlations to the assigned 
values. Each simulation step, the units of the Ising model are updated in a sequential random order using Glauber 
dynamics (Equation 1).

The first embodiment of the network consists of the Mountain Car environment23. This environment is a clas-
sical testbed in reinforcement learning depicting an under-powered car that must drive up a steep hill (Fig. 3B). 
Since gravity is stronger than the car’s engine, the vehicle must learn to gain potential energy by driving to one 
hill before the car is able to make it to the goal at the top of the opposite hill (see Methods). The neural network 
receives the speed of the system as an input and controls the force of the car’s engine as an output. The second 
embodiment consists of a double pendulum or ‘Acrobot’24, which has to coordinate the movements of two con-
nected links to lift its weight (Fig. 3C, see Methods). The neural network receives the speed of the first pendulum 
and controls the torque applied on the joint between the two pendulums.

For sizes Nh = 1, 2, 4, 8, 16, 32, 64, we train 10 agents in both environments, applying the learning rule 
from Equation 3, with η = 0.01. Note that agents during learning have no other explicit goal other than adjust-
ing the correlations of the system to a random sample extracted from the probability distribution in Fig. 1. In 
Supplementary Videos S1 and S2 we can observe an example of the behaviour of agents with N = 64 after train-
ing. In Fig. S2C,D we can see the distribution of correlations of an agent with Nh = 64 (the result is similar for all 
agents and sizes) and Fig. S2E,F shows the error between the distribution in Fig. S2C,D and Fig. 1 for this agent. 
In Fig. S2C,D we can observe how agents after learning display a correlation structure consistent with the corre-
lation distribution c(r) ∝ 1/rη of the lattice Ising model at criticality.

In the following section, we analyse whether the agents designed in this way are able to operate in their envi-
ronment in a regime of criticality.

Results
In this section, we analyse the behaviour of the neural controllers and the behavioural patterns of the agents with 
respect to the possibilities of their parameter space. The goal is to test if the learning rule proposed here is effective 
for driving the agent near critical points. As we observe below, the 10 agents display quite similar behaviour for 
each environment, despite the fact that each one has learned different values of ∗cik and Jij. We are interested in 
analysing if there is anything special about the configuration reached by the agents after learning.

In order to compare the agents with other behavioural possibilities, we explore the parameter space by chang-
ing the parameter β of the agents. Modifying the value of β is equivalent to a global rescaling of the parameters of 
the agent transforming hi ← β · hi and Jij ← β · Jij, thus exploring the parameter space along one specific direction. 
That is, changing β is just a way of testing one dimension in the parameter space of possible models. First, we 
assess the presence of criticality in the neural controller of the agent. Specifically, we look for the presence of a 
continuous phase transition in which an order parameter of the system (the entropy) presents a sharp transition 
displaying a divergence of its derivative (the heat capacity). Second, we analyze not only the behaviour of the 
neural controller but the agent as a whole, looking for behavioural transitions of the agents and divergences of the 
susceptibility of the agent’s behaviour to parametrical changes.

Signatures of criticality in the neural controller.  In order to test whether the agents are being driven 
towards a critical point, we analyse signatures of critical behaviour in the neural controller of the agent. As we 

Figure 3.  (A) Structure of the embodied neural controller for a model with N = 12 units and Nh = 6 hidden 
units. (B) Mountain Car environment: an under-powered car that must drive up a steep hill by balancing itself 
to gain momentum. (C) Acrobot environment: an agent has to balance a double pendulum to reach the high 
part of the environment.
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mentioned before, a sufficient indicator for criticality is the presence of a divergence of the heat capacity of the 
system (as in Fig. 2A). A divergence in the heat capacity indicates the presence of a continuous phase transition 
presenting a critical point in which the system is maximally sensitive to parametrical changes. Unfortunately, 
when the neural controller is embodied in the Mountain Car and Acrobot environments, we can no longer access 
a formal description of the probability distribution of the agent-environment system, thus we cannot directly 
compute from the energy of the system values as the entropy or heat capacity of the system. Nevertheless, we can 
still directly compute the entropy = −∑H x P x P x( ) ( ) log ( )x  of any variable of the system by estimating its prob-
ability distribution P(x) through simulations. In order to compute the entropy and the heat capacity of different 
variables, we simulate the agent’s behaviour for 101 values of β, logarithmically distributed in the interval [10−1, 
101]. We run the 10 agents for each embodiment during 106 simulation steps, reseting the agent’s position and 
state every 5 · 104 simulation steps.

First, we compute the entropy of the probability function of hidden neurons in the controller. Due to compu-
tational constraints (the number of states of the probability distribution increases with 2Nh) we only compute the 
entropy in agents up to Nh = 16 hidden units. Displaying the entropy of the neurons for different values of β we 
observe that the agents are near an order-disorder transition (Fig. 4A,B). Larger sizes make the transition sharper 
and closer to the operating temperature β = 1. From the entropy of a variable, its heat capacity can be computed 
as β β= − β

β
∂

∂
C( ) H( ) . From the computed 101 values of entropy, H(β) is estimated by fitting a curve using cubic 

B-splines25 as indicated in the Methods section. In Fig. 4C,D we observe how the system displays a similar diver-
gence of the heat capacity of the neural network as the Ising model, suggesting that the robot’s neural controller is 
at a critical point.

In order to confirm a divergence in the observed transition, larger systems should be evaluated. Since evaluat-
ing the entropy of the hidden neurons is computationally infeasible for large sizes, we repeat the analysis for the 
state of the 4 sensor units of the network for a larger amount of hidden units. In Fig. 5 we show the entropy and 
heat capacity of the sensor units for sizes up to Nh = 64 hidden neurons, where we can observe a similar picture 
than in Fig. 4, suggesting that the heat capacity diverges, and a second order transition takes place in the neural 
controller of the agent. These results suggest that the agent’s neural controller is operating near a point of criti-
cality, resembling a continuous phase transition, suggesting that the neural controller self-organizes to present 
maximal sensitivity to changes in its parameter space.

In addition to the presence of a continuous phase transition, a classical signature of criticality is the presence 
of power law distributions in the statistical descriptions of the states of a system. Unlike an isolated Ising model, 
our neural network is connected to an environment and the probability distribution of the Ising neural controller 
is no longer described by Equation 2. Thus, we compute the probability distribution of the system by counting 
the occurrence of each state of the units s to compute the probability distribution of the Ising model P(s). We 
simulate the system at β = 1 for 108 simulation steps. As in training, the agent’s position and state are reset every 
5 · 104 simulation steps. We observe that all agents approximately follow Zipf ’s law for the Mountain Car (Fig. 6A) 
and Acrobot embodiments (Fig. 6B), with error bars in a very narrow range. The power-law distribution of neural 

Figure 4.  (A,B) Entropy of the agent’s neural controller for different sizes up to N = 22 (Nh = 16), for 10 
different agents and 101 values of β. (C,D) Heat capacity of the agent’s neurons. Heat capacity computed as 

β β= − β
β

∂
∂

C( ) H( ) , where H(β) is estimated using B-splines. Maximum and minimum values are shown by the 
grey area. The figures suggest that in both the Mountain Car (left) and Acrobot (right) embodiments the model 
presents a divergence of its heat capacity as the number of neurons N increases, suggesting that the neural 
controller of the system is near a continuous phase transition.
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activation patterns suggests that the neural controller of the agents is operating near a critical point. We have to 
note that the sole occurrence of a power law is generally insufficient to assess the presence of criticality and may 
arise naturally in some non-equilibrium conditions. Nevertheless, together with the apparent divergence of the 
heat capacity it supports the idea that the neural controller of the agents might be poised near a critical state.

Behavioural transitions in the parameter space.  What does it imply for the agent to adapt to be poised 
near a critical point? It should be remarked here that agents are given no explicit goal. They only tend to adapt to 
behavioural patterns maintaining a distribution of correlations randomly sampled from the distribution shown in 
Fig. 1. To explore this issue, we examine the different behavioural modes of the agent while exploring its param-
eter space by changing the value of β. The behaviour of the Mountain Car can be described just by its horizontal 
position x and speed v at different moments of time. As well, the horizontal and vertical positions of the tip of the 
Acrobot’s links is a good description of its behaviour.

In Fig. 7A–C we can observe the behaviour of a Mountain Car agent with Nh = 64 for β = {0.75, 1, 1.2}, respec-
tively. We observe that for values of β lower than the operating temperature, the agents are not able to reach the 
top of the mountain. On the other hand, when β is higher, the agents present more ‘rigid’ trajectories going from 
one mountain peak to the other. At β = 1 the agent is able to reach the top of the mountain (note that the peaks 
of the mountain are located at x = −π/2 and x = π/6) while displaying larger behavioural diversity. Similarly, in 
Fig. 7D–F, we observe that the Acrobot agent with Nh = 64 at β = 1 displays a diverse range of behaviours, being 

Figure 5.  (A,B) Entropy of the sensor units for different sizes up to N = 70 (Nh = 64), for 10 different agents and 
101 values of β. (C,D) Heat capacity of the agent’s neurons. Heat capacity computed as C( ) H( )β β= − β

β
∂

∂
, where 

H(β) is estimated using B-splines. Maximum and minimum values are shown by the grey area. The figures 
suggest that in both the Mountain Car (left) and Acrobot (right) embodiments the system presents a divergence 
of its heat capacity as the number of neurons N increases, suggesting that the neural controller of the system is 
near a second order phase transition.

Figure 6.  Ranked probability distribution function of the neural network for 10 different agents and different 
sizes in (A) the Mountain Car and (B) the Acrobot embodiments. The real distribution is compared with a 
distribution following Zipf ’s law, (i.e. P(s) = 1/rank, dash-dotted line). We observe a good agreement between 
the model and Zipf ’s law, suggesting critical scaling.
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able to reach the top of the plane while, when β is lowered or increased, it drifts to other behavioural modes in less 
diverse regimes. Although only one agent is represented for each environment, the results of Fig. 7 are similar in 
all agents and sizes.

To get a more general picture of different agents and sizes, we can analyse the behavioural transitions in rele-
vant variables of the agent-environment systems. Furthermore, we analyse whether the behaviour of the agent, 
and not only its neural controller, is near a critical point. For inspecting this, we calculate the mean height of 
agents 〈y〉 in our simulations (Fig. 8A,B), and compute the susceptibility of this height value as χ β β=

β
∂〈 〉
∂

( )y
y  

(Fig. 8C,D). In this case, the susceptibility appears to increase monotonically with size when size is doubled, even 
if these increases are not as uniform as in Figs 4 and 5. Although further tests of criticality could validate if criti-
cality is also found in the whole agent-environment system, the figures suggest that the continuous phase transi-
tion of the neural controller corresponds with a sharp transition in the agent’s behaviour.

Discussion
Recapitulating the main ideas presented so far, we have tested how, by taking a set of correlations chosen at 
random from a distribution generated by a lattice Ising model at a critical point, we can construct a new model 
that appears to be also near a critical point in its parameter space. Moreover, if an embodied agent maintains 
these correlations using a simple learning rule while interacting with its environment–as a sort of organizational 
homeostasis–the agent neural controller seems to be driven to a critical point, which coincides with behavioural 
transitions in the agent-environment parameter space. Due to computational limitations for estimating the prob-
ability distribution of the embodied Ising networks, we only calculate the entropy and heat capacity of neural 
controllers up to Nh = 16 hidden neurons (and N = 22 total neurons) and approximate larger sizes computing the 
entropy and heat capacity of Ns = 4 sensor neurons for neural controllers up to N = 70 total neurons. These results 
are still far from the thermodynamic limit and further tests should confirm the results presented here for larger 
sizes. Nevertheless, in all cases we observe a clear diverging tendency of the heat capacity every time the size of 
the system is doubled. Tests for larger sizes could be performed by designing environments that can be described 
by a Gibbs distribution, avoiding the combinatorial explosion in computing the heat capacity of the system by 
calculating it directly from the energy of the whole agent-environment system.

Figure 7.  Transition in the behavioural regime of the agents with Nh = 64. We show the behaviour of two 
individual agents with different values of β for the Mountain Car (A–C) and Acrobot (D–F) embodiments. We 
observe that β = 1 is a transition point between two modes of behaviour in both agents.
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These results suggest the possibility that criticality could be diagnosed and induced directly from the main-
tenance of a given distribution of correlations rather than modelling a precise mechanistic structure. Also, our 
results show that criticality could be generated by quite simple mechanisms only relying on local information, 
maintaining specific correlations around a given value. Here we have implemented the mechanism as a simple 
Boltzmann Learning process, but other rules could have the same effect, such as the combination of Hebbian 
and anti-Hebbian tendencies in specific ratios or other simple mechanisms. In our model, we only require the 
system to maintain a distribution of relations between the components of the system. This connects with sys-
temic approaches to biology interested not in specific or intrinsic components of biological systems but in the 
networks of relations and processes26–28. It is also in line with notions of relational invariance in Piaget’s approach 
to functional invariants in cognitive development29 or Maturana and Varela’s ideas of autopoietic machines, 
defined as homeostatic systems that maintain their own organization constant as a network of relations between 
components30.

Assuming a similar systemic perspective, we have derived learning rule intended to drive a system towards 
critical points by maintaining an invariant structure of correlations roughly defined by a critical exponent 1/rη. 
Our approach assumes a different point of view on self-organized criticality, in which the distribution of correla-
tions is not the consequence of criticality in a specific topology but the cause driving an indeterminate topology to 
what appears to be a critical point. The question now is whether imposing connections derived from a 1/rη func-
tion is a strong assumption or implies particularly exigent circumstances. We do not think so, since power law 
functions can be naturally generated by simple rules of preferential attachment favouring ‘rich-get-richer’ cumu-
lative inequalities31, or directly as a natural consequence of certain geometries of space (e.g. gravitation laws32).

Our model only assumes that a system is going to adapt in order to preserve an internal network of relations. It 
emphasizes the maintenance of organizational structures capable of reproducing the behaviour of living systems 
without relying on internal models of the external source of sensory input. This contrasts with other approaches 
which have focused on understanding criticality as a strategy to effectively represent a complex and variable 
external world3, for example, studying criticality in predictive coding or deep learning architectures dealing with 
complex inputs33,34. In those cases, an internalist view is assumed, where the neural controller represents struc-
tures of an external world, whose complexity may be the cause of critical activity in the controller. Instead, our 
approach is agnostic in terms of the inputs or the external world of an organism, and deals only with how an agent 
rearranges its internal structures facing different environments.

The agents presented here are not specifically designed for a particular problem. In simple terms, our agents 
generate (preserving the same internal neural organization) a wide variability and richness of behaviours (avoid-
ing both disorder and explosive and indiscriminate propagation) that permits them to explore the space of param-
eters and eventually achieve solutions that they were not designed to find. The empirical evidence of experiments 
shown here supports this idea. A parallel could be established with the concept of play, which can be understood 
as a ‘rule-breaker’ activity of the constraints of a stable and self-equilibrating regime of behaviours which has 

Figure 8.  (A,B) Mean height 〈y〉 of the agents for different sizes up to N = 70 (Nh = 64), for 10 different agents 
and 101 values of β. (C,D) Susceptibility of the agent’s behaviour, computed as χ β β=

β
∂〈 〉
∂

( )y
y , where 〈y〉 is 

estimated using B-splines. Maximum and minimum values are shown by the grey area. The figures suggest that 
in both the Mountain Car (left) and Acrobot (right) embodiments the behaviour of the agent presents a sharp 
transition around β = 1.
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no concrete goals35. A model as the one presented here could be used for exploring life-like autonomous behav-
iour without the need for explicit internal representations, goals, or rule-based behaviour. Conceptual models of 
critical activity based on the maintenance of a system’s relational invariants could help in the development of a 
synthetic route towards the exploration of adaptive and embodied criticality.

Methods
Mountain Car.  This environment consists in a car with mass m moving along a one-dimensional environ-
ment. In this environment, the agent moves its position in an horizontal axis x, limited to an interval of [−1.5π, 
0.5π]. Each horizontal position represents a point in an environment with two mountains, whose height is defined 
as y = 0.55 + 0.45 sin(3x). The velocity in the horizontal axis is updated each time step as v(t + 1) = v(t) + 0.001a −  
0.0025 cos(3x), where a is the action of the motor which can be either −1, 0, 1, impulsing the car with a force 
F = ma. The inputs Ii fed to the sensor units are defined as an array of 4 units, which are assigned the instantane-
ous velocity of the car discretized into an array of 4 bits. Each input Ii is assigned a value of 1 if its corresponding 
bit is active and −1 otherwise.

Acrobot.  The Acrobot is a two-link planar robot composed of two pendulums joined at their tip, with a motor 
applying a torque in clockwise or counterclockwise directions on the joint between the two links. The position 
of the system is defined by the angles of both pendulums θ1 and θ2, whose behaviour is defined by the following 
system of differential equations:

θ θ φ

θ τ φ φ
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φ θ θ θ θ θ
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where τ is the torque applied to the system which can be either −1, 0, 1, m1 = m2 = m is the mass of the links, 
l1 = l2 = 1 is the length of the links and lc1 = lc2 = 0.5 are the lengths to the center of mass of the links, I1 = I2 = 1 are 
the moments of inertia of the links and g = 9.8 is the gravity. As well, variables d1 and d2 are the total moments of 
inertia of each link, and φ1 and φ2 are linked to the potential energy of the system.

Similarly to the Mountain Car, the inputs fed to the sensor units in the Acrobot embodiment are defined as an 
array defined with 4 sensor units, encoding the angular speed of the first link with binary values (encoding active 
and inactive bits as +1 and −1).

Task difficulty.  In order to make the tasks challenging, we set the maximum velocity allowed to the Mountain 
car to ±0.045 (typically is set to 0.07) and the mass of the Acrobot links to m = 1.75 (typically m = 1). These 
parameters are designed to make it difficult for agents controlled by neural networks with random parameters 
solve the task (reaching the top of the environment), having success rates of 6.1% for the Mountain Car and 3.1% 
for the Acrobot. Success rates were evaluated by simulating 1000 neural controllers with random parameters 
(sampled from a uniform distribution in the range [−2, 2]). The Mountain Car was simulated for 1000 simula-
tion steps starting from a random position in the valley between [0.4, 0.6], and was considered successful when 
reached the maximum position at least once. The Acrobot was simulated for 5000 simulation steps from the 
bottom position (angles and angular speeds between [−0.1, 01]) and was consider successful if reached a vertical 
position higher than 1.8.

Training.  During training, agents are initialized in the starting random positions in the bottom of their envi-
ronments (x ∈ [0.4, 0.6] and v = 0 for the Mountain Car and θ θ θ θ ∈ − . , , , [ 0 1, 01]1 2 1 2  for the Acrobot). The 
state of the neural network is randomized and the initial parameters hi and Jij are set to zero. Agents are simulated 
for 1000 trials of 5000 steps, computing each trial the values of mi

m and cij
m and applying Equation 3 at the end of 

the trial. The agent’s position and state are reset every 5 · 104 simulation steps.

Code availability.  The source code implementing the learning rule in the different examples is freely availa-
ble at https://github.com/MiguelAguilera/Adaptation-to-criticality-through-organizational-invariance.

Curve interpolation.  The heat capacity of hidden and sensor units was computed by interpolating entropy 
curves using cubic B-splines25 using scipy function splrep with as smoothing coeficient of 1. Different coeficients 
were tested with similar results.
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