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ABSTRACT

Coronovirus disease 2019 (COVID-19) infection, which originated from Wuhan,
China, has seized the whole world in its grasp and created a huge pandemic situation
before humanity. Since December 2019, genomes of numerous isolates have been
sequenced and analyzed for testing confirmation, epidemiology, and evolutionary
studies. In the first half of this article, we provide a detailed review of the history and
origin of COVID-19, followed by the taxonomy, nomenclature and genome
organization of its causative agent Severe Acute Respiratory Syndrome-related
Coronavirus-2 (SARS-CoV-2). In the latter half, we analyze subgenus Sarbecovirus
(167 SARS-CoV-2, 312 SARS-CoV, and 5 Pangolin CoV) genomes to understand
their diversity, origin, and evolution, along with pan-genome analysis of genus
Betacoronavirus members. Whole-genome sequence-based phylogeny of subgenus
Sarbecovirus genomes reasserted the fact that SARS-CoV-2 strains evolved from their
common ancestors putatively residing in bat or pangolin hosts. We predicted a few
country-specific patterns of relatedness and identified mutational hotspots with high,
medium and low probability based on genome alignment of 167 SARS-CoV-2
strains. A total of 100-nucleotide segment-based homology studies revealed that the
majority of the SARS-CoV-2 genome segments are close to Bat CoV, followed by
some to Pangolin CoV, and some are unique ones. Open pan-genome of genus
Betacoronavirus members indicates the diversity contributed by the novel viruses
emerging in this group. Overall, the exploration of the diversity of these isolates,
mutational hotspots and pan-genome will shed light on the evolution and
pathogenicity of SARS-CoV-2 and help in developing putative methods of diagnosis
and treatment.

Subjects Bioinformatics, Evolutionary Studies, Genomics, Microbiology, Virology
Keywords COVID-19, SARS, Coronavirus, Pandemic, Viral disease, Genome, Bioinformatics,
Genomics, Mutations

INTRODUCTION

The emergence of coronavirus disease 2019 (COVID-19) has sent people from across the
world into a state of high alert, and they are trying to survive complete or partial lockdowns
(Lescure et al., 2020). The causative agent of this pandemic is a novel Severe Acute
Respiratory Syndrome (SARS) Coronavirus, Severe Acute Respiratory Syndrome-related
Coronavirus-2 (SARS-CoV-2). Since 2000, the world has witnessed two major coronavirus
outbreaks: the first, of SARS, caused by SARS-CoV, in 2002 in China (Zhong et al., 2003),
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and the second, of Middle East Respiratory Syndrome (MERS) in 2012 in Saudi Arabia
(Zaki et al., 2012). Amongst coronaviruses, SARS-CoV and MERS are known as highly
pathogenic viruses that cause pneumonia and respiratory system infections (Colerman &
Frieman, 2014). Besides these, several other low pathogenic strains are also known that
cause mild respiratory diseases and infect majorly the upper respiratory tract (Han et al.,
2020). After the diagnosis of the first reported case in Wuhan, China, and genome
sequencing of the Wuhan Hu-1 strain (SARS-CoV-2 reference genome), scientists across
the world are striving to develop vaccines and diagnostic kits and understand its
evolution and epidemiology. Several potential drug molecules to combat COVID-19 are
undergoing clinical trials. As no vaccine or drugs are available at present, the only ways
known to contain transmission are social distancing, regular washing of hands, and
covering mouth and nose while coughing or sneezing, thereby, preventing direct or indirect
physical contact and containing the transfer of infected respiratory droplets.

This study comprises a detailed overview of the history and origin of COVID-19
along with the taxonomy, nomenclature and genome structure of its causative agent
SARS-CoV-2. Following that, we analyze 167 SARS-CoV-2, 312 SARS-CoV and five
Pangolin CoV genomes to study their genomic variability, evolution and mutation
hotspots. We also characterize the pan-genome of the genus Betacoronavirus (including
the recently sequenced Pangolin CoV) to classify their proteins-coding regions into core,
accessory, and unique categories within each genome group.

TAXONOMY AND NOMENCLATURE

Coronaviruses are members of family Coronaviridae that include enveloped positive sense
ssRNA containing viruses, taxonomically classified amongst order Nidovirales in the realm
Riboviria. Like other viruses, they thrive in the gray area of living and non-living as
they do not have the machinery to survive outside a living host cell. Therefore, they cannot
replicate outside the host. The Riboviruses or realm Riboviria members replicate by
utilizing RNA-dependent RNA-polymerases (RdRps). Their genetic material that is, RNA
serves as messenger RNA (mRNA), directly translating into proteins and undergoes
genetic recombination in the presence of another viral genome in the host cell

(Barr ¢ Fearns, 2010).

Members of order Nidovirales have a positive sense linear (capped and polyadenylated)
RNA molecule, known for causing severe infections. The word “Nido” stands for “nest”
implying that all Nidoviruses express subgenomic mRNAs (sgRNA) in a nested form. They
are known to infect hosts within three important classes in Vertebrates, namely mammals
(Mammalia), birds (Aves) and fishes (Pisces). Coronaviruses (family Coronaviridae;
subfamily Orthocoronavirinae) commonly infect both mammals and birds; Torovirus
(family Tobaniviridae; subfamily Torovirinae) infect specifically mammals and Bafinivirus
(family Tobaniviridae; subfamily Piscanivirinae) infect fishes. Coronavirus virions are
spherical, Torovirus are crescent-shaped, and Bafinivirus are rod-like; however, all
members of this family are adorned with a crown or club-shaped surface proteins
called the Spike proteins. Because of their crown-like morphology observed in electron
micrographs, they are named Coronaviruses. Family Coronaviridae has a single
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subfamily Orthocoronavirinae and its members form a monophyletic clade. They are
further classified into four defined genera based on phylogenetic studies of conserved
genome regions and their serological cross-reactivity: Alphacoronavirus, Betacoronavirus,
Gammacoronavirus and Deltacoronavirus. Under genus Betacoronavirus, five lineages
diverge: Lineage A (subgenus: Embecovirus) includes HCoV-OC43 and HCoV-HKU1,
Lineage B (subgenus: Sarbecovirus) includes SARS-CoV and SARS-CoV-2, Lineage C
(subgenus: Merbecovirus) contains Bat coronavirus BtCoV-HKU4 and BtCoV-HKUS5,
Lineage D (subgenus: Nobecovirus) includes Rousettus Bat coronavirus BtCoV-HKU9
and lineage E (subgenus: Hibecovirus) includes Bat Hp-betacoronavirus/Zhejiang2013.
The subgenus Sarbecovirus members tend to undergo deep recombination events leading
to the formation of new alleles (Boni et al., 2020) and zoonotic transfer.

ORIGIN AND HISTORY OF THE CORONAVIRUS
INFECTIONS

The first Coronavirus associated disease was described in 1931 (Peiris, 2012). The viruses
were first isolated from humans in the UK and USA around the same time. The first
isolated specimen was B814, taken from a boy exhibiting symptoms of the common cold in
1960 and cultured in human embryonic tracheal organ culture (Tyrrell ¢» Bynoe, 1966).
The specimen was deemed distinct from Adeno-, Entero- or Rhinoviruses, being ether
labile and propagated only in organ cultures (Kendall, Bynoe ¢ Tyrrell, 1962; Tyrrell ¢
Bynoe, 1966). Later, the gradual discoveries of 229E in 1966 (Hamre ¢ Procknow, 1966),
OC43 in 1967 (McIntosh, Becker ¢ Chanock, 1967), SARS-CoV in 2002, Bovine CoV in
2006, MERS-CoV in 2012 and SARS-CoV-2 in 2019 (Zhu et al., 2020) were major
significant steps in coronavirus history.

Coronaviruses have been associated with mild respiratory infections and cold in
humans and animals (specifically poultry and livestock). These viruses were not
considered treacherous until the SARS epidemic that emerged in China in November 2002.
The associated SARS-CoV species were first classified as a separate clade under
Betacoronavirus after this outbreak, post which new species including those of human
coronaviruses (hCoVs) have been identified. The 2002 SARS epidemic ultimately infected
8,096 people, with 774 deaths. Later, MERS-CoV emerged in Saudi Arabia in September
2012, causing 2,494 confirmed cases of infection and 858 deaths across 27 countries
(https://www.who.int/emergencies/diseases/en/).

The current pandemic, COVID-19, is caused by the virus, initially designated “2019
novel coronavirus” or “2019-nCoV?, later re-named SARS-CoV-2, segregating it as a novel
SARS species (Huang et al., 2020). Now, it forms a new clade in the subgenus Sarbecovirus
and is established as the 7th member of the family which infects humans (Simmonds et al.,
2017; Gorbalenya et al., 2020; Zhu et al., 2020). The first patients of COVID-19 were
identified in late December 2019 when several local health centers reported clusters of
patients with pneumonia caused by an unknown pathogen, epidemiologically linked to
living animal and seafood wholesale market in Wuhan. The Chinese Center for Disease
Control and Prevention called a rapid action team for the epidemiological investigation.
Bronchoalveolar-lavage fluids were propagated on human respiratory tract epithelial cell
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cultures for 4-6 weeks. Extracted nucleic acid was identified as viral RNA by real-time
reverse transcription PCR targeting the RdRp region of pan-BetaCoV. The electron
micrographs revealed the presence of distinctive spikes of length 9-12 nm, establishing
morphological resemblance with the Coronaviridae family (Zhu et al., 2020). Following
this, SARS-CoV-2 infection has been spreading worldwide. As of 29 April 2020
(submission date), 213 countries and territories around the world are under surveillance,
with more than 3.15 million confirmed cases and over 218,490 reported fatalities, and these
numbers continue to exponentially increase day by day.

Since December 2019, numerous SARS-CoV-2 genomes have been sequenced, which
allows researchers to address many critical questions regarding its origin, transmission,
epidemiology, and most importantly to design vaccines and viral detection kits. Viral
genome sequencing and multiple sequence alignment of SARS-CoV-2 genomes have
revealed its identity with Bat CoV RaTG13 (MN996532) and Pangolin-CoV (Cui, Li ¢
Shi, 2019; Boni et al., 2020; Rehman et al., 2020). A comparative phylogenetic study
revealed that the Pangolin-CoV genes shared a high level of sequence identity with
SARS-CoV-2 genes, specifically orflb, the spike (S), orf7a and orf10 genes (Zhang, Wu ¢
Zhang, 2020). Higher identity of S protein sequence implies the functional similarity
between Pangolin-CoV and SARS-CoV-2 as compared to the RaTgl strain (Zhang, Wu ¢
Zhang, 2020) further suggesting Pangolin as an intermediate host for infection and natural
reservoir of SARS-CoV-2-like strains.

CORONAVIRUS GENOME ORGANIZATION

Coronaviruses belong to family Coronaviridae and comprise enveloped viruses that
replicate in the cytoplasm of animal host cells; distinguished by the presence of a
single-stranded positive-sense RNA genome (about 30 kb in length) (Marra et al., 2003).
Coronaviruses possess the largest genomes among all known RNA viruses (Fehr ¢
Perlman, 2015), ranging from 25.32 kb in Porcine Deltacoronavirus PD-CoV to 31.775 kb
in Beluga whale coronavirus SW1 (information available on NCBI Virus webpage
https://www.ncbi.nlm.nih.gov/labs/virus/). SARS-CoV-2 is a spherical or pleomorphic
enveloped particle, containing single-stranded, positive-sense RNA associated with a
nucleoprotein, lying inside a capsid composed of matrix protein (Lai et al., 2020).

The SARS-CoV-2 reference genome (NC_045512; Wuhan Hu-1 strain) is 29,903
nucleotides long, which consists of A (8,954 nt, 29.94%), G (5,863 nt, 19.61%), C (5,492 nt,
18.37%), T (9,594 nt, 32.08%). Compared to SARS-CoV-2, the SARS-CoV reference
genome (NC_004718; Torl strain) is a little larger, that is, 29,751 nucleotides and its
nucleotide composition is marginally different: A (8,481 nt, 28.50), G (6,187 nt, 20.80%),
C (5,940 nt, 19.97%), T (9,143 nt, 30.73%). We identified that the GC content (average
of all genomes under this study) of SARS-CoV, SARS-CoV-2, and Pangolin CoV is
40.81%, 38% and 38.52% respectively. Like other Betacoronavirus members, this genome
contains two flanking untranslated regions (UTRs), 5'-UTR (265 nt) and 3’-UTR (229 nt)
sequences.

A typical CoV genome contains at least six ORFs (Graham et al., 2008). The genomes of
all coronaviruses usually encode four well-conserved and characterized structural proteins:
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S (spike), E (envelope), M (membrane) and N (nucleocapsid) (Graham et al., 2008;
Fuk-Woo Chan et al., 2020), encoded by sgRNA 2, 4, 5 and 9a respectively present at 3’end
and sharing 1/3 of the genome in SARS-CoV (Graham et al., 2008).

SARS-CoV-2 Proteins: The SARS-CoV-2 genome has 12 protein-coding regions, which
encode two categories of proteins: first, Structural proteins, which give characteristic
structure to the virus and are involved in viral entry, and second, Non-structural (NS)
or accessory proteins, which help in viral replication (Marra et al., 2003; Graham et al.,
2008; Hu et al., 2018; Fuk-Woo Chan et al., 2020). Most of the information available so far
about these proteins is based on SARS-CoV and other members of the genus
Betacoronavirus.

STRUCTURAL PROTEINS
Spike protein

The S protein is a 1,273 aa trimeric, cell-surface glycoprotein consisting of two subunits
(S1 and S2), encoded by the gene S. The S1 subunit is responsible for receptor binding
(Hu et al., 2018). This is also important for mediating the fusion of viral and host
membranes. Both these processes are critical for virus entry into host cells (Tan, Lim &
Hong, 2005). SARS-CoV-2 has a polybasic cleavage site RRAR, at the junction of S1 and S2
subunits, which enables effective cleavage by Furin and other proteases (Andersen et al.,
20205 Zhang, Wu ¢ Zhang, 2020). Furthermore, one proline residue is also inserted at
the leading cleavage site of SARS-CoV-2, making “PRRA”, the final inserted sequence.
Comparison of this site within different Betacoronavirus members revealed that the
insertion of a Furin cleavage site at the S1-S2 junction of SARS-CoV-2 enhances cell-cell
tusion (Follis, York ¢» Nunberg, 2006; De Haan et al., 2008; Andersen et al., 2020). Similarly,
an effective cleavage of the polybasic cleavage site in Hemagglutinin esterase protein
facilitated the inter-species transmission of MERS-like coronaviruses from bats to humans
(Andersen et al., 2020). Majorly, variations in the S protein are responsible for two
attributes, tissue tropism and host ranges of different CoVs (Hu et al., 2018). It was
observed that S protein underwent several drastic changes during the viral infection.
The S protein of SARS-CoV-2 is more vulnerable to mutations, especially in the amino
acids associated with the spike protein-cell receptor interface. Interestingly, the amino acid
sequence represented ~19% changes with four major insertions and ~81% sequence
similarity in contrast to SARS-CoV (Ahmed, Quadeer & McKay, 2020; Rehman et al.,
2020).

Nucleocapsid protein

N proteins are 419 aa long phosphoproteins weighing ~46kDa. These have helix binding
properties. Coronavirus N proteins possess three easily distinguishable and highly
conserved domains; the N-terminal domain (NTD) (N1b), the C-terminal domain (CTD)
(N2b) and the N3 region (Grossoehme et al., 2009; Cong et al., 2019). The N protein
plays a vital role in virion structure formation as it is localized in both the replication-
transcription region and the ERGIC (Endoplasmic reticulum-Golgi apparatus
Intermediate Compartment), the site of virion assembly (Tok ¢ Tatar, 2017).
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The N protein of SARS-CoV is primarily expressed during the early stages of SARS-CoV
infection (Surjit & Lal, 2008; Grossoehme et al., 2009; Cong et al., 2019). It is important
as a diagnostic marker as it induces a strong immune response (Hu et al., 2018).
Evolutionary analysis has shown 89-91% sequence homology between the N proteins in
the SARS-CoV and Bat SL-CoV (Hu et al., 2018; Ahmed, Quadeer & McKay, 2020).
The N protein can bind to Nsp3 protein to help bind the genome to replication/
transcription complex (RTC) (Cong et al., 2019) and package the encapsulated genome
into virions (Chen, Liu ¢ Guo, 2020). IBV, SARS CoV and MHV N protein undergo
phosphorylation and allow discrimination of non-viral mRNA binding from viral
mRNA binding (Cong et al., 2019). N protein is also an antagonist of interferon (IFN)
(Kopecky-Bromberg et al., 2007) and virus-encoded repressor of RNA interference (RNAi),
therefore, it appears to benefit the viral replication (Chen, Liu ¢ Guo, 2020).

Membrane protein

The most abundant structural protein in the genome is the membrane (M) glycoprotein,
which spans across the membrane bilayer three times. Thus, M glycoproteins have three
transmembrane regions, leaving a short NH2-terminal domain outside the virus and a
long COOH terminus (cytoplasmic domain) inside the virion (Tok ¢ Tatar, 2017;
Mousavizadeh & Ghasemi, 2020). The M protein plays a key role in regenerating virions in
the cell. M proteins undergo glycosylation in the Golgi apparatus which is crucial for
the virion to fuze into the cell and to make antigenic proteins. As mentioned before, N
protein forms a complex by binding to genomic RNA and M protein triggers the formation
of interacting virions in the endoplasm (Tok ¢ Tatar, 2017).

Envelope glycoprotein

E glycoproteins are composed of approximately 76-109 amino acids in other coronavirus
species. E protein plays a crucial role in the assembly and morphogenesis of virions
within the host. About 30 amino acids in the N-terminus of the E protein enable
binding to the viral membranes. Co-expression of E and M proteins with mammalian
expression vectors enable the formation of virus-like structures within the cell (Tok ¢
Tatar, 2017).

NON-STRUCTURAL (ACCESSORY) PROTEINS

ORF1ab and ORF1a

The SARS 5’ proximal gene 1 (~22 kb) comprises two long overlapping open reading
frames, orfla and orflab, encoding for polyproteins la and lab. These polyproteins are
cleaved by viral proteases that is, PLP"® (papain-like protease) and 3CLP™ (chymotrypsin-
like protease) into 16 non-structural proteins, Nspl1-Nsp16. Expression of orflab
involves a (1) ribosomal frameshift upstream of orfla stop codon, thus forming the
full-length ORFlab. ORFla polyprotein of ~500 kDa encodes for Nsp 1-11, while ORFlab
polyprotein of ~800 kDa encodes for all Nsp1-16. The ORFla and ORFlab polyproteins
undergo post-translational modifications to form mature proteins and hence are not
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detected during infection (Graham et al., 2008; Lei, Kusov ¢» Hilgenfeld, 2018). A brief
description of these proteins is provided below:

i. Nspl: SARS-CoV Nspl is an N-terminal protein coded by the first gene of ORF1lab,
which plays an important role in SARS-CoV pathogenesis by inhibiting the host
gene expression via binding to the small subunit of the ribosome and then truncating
the translation activity. Nsp1l induces endonucleolytic RNA cleavage of a capped
host mRNA, making it translationally incompetent (Tanaka et al., 2012). Nspl
inhibits the type-1 IFN expression and other antiviral signaling pathways, thus
suppressing the innate immune system. The viral mRNA is resistant to Nsp1-
mediated RNA cleavage in the infected host cells, however, the mechanism through
which it achieves this is unknown (Tanaka et al., 2012).

ii. Nsp2:the function of Nsp2 in SARS-CoV is unknown. The experimental results show
that the deletion of the nsp2 gene from MHYV and SARS-CoV was tolerated with
modest growth and some RNA defect. Also, there was no observable effect on the
polyprotein processing in the mutants. Another evidence shows that neither the
Nsp2 protein nor the nsp2 gene is involved in pathogenesis (Graham et al., 2005).

iii. Nsp3: the multi-domain SARS-CoV Nsp3 is a 215 kDa glycosylated transmembrane
multidomain protein involved in viral replication and transcription. It may serve
as a scaffolding protein for numerous other proteins (Angelini et al., 2013).

The organization of various Nsp3 domains differs amongst the Coronavirus
genomes. However, eight domains are common to all CoVs: ubiquitin-like domain 1
(Ubl1), the glutamate-rich acidic domain also known as “hypervariable region”, an X
macrodomain, ubiquitin-like domain 2 (Ubl2), PL2P*™ (papain-like protease 2),
ectodomain 3Ecto, also known as “zinc-finger domain”, and domains Y1 and CoV-Y
(unknown functions). Nsp3 releases itself, Nspl and Nsp2 from the polyproteins.
It alters the post-translational modification of host proteins to antagonize the
innate immune response by de-MARylating, de-PARylating, de-ubiquitinating,

or de-ISGylating the host proteins. Meanwhile, Nsp3 modifies itself by the
N-glycosylation of the ectodomain and can also interact with host proteins (such as
RCHY1) to enhance viral survival (Lei, Kusov ¢» Hilgenfeld, 2018).

iv. Nsp4: it is known that Coronaviruses induce double-membrane vesicles (DMVs).
Any alteration in the DMVs’ morphology impairs the RNA synthesis and
therefore growth of Nsp4 mutants (Gadlage et al., 2010).

v. Nsp5: the Nsp5 protease also known as 3CLP™ or MP™, cleaves the Nsp peptides at
11 cleavage sites (Stobart et al., 2013). Nsp5 of Porcine Deltacoronavirus (PDCoV)
is a type I IFN antagonist. It disrupts the IFN signaling pathway by cleaving the
NF-kB essential modulator (NEMO), thus impairing the host’s ability to activate the
IFN response (Zhu et al., 2017).

vi. Nsp6: Nsp6, along with Nsp3 and Nsp4, has membrane proliferation ability. Thus, it
can induce perinuclear vesicles localized around the microtubule-organizing
center and DMV formation (Angelini et al., 2013). The coronavirus Nsp6 protein
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Vii.

viii.

Xi.

Xii.

xiii.

Xiv.

XV.

restricts the autophagosome expansion either directly or indirectly through
starvation or chemical inhibition of MTOR signaling (Cottam, Whelband ¢
Wileman, 2014).

Nsp7: the Nspl2 RNA-dependent RNA polymerase cannot act on its own and
depends upon stimulation by a complex of Nsp7 and Nsp8. Thus, Nsp7 acts as
one of the cofactors along with Nsp8 to stimulate Nsp12. It is hypothesized that Nsp7
and Nsp8 heterodimers stabilize the Nsp12 regions involved in RNA binding; also,
Nsp8 acts as a minor RdRp (Kirchdoerfer & Ward, 2019).

Nsp8: Nsp8 is a 22 kDa non-canonical polymerase shown to be capable of de novo
RNA synthesis with low fidelity on single-stranded RNA templates. The ‘main’ RdRp
in Coronaviruses is the Nsp12 which employs a primer-dependent initiation
mechanism. These observations led to a hypothesis that Nsp8 would act as an RNA
primase and synthesize a short primer that will be extended by Nsp12 (Te Velthuis,
Van den Worm & Snijder, 2012).

Nsp9: Nsp9 is an RNA-binding subunit in the replication complex in all
coronaviruses (Zeng et al., 2018).

. Nsp10: SARS-CoV Nsp10 binds to and stimulates the exoribonucleases, Nsp14, and

Nsp16, thus playing an important role in the replication-transcription complex
(RTC) formation (Bouvet et al., 2014). Nsp10 acts as an essential co-factor in
triggering Nsp16 2’O-MTase activity, which suggests its involvement in the
regulation of capping of viral RNA (Lugari et al., 2010).

Nspl1: the exact function of Nsp11 in Coronaviridae is unknown. Arterivirus Nsp11
was identified as NendoU (Nidoviral uridylate-specific endoribonucleases) that plays
a role in the viral life cycle. Nsp11 could be essential to produce helicase (Woo et al.,
2005).

Nsp12: Nspl2 is a 102 kDa RNA-dependent RNA polymerase (RdRp) featuring
all conserved motifs of the known RdRps. It is the most conserved protein in
coronaviruses and assumes a center stage in the viral RTC. The Nsp7/Nsp8 complex
enhances the binding of Nsp12 to RNA. Nsp8 is the second, non-canonical RdRp in
coronaviruses (Subissi et al., 2014).

Nsp13: Nspl3 is a 66.5 kDa multi-functional protein. The N terminal has a
zinc-binding domain while the C-terminal harbors a helicase domain-containing
conserved motif of superfamily-1 helicases (Subissi et al., 2014).

Nspl4: Nspl4 is a 60 kDa bifunctional enzyme. Its N-terminal is a 3'-5’
exoribonuclease involved in the mismatch repair system, improving the fidelity

of virus replication via RNA proofreading. Yeast trans-complementation

studies have shown that the C-terminal domain of SARS-CoV Nsp14 is an
S-adenosylmethionine-dependent guanine-N7-methyltransferase (MTase) (Subissi
et al., 2014; Zeng et al., 2016) with no RNA sequence specificity (Subissi et al., 2014).
Nsp15: SARS-CoV Nspl5 is a uridine specific ribonuclease that cleaves the 3" of
uridylates, producing 2'-3" cyclic phosphate ends (Subissi et al., 2014).
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xvi. Nspl6: Nspl6 is a 2'-O-Methyl Transferase (Zeng et al., 2016) and requires Nsp10 as
a stimulatory factor to exhibit its MTase activity (Chen et al., 2011). Eukaryotic
mRNA has a unique 5’ cap; to evade the host machinery, the viral RNA must be
made indistinguishable from the host mRNA by capping the viral RNA (Menachery,
Debbink ¢ Baric, 2014). Both Nsp14 and Nsp16 are involved in the modification
of viral RNA cap structure (Zeng et al., 2016) to maintain the viral RNA stability,
ensure protein translation and immune escape (Lugari et al., 2010; Subissi et al.,
2014). The SARS-CoV genome encodes two SAM-dependent methyltransferases
(Zeng et al., 2016); Nsp14 N7 methyltransferase, and Nsp16 2’-O-methyl transferase,
that methylates the RNA at N7 of guanosine and ribose 2’O sites, respectively
(Chen et al., 2011). This process also involves Nsp10 for stabilizing the SAM binding
region and RNA binding of Nsp16 (Subissi et al., 2014).

ORF3a protein

The orf3a gene lies between S and E genes and encodes for a transmembrane protein
(McBride & Fielding, 2012). SARS-CoV-2 ORF3a protein shows 97.82% homology to NS3 of
Bat coronavirus RaTG13 and 72% homology to SARS-CoV ORF3a protein (Issa et al., 2020).
It is localized to the cell membrane and partly to the ER and the Golgi perinuclear
space in the host cell. ORF3a is known to activate PERK (PKR-like ER kinase) signaling
pathway through which the viral particles escape ER-associated degradation and the
resulting ER stress also induces apoptosis. ORF3a of both SARS-CoV and SARS-CoV-2 have
an APA3_viroporin (a pro-apoptosis protein) conserved domain (McBride ¢ Fielding, 2012;
Issa et al., 2020). ORF3a has been shown to activate NF-xB and JNK. This leads to the
upregulation of the chemokine named RANTES (Regulated upon Activation, Normal T Cell
Expressed and Secreted) along with IL-8 in A549 and HEK293T cells (Liu et al., 2014).
The extracellular N-terminus of protein can evoke a humoral immune response. Binding
of ORF3a protein to caveolin-1 may be required for viral uptake and release (Liu et al., 2014).
ORF3a can augment the activation of the p38 MAPK pathway and induce the mitochondria
to leak inducing apoptosis (Liu et al., 2014).

ORF®6 protein

SARS-CoV ORF6/Protein 6 is a 63-aa polypeptide. It has an amphipathic 1-40 aa
N-terminal portion and a highly polar C-terminal. The amino acid residues 2-32 in the
N-terminal form an a-helix which is embedded in the cell membrane. There are two
signal sequences in the C-terminal; aa 49-52 sequence YSEL targets proteins for
incorporating into endosomes and the acidic tail which signals ER export. This protein
is localized in the ER and Golgi apparatus. ORF6 is incorporated into VLPs, when
co-expressed with SARS-CoV S, M and E structural proteins. It enhances viral replication,
thus serving an important role in pathogenesis during SARS-CoV infection (Liu et al.,
2014). ORF6 is also well known as a p-interferon antagonist; its overexpression inhibits
nuclear import of STAT1 in IFN-f treated cells. Along with ORF3b and N protein, the
SARS-CoV ORF6 inhibits activation of IRF-3 via phosphorylation and binding of IRF-3 to
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a promoter with IRF-3 binding sites. IRF-3 is an important protein for the expression of
IFN. ORF6 may disturb the ER/Golgi transport necessary for the interferon response
(Kopecky-Bromberg et al., 2007). During SARS-CoV infection, the C-terminal domain of
ORF6 modulates the host protein nuclear transport and type-I interferon signaling, thus
playing an important role in immune evasion (Liu et al., 2014).

ORF7a protein

SARS-CoV ORF7a/ Protein 7a is a 122 aa type-I transmembrane protein (Liu ef al., 2014).
It consists of 15 aa N terminal signal peptide sequence, an 81 aa ectodomain, 21 aa C
terminal transmembrane domain, and a cytoplasmic tail of 5 aa residues. The ectodomain
of ORF7a binds to human LFA-1 (lymphocyte function-related antigen 1) on Jurkat cells
via the alpha integrin-I domain of LFA-1. This suggests that probably LFA-1 is a
binding factor or receptor for SARS-CoV on human leukocytes (McBride & Fielding,
2012). SARS-CoV OREF7a is localized in the ER-Golgi Intermediate Compartment
(ERGIC), the assembly point of coronaviruses. It interacts with M and E structural
proteins, indicating a possible role in viral assembly during SARS-CoV replication.

In mammalian cells infected with SARS-CoV, ORF7a has been known to induce
caspase-dependent apoptosis by cleaving PARP (poly(ADP-ribose) polymerase), an
apoptotic marker. Its pro-apoptotic nature is a result of the interaction between its
transmembrane domain with Bcl-X;, an anti-apoptotic protein of the Bcl-2 family

(Liu et al., 2014). Like ORF3a, overexpression of ORF7a activates NF-kB and c-Jun N-
terminal kinase (JNK), augmenting the production of pro-inflammatory cytokines such as
interleukin 8 (IL-8) and RANTES (Liu et al., 2014). ORF7a overexpression induced
apoptosis can occur via a caspase-3 dependent pathway as well as p38 MAPK pathway
(McBride ¢ Fielding, 2012).

ORF7b protein

SARS-CoV ORE7b/Protein 7b is a 44 aa long, highly hydrophobic, integral
transmembrane protein with a luminal N-terminal and cytoplasmic C-terminal.

The expression of ORF7a is reduced significantly when the orf7a start codon (upstream
of 7b) is mutated to a strong Kozak sequence or when an additional start codon AUG is
inserted upstream of the orf7b start codon. Thus, ORF7b may be expressed by “leaky
scanning” of the ribosome (Liu et al., 2014). The Golgi-restricted localization of ORF7b
was attributed to the transmembrane domain (Liu et al., 2014). However, the role of
ORF7a and ORF7b during the replication of SARS-CoV remains uncertain (McBride ¢
Fielding, 2012).

ORF8 protein

Human SARS-CoV-2 isolated from early patients, Civet SARS-CoV and other bat
SARSr-CoV contains the full-length ORF8 (Fuk-Woo Chan et al., 2020). Two genomes of
genus Betacoronavirus isolated from horseshoe bat, SARS-Rf-BatCoV YNLF_31C and
YNLF_34C are 93% identical to the human and civet SARS-CoV genome. However, all
Human SARS-CoV isolates from mid and late-phase patients contain a signature 29
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nucleotide deletion in the orf8 gene, splitting it into orf8a and orf8b. This suggests that
ORF8 may play a role in interspecies transmission. The generation of civet SARSr-CoV
could be a result of a potential recombination event between SARSr-Rf-BatCoVs and
SARSr-Rs-BatCoVs identified around ORF8 (Lau et al., 2015). Interestingly, the new
SARS-CoV-2 OREFS shares very less homology with the conserved ORF8 or ORF8b
isolated from Human SARS-CoV or its related viruses, Civet SARS-CoV, Bat-CoV
YNLF_31C andYNLF_34C. The ORFS8 lacks any known functional domain or motif.
SARS-CoV ORF8b has an aggregation motif VLVVL (75-79aa) which is known to activate
NLRP3 inflammasomes and trigger intracellular stress pathways (Fuk-Woo Chan et al.,
2020), but this is not conserved in SARS-CoV-2. Notably, both ORF3 and ORF8 in
SARS-CoV-2 are highly divergent from the interferon antagonist ORF3a and
inflammasome activator ORF8b in SARS-CoV (Yuen et al., 2020).

ORF10 protein

The SARS-CoV-2 ORF10 protein has no homologs in SARS-CoV and any other members
of genus Betacoronavirus (Xu et al., 2020). Viruses are known to sabotage ubiquitination
pathways for replication and pathogenesis. The ORF10 interacts with specifically the
CUL2%YS!"'® complex and the rest of the members of the Cullin-2 (CUL2) RING E3 ligase
complex. ZYG11B degrades substrates with exposed N-terminal glycine residues.

By studying the ORF10 interactome, it was observed that it interacts the most with the
CUL#YS'"'® complex (Gordon et al., 2020). This evidence shows that ORF10 might bind to
this complex and hijack its ubiquitination of restriction factors (Gordon et al., 2020).

METHODOLOGY (GENOMES, DATABASES, AND TOOLS

USED IN THIS STUDY)

Complete genomes, belonging to SARS-CoV-2 (167 genomes), SARS-CoV (312 genomes)
and Pangolin CoV (five genomes) were downloaded from NCBI Virus webpage
(https://www.ncbi.nlm.nih.gov/labs/virus/) as on 29 March 2020. Similarly, RefSeq
assemblies of 56 suborder Cornidovirineae genomes (including 18 from Betacoronavirus
genus) along with the genome of Paguronivirus-1 (as an outgroup) were downloaded

as on 1 April 2020. The latest version of the Virus database was downloaded from the
NCBI Virus page as on 6 April 2020.

For alignments of the studied genomes, as required for phylogeny and mutational
studies, we have used MUSCLE v3.8.1551 and MEGAX (Edgar, 2004; Kumar et al., 2018)
tools as per their default settings. To generate maximum likelihood phylogenies of
genome-based alignments, RAXML v8.2.12 (Stamatakis, 2014) was used to perform
rapid bootstrap analysis and search for bestscoring ML tree in one program run (“-f a”
parameter) using GTRGAMMA as nucleotide substitution model (-m) with 100 bootstrap
values. After obtaining the newik trees from RAXML, an online iTOL platform (Letunic ¢
Bork, 2019) was used to visualize phylogenetic trees as shown in this study. For each
experiment in respective result sections, we have provided comprehensive details about the
genomes under study, research methodology, and used parameters.
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For the pangenome study, Proteinortho v6.0.12 (Lechner et al., 2011) was used with an
E value cutoff 1E-05 for each identified hit along with other default settings. It utilizes
diamond v0.8.36.98 and BLAST 2.8.1+ (Christiam et al., 2009; Buchfink, Xie ¢» Huson,
2014) to identify ortholog proteins using reciprocal blast strategy. For the identification
of pairwise average nucleotide identity (ANI) values within all genomes under study,
PYANI v0.1.2 (Pritchard et al., 2016) program was used. Throughout this study, the
Wuhan Hu-1 strain has been used as a reference for SARS-CoV-2 genomes.

RESULTS AND DISCUSSION

Human SARS-CoV-2 genome is quite disparate as compared to other
Betacoronavirus genomes

The SARS outbreak in 2003 and MERS in 2012 had already set a precedent for widespread
genome analysis, therefore, with the recent emergence of COVID-19 in November
2019, extensive sequencing and genome analysis of SARS-CoV-2 isolates are being
performed. Since February 2020, several Bat and Pangolin coronaviruses have also been
sequenced to understand the probable origin of SARS-CoV-2. In this study, we have
analyzed 312 SARS-CoV, 167 SARS-CoV-2 and 5 Pangolin CoV genomes to understand
their genomic conservation, unique genes, mutational hotspots and respective evolution
and origin.

Phylogeny relationship at suborder Cornidovirineae level

SARS-CoV-2 is a member of suborder Cornidovirineae, family Coronaviridae, genus
Betacoronavirus, and subgenus Sarbecovirus. In this study, we have tried to understand the
strain diversity and evolutionary relationships at different taxonomy levels in a top-bottom
classification scheme. For this analysis, the complete whole-genome sequences of 56
suborder Cornidovirineae reference genomes were analyzed, which included members
from five genera i.e. 23 Alphacoronavirus, 20 Betacoronavirus, 10 Deltacoronavirus and
three Gammacoronavirus and the genome of Paguronivirus-1 was included as an outgroup
for this study. Their genome length varied from 25,425-31,686 nucleotides. ClustalW
alignment (using MEGA-X) generated an alignment of 35,601 nucleotides off which
17,284 conserved sites were stripped and used to generate an ML-based phylogeny using
RAxXML. We noted that this phylogeny is unambiguously able to demarcate all the genera
into their respective monophyletic clades (Fig. S1). The significant variations amongst
branch length distances indicate the relative diversity within each genus.

Phylogeny relationship at genus Betacoronavirus level

We generated the phylogeny of 18 Betacoronavirus reference strains (along with five
Pangolin CoV strains) using their complete genomes ranging within 29,114-31,526
nucleotides. ClustalW based whole genome alignment using MEGAX generated an
alignment of length 33,346 from which 24,555 conserved nucleotide sites were stripped
and used to generate ML phylogeny (Fig. S2). Three distinct clades were seen in the
phylogeny: the first clade includes strains from subgenus Sarbecovirus, Nobecovirus and
Hibecovirus, second with Embecovirus members, and the third clade of members of
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subgenus Merbecovirus. Within the first clade, both members of subgenus Sarbecovirus
(SARS-CoV and SARS-CoV-2) are grouped with Pangolin CoV strains, which is supported
by their percentage identity. All Pangolin CoV genomes are >99.8% identical to each other
whereas their closest relatives are the SARS-CoV-2 reference strain (~85% identity),
followed by the SARS-CoV reference strain (~79% identity). These three groups are closest
(~57% identity) to their sister branch occupied by subgenus Hibecovirus strain: Bat
Hp-betacoronavirus Zhejiang 2013. Two reference strains of another subgenus
Nobecovirus (~67% identity with each other) form a separate clade that is closest (~52%
identity with other group members) to the above-mentioned clade comprising subgenus
Sarbecovirus and Hibecovirus. The second clade only has representatives of subgenus
Embecovirus including Murine hepatitis virus, Bovine CoV, Rabbit CoV, Rat CoV, etc.
Some of these strains form respective subclades in the phylogeny based on their closeness.
Strains belonging to subgenus Merbecovirus that include the MERS, form the third
clade. MERS genomes (England 1 and MERS Co.) are 99.7% identical to each other and
therefore form a separate sub-clade. As observed from their phylogenetic branch lengths
and percentage identity matrix, all subgenera are quite distinct from each other.

As expected, members of each subgenus are closer to each other, therefore forming
respective monophyletic clades.

Phylogeny relationship at subgenus Sarbecovirus level

To understand the similarities and differences among the strains of subgenus Sarbecovirus,
we analyzed the complete genomes of 103 SARS-CoV-2 and 312 SARS-CoV isolates
including the reference strains of Wuhan Hu-1 (SARS-CoV-2) and Tor2 (SARS-CoV).
Since Pangolin CoV belongs to subgenus Sarbecovirus, we also included 5 Pangolin CoV
genome sequences in our dataset and aligned them using MUSCLE. The genome size of
SARS-CoV, Pangolin CoV and SARS-CoV-2 strains were in the range of 29,013-30,311
nucleotides, 29,795-29,806 nucleotides and 29,325-29,945 nucleotides, respectively.

The alignment of length 31,718 nucleotides was stripped to a conserved region of 26,762
nucleotides (sites with gaps in between them were excluded) which was used to generate a
maximum likelihood phylogeny using RAXML (Fig. 1; Fig. S3). We noted from the
phylogeny that SARS-CoV-2 strains form a single monophyletic clade as compared to the
SARS-CoV. SARS-CoV strain RaTG13 procured from the bat in 2013 from Yunnan,
China is closest to SARS-CoV-2 strains, suggesting that they might have diverged from a
common ancestor. Average Nucleotide Identity (ANI) studies also indicated that the
SARS-CoV-2 reference genome and the Bat RaTG13 branch share 96.11% identity at the
genome level, a finding supported by earlier reports (Lv et al., 2020; Zhou et al., 2020).
The next closest strains in the phylogeny were those of Pangolin CoV, all forming a
subclade. Other close relatives are the SARS-CoV strains Bat CoVZC45 and Bat
CoVZXC21, procured from Zhoushan, eastern China in 2018. The phylogeny suggests
that Pangolin CoV's are closer to SARS-CoV-2 strains as compared to CoVZC45 and
CoVZXC21, however, genome-wide percentage identity suggests the opposite—the
genomes of both CoVZC45 and CoVZXC21 are ~89% identical to SARS-CoV-2, as
opposed to its 86% identity with Pangolin CoVs.
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Figure 1 Maximum Likelihood (ML) phylogeny representing relationship amongst 312 SARS-CoV, 103 SARS-CoV-2, and five Pangolin CoV
strains. The whole-genome sequences of 420 isolates were aligned using MUSCLE and stripped to include the highly conserved alignments across all
strains. The final alignment was subjected to RAXML to generate the ML phylogeny utilizing the GTRGAMMA model of nucleotide substitution
with 100 bootstrap replicates. The phylogeny is depicted with branch length consideration. The inner-circle represents the taxonomy of all strains
(depicting SARS-CoV, SARS-CoV-2 and Pangolin CoV). The outermost circle represents the respective host of each strain. Inner Blue and Gray
alternative dashed lines represent an internal tree scale with a branch length increment of 0.04 from inside to outside.
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We also examined the ANI scores of the above-identified closest strains of SARS-CoV-2
with all SARS-CoV, SARS-CoV-2 and Pangolin CoV genomic sequences used in this study
(Table S2). We found that the Bat RaTG13 strain is 95.97-96.12% identical when
compared to all SARS-CoV-2 genomes under study. Amongst the SARS-CoV strains, Bat
CoVZC45 and Bat CoVZXC21 are its closest neighbors with 89% genome identity,
indicating a common ancestor in bat coronaviruses, whereas, with Pangolin CoV, they
share lowest (~86%) nucleotide identity. Bat CoVZC45 and Bat CoVZXC21 are ~97%
identical to each other, whereas their identity with SARS-CoV-2 (~89%) is higher than
that with SARS-CoV (86-89%) and lowest with Pangolin CoV (~85%). Similarly,
Pangolin CoVs share maximum identity with Bat RaTG13 SARS-CoV (86.50%) followed
by SARS-CoV-2 (86.30-86.38%) and lowest with other SARS-CoV. Therefore, we can
argue that as SARS-CoV-2, Bat RaTG13 and Pangolin CoV have considerable genome
similarity, they possibly diverged from a common ancestor and SARS-CoV-2 was later
transmitted to humans through recombination and transformation events via an unknown
intermediate host.

Phylogeny relationship at SARS-CoV-2 level

SARS-CoV-2 strains, like other viruses, have a high mutation rate for better adaptability
and survival. Therefore, one of our aims was to understand the diversity among
SARS-CoV-2 isolates. Whole-genome sequences of 167 SARS-CoV-2 were aligned using
MUSCLE (alignment length 29,950 nucleotides) and the conserved sites of length 29,725
were used to generate a maximume-likelihood phylogeny using RAXML (Fig. 2; Fig. S4).
Irrespective of high similarity amongst all (>99.90% identity), several subclades can be
identified from the phylogeny based on their distance from each other, depicting their
subtypes. Our data has 97 isolates from the USA, 46 from China, five from Japan, four
from Spain, three from Taiwan, two from Vietnam and India, one isolate each from
Sweden, South Korea, Pakistan, Nepal, Italy, Finland, Brazil and Australia. From the
genome sequence data of 15 distinct geographical locations, we were able to identify a few
phylogenetic clusters depicting country-specific patterns. We identified multiple clusters
per country suggesting the existence of multiple subtypes. The KMSI isolate from
China was found to be the most distinct one, followed by WA-UW230, WA-UW194,
WA-UW?218 isolates from the USA. The Wuhan Hu-1 isolate shares a sister clade
with the USA Cruise samples, indicative of high similarity. Isolates sampled at the
University of Washington (WA, USA) form two separate subclades within two different
clades in the phylogeny, suggesting that even amongst people residing in a limited
area in the state of Washington, multiple strains exist and are causing COVID-19.
Furthermore, both the WA subclades have Valencia-Spain isolates as the closest
branch/subclade, suggesting that at least two individuals from these two locations
independently encountered each other and transmitted different subtypes of the virus.
This study also included two distinct genomes sampled from India which were
distributed by the phylogeny into two separate clusters signifying the existence of
different subtypes.
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Figure 2 ML phylogeny representing relationship amongst 167 SARS-CoV-2 strains. The whole-genome sequences of 167 isolates were aligned
using MUSCLE, stripped to include only conserved alignments, and subjected to RAXML to generate the ML phylogeny utilizing the GTRGAMMA
model of nucleotide substitution with 100 bootstrap replicates. The phylogeny is depicted with branch length consideration. The inner circle
represents the respective geo-location of each strain. Inner Blue and Gray alternative dashed lines represent an internal tree scale with a branch
length increment of 0.00005 from inside to outside. Full-size k&) DOT: 10.7717/peerj.9576/fig-2

As strains from diverse locations continue to be sequenced and analyzed, more reliable
country-specific patterns showing relatedness can be obtained. Similar to several cutting
edge studies (Woo et al., 2010; Fuk-Woo Chan et al., 2020; Zhang, Wu & Zhang, 2020;
Rehman et al., 2020), this study also provides an example of how phylogenetic analysis
can help generate clusters of identical strains, further enabling the identification of
signature mutations amongst those diverse groups.
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Mutations are continuously diversifying the Human SARS-CoV-2
strains

Like the previous section, the whole genome sequence alignment of 167 SARS-CoV-2
isolates were used for this study. As anticipated, ~100 nucleotides at both N and
C-terminals were highly diverse and, therefore, changes in these sites were not considered
in this study. For the rest of the alignment, the percentage of nucleotide occurrence at each
site (along with gap and other non-standard nucleotides) was calculated using the
SARS-CoV-2 Wuhan Hu-1 genome as the reference (Fig. 3). The mutational probability
was classified into four categories based on random distribution patterns: high (>19%
variation), medium (4-19% variation), low (2-3% variation) and very low (<2% variation).
Overall, 415 mutation sites were identified, among which non-standard nucleotides
were present in the genome at 125 sites, which have been ignored in this study.

We ultimately selected 290 sites with a confirmed variation. Amongst these, we found
43 sites with high, medium and low mutation probabilities within 9 out of 12
protein-coding regions in SARS-CoV-2 genomes, which also included the genes (S, M and
N), identified as core proteins across genus Betacoronavirus. Amongst all mutation sites,
we found 21 sites within the gene encoding Spike protein, 18 sites in the gene encoding
Nucleocapsid protein and three sites in gene encoding M protein, suggesting that even
these highly conserved protein-coding regions (core proteins as later identified via
pan-genome analysis) are capable of mutating. Also, we recognized 142 mutational sites in
orfla, 50 in orflb, 6 in orf3a, 2 in the envelope protein-coding gene, 4 in orf6, and orf8, 3 in
orf7b and 1 in orf10. We also identified 36 sites within non-coding regions.

Amongst sites with high mutation probability, C8,782T in orfla showed ~35% variation
from C to T, suggesting a transition mutation. Likewise, T28,144C in orf8 also has
~35% transition mutation variations. We found three hotspot mutational sites within
the orflb region of orflab, which has three transitions, two C to T (C17,747T and
C18,060T; ~20% variation) and one A to G (A17,858G; 19% variation). In the spike
protein-coding region, we were able to identify one transition site (A23,403G nucleotide)
with medium (11%) mutational probability. Overall, we were able to identify nine hotspots
with more than two consecutive probable mutational nucleotides in vicinity (197-210
(non-coding), 508-522 (orfla), 686-694 (orfla), 4,879-4,881 (orfla), 20,298-20,300
(orflb), 21,385-21,389 (orflb), 21,991-21,993 (S), 28,878-28,883 (N), 29,750-29,759
(non-coding)). Most of these hotspot sites showed ~1-2% mutational probabilities and
none of these have high or medium mutational probability as discussed in Fig. 3.

We believe these genomic locations are the probable sites of evolutionary divergence, and
therefore govern the evolutionary capabilities of these viruses.

We also analyzed transition and transversion possibilities within all these mutational
combinations. Out of the 290 identified mutational sites, 244 had a nucleotide substitution,
distributed into 158 transitions and 86 transversions. Transition events are known to be
more frequent and less likely to cause a change at the protein level as compared to
transversions (Sanjudn et al., 2010). Most transition events are silent mutations, while
transversion events may cause change at the protein level and therefore impact the

Parlikar et al. (2020), PeerdJ, DOI 10.7717/peerj.9576 17/31


http://dx.doi.org/10.7717/peerj.9576
https://peerj.com/

Peer/

B Gar
Mutational Probability

B High -\ [] others

e Ay,

Figure 3 Mutation sites and hotspots distribution amongst 167 SARS-CoV-2 genomes as compared to Wuhan Hu-1. MUSCLE-based
alignment was used to analyze the distribution of all nucleotides (including gap and other nucleotides) at each alignment site and the relative
percentage of each nucleotide is represented here in a circular manner respectively for each nucleotide. The innermost circle represents the respective
orf and non-coding DNA according to the location as mentioned in the third circle from inside. The second circle represents the mutational
probability score of each locus distributed in high, medium, low and very low categories. Full-size k&l DOL: 10.7717/peerj.9576/fig-3

pathogenesis of the disease (Lyons & Lauring, 2017). Therefore, we suggest that amongst
SARS-CoV-2 genomes, transversion events, that are occurring in significant numbers,
would provide more evolutionary diversity and possibly lead to divergence, as compared to

transition events.

Parlikar et al. (2020), PeerJ, DOI 10.7717/peerj.9576 18/31


http://dx.doi.org/10.7717/peerj.9576/fig-3
http://dx.doi.org/10.7717/peerj.9576
https://peerj.com/

Peer/

Evolutionary relationship amongst SARS-CoV-2, Bat CoV and
Pangolin CoV

To re-examine the closest hosts of these viruses, we performed homology studies on small
genome fragments (100 nucleotides) to identify their close relatives. We segmented each of
the SARS-CoV-2, Pangolin CoV, SARS-CoV and MERS genome (reference genome of
each category) into 100 nucleotide fragments, identified their closest homologs in the
virus database, filtered the strains belonging to its taxonomy, selected top 50 hits per
segment, calculated the host CoV distribution and represented it as a heatmap for each
segment/strain along with the closest (topmost) hit per segment/strain (Fig. 4).
MERS-CoV is already known to originate from the bat, however, the infection spread via
camels either directly/indirectly (Azhar et al., 2014). On excluding Camel CoVs from
the data, we found several segments showing maximum similarity representation in Bat
CoVs, followed by Hedgehog and Human CoV strains, however, most of the parts were
uniquely present in MERS. As expected, when Camel CoV strains were included, they were
the closest best hit as indicated in the “MERS Closest” category (Fig. 4).

When we further investigated the same patterns in the SARS-CoV genome, we
identified the Bat CoV as the closest strain for most of the reference segments, followed
by SARS-CoV-2 and Pangolin CoV. In the closest category, we found Bat CoV as the
closest suggesting their evolutionary origin. However, many segments do not show
any closeness with any strain, indicating their uniqueness in the reference genome.

We performed the same analysis on the Pangolin CoV strain GX-P5E and found that
several segments have close homology-distribution within SARS-CoV and SARS-CoV-2
genomes. Interestingly, as visible in the “Pangolin CoV Closest” category, several hits show
maximum similarity with Bat SARS-CoV, followed by SARS-CoV-2 and a few Human
CoVs.

Likewise, SARS-CoV-2 genome fragments show maximum homology representation in
Bat CoV followed by Pangolin CoV. In the “closest category”, Bat CoV indisputably stands
out as the closest host, which is corroborated by whole-genome phylogeny and the
percentage identity matrix studies. However, the presence of several Pangolin CoV
homologous segments in this analysis indicates that certain specific segments in the
SARS-CoV-2 genome share a closer relationship with Pangolin CoV strains as compared
to Bat CoVs.

Overall, our analysis indicates that the SARS-CoV-2 genome has a close relationship
with Bat CoV and Pangolin CoV, along with the presence of a few unique segments.
This reasserts that SARS-CoV-2 strains might have evolved from a common ancestor
of Bat SARS-CoV and Pangolin CoV strains and during evolution, several segments in the
SARS-CoV-2 genome might have diverged as compared to Bat SARS-CoV and Pangolin
CoV. The recognized unique genomic segments in this study may be used as potential
targets for diagnostic Kkits.

Pan-genome (Core, accessory and unique gene) analysis
Regardless of their approximately similar genome size, the members of Betacoronavirus
harbor huge diversity (5-14 CDS) in the number of protein-coding regions, as per the
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available NCBI genome annotations. SARS-CoV and SARS-CoV-2, belonging to subgenus
Sarbecovirus, have 14 and 12 protein-coding regions respectively, revealing the diversity
within the same subgenus. Similarly, Pangolin CoV (studied strain: GX-P5E), which also
belongs to subgenus Sarbecovirus, has only nine protein-coding regions. To identify the
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presence of (co-)orthologous proteins present across all these genomes, a bidirectional
(reciprocal) best BLAST hit-based homology detection strategy was followed using the tool
Proteinortho (Lechner et al., 2011) (Fig. 5; Fig. S5). A total of 44 protein-coding region
clusters represent the pan-genome of nineteen studied genus Betacoronavirus members
amongst which, 3 protein-coding regions (S, M and N proteins) were found to be
conserved across all genomes, representing the core genome. A similar analysis has
been performed on all Betacoronavirus species; however, it does not include Pangolin
CoV (Alam et al., 2020). Our study also recognized that the pan-genome of genus
Betacoronavirus is open, which means that with the addition of a new species, the
pan-genome is continuously increasing (Fig. S6). The increase in the pan-genome at each
step is approximately proportional to the increase in unique genes. Since each newly
identified strain has additional unique gene sequences, it is effectively impossible to predict
their complete pan-genome. As expected, the members of each subgenus, which are
closest to each other, have only a few variations, however, with the addition of a new
subgenus member(s), the pan-genome expands immediately.

orflab, the largest coding region, codes for two polyproteins ORFla and ORFlab
(266-13,468,13,468-21,555) because of the “leaky mechanism” of the ribosome, a (-1)
frameshift just upstream of the orfla translation termination codon. All CoVs, except for
strain MHV A59 of subgenus Embecovirus, translate the full-length orflab. MHV A59,
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however, has separate polyproteins from orfla and orflb. Due to the absence of ribosomal
slippage reported in several coronaviruses, ORFla is encoded by only 9 out of 18
genomes, making it an accessory protein cluster of the pan-genome. ORF1b polyprotein is
encoded as a part of orflab in most of the species belonging to genus Betacoronavirus,
again except for strain MHV A59, where it is encoded separately as RdRp, forming a
unique gene. Envelope protein (76-82 aa across Betacoronavirus) is another accessory
protein encoded by 15 out of 18 genomes. In another cluster, we identified the presence of
small envelope protein in two out of those three genomes where E protein is absent
(both in subgenus Nobecovirus). No E protein-encoding region is found in the MHV A59
genome annotations. The gene encoding ORF3 is distributed into two subunits (orf3a
and orf3b) in SARS-CoV (via an internal ribosomal entry mechanism), whereas only
the first subunit (orf3a; 276 aa) is present in SARS-CoV-2. The gene for ORF3a is
conserved only amongst subgenus Sarbecovirus organisms. This protein activates the
pro-transcription of gene IL-1f and helps its maturation; both signals are prerequisites
for NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome
activation during infection (Siu et al., 2019). Conservation of ORF3a across SARS-CoV-2,
SARS-CoV and Pangolin CoVs provides a clue about its unique infection strategy. ORF3b
(155 aa) is only present in SARS-CoV and absent in all other coronaviruses. It has

been suggested that ORF3b supports SARS-CoV infection by inhibiting the type-1
Interferon (IFN) synthesis and therefore, IFN signaling (McBride ¢ Fielding, 2012).
ORF6 is also a subgenus Sarbecovirus specific protein (conserved across SARS-CoV,
SARS-CoV-2 and Pangolin CoV) localized in the Endoplasmic Reticulum or the Golgi
membrane. During infection, it interacts with and interrupts the nuclear import complex
formation. During infection-caused interferon signaling, this interruption inhibits STAT1
transportation to the nucleus and blocks the expression of genes involved, therefore
mimicking an antiviral state (Frieman et al., 2007).

Another accessory protein of the Betacoronavirus pan-genome is ORF7a, which is a
unique protein amongst subgenus Sarbecovirus members. In SARS-CoV, it is known
that bone marrow stromal antigen-2 (BST-2 or tetherin or CD317) can restrict the virus
release from inside the cell causing partial inhibition of infection. However, ORF7a can
inhibit the action of this protein, thus promoting the infection (Taylor et al., 2015). ORF7b
is present in both SARS-CoV-2 and SARS-CoV but absent in Pangolin CoV NCBI
annotations. Like orf7b in SARS-CoV, its initiation codon overlaps with orf7a via
ribosome leaky scanning and it works as a structural component (Schaecher, Mackenzie ¢
Pekosz, 2007). orf8 gene (365 nucleotides) is uniquely present in SARS-CoV-2 and
Pangolin CoV but absent in SARS-CoV. Distinctively, orf8 in SARS-CoV is separated
into two proteins ORF8a (119 nucleotides) and ORF8b (254 nucleotides). ORFS8 in
SARS-CoV-2 is highly divergent from the inflammasome activator ORF8b in SARS-CoV
(Yuen et al., 2020). The function of this protein is not clear yet, but it has been suggested
that overall ORF8ab or ORF8a and ORF8b together modulate viral replication and
pathogenesis in unknown fashion (McBride ¢ Fielding, 2012). ORFI0 is a unique protein
in SARS-CoV-2 strains. We also performed the homology analysis of ORF10 protein
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against the NCBI Non-redundant database and found no hits, which suggests that this
protein is specific to SARS-CoV-2.

This analysis also revealed that some proteins are specific to a subgenus. Subgenus
Embecovirus has a unique combination of proteins, namely HE, ORF4, internal protein,
NS2a and NS3a, that are present in most genomes of this subgenus. These proteins might
be considered unique to subgenus Embecovirus as compared to the rest of the genus
Betacoronavirus. Hemagglutinin Esterase glycoprotein (HE) is a nonessential protein
with sialic acid-binding and acetyl esterase activity that create tinier spikes (second
attachment factor) on the viral envelope in several MHYV strains. orf4 (also annotated as
orf5a, ns12.9) encodes a nonstructural accessory protein that is, known to function as type
I interferon antagonist. The internal gene is encoded within the N gene in MHV CoV;
however, its function is not well-known. Similarly, subgenus Merbecovirus members also
have some unique proteins (NS3a, NS3b, NS4b, ORF5), that are absent in other subgenera.
We also identified unique proteins in each organism, which were absent in other
Betacoronavirus. Overall, it can be argued that although genus Betacoronavirus members
have ~10 proteins coding regions per genome, they have conserved similarity in only
~10% (3-4 proteins) of the genes and their diversity (~40% accessory genes and ~50%
unique genes) spans the rest of the genome, leading to their different pathogenesis across
diverse hosts and distinct evolution. We identified that even among subgenus Sarbecovirus
members (SARS-CoV, SARS-CoV-2 and Pangolin CoV), orf3b, orf7b, orf8, orfob and
orfl0 are uniquely distributed within at least one genome, therefore depicting wide
diversity within the same subgenus.

CONCLUSIONS

Humanity has already encountered coronavirus infections twice in the past two decades,
in the form of the SARS and MERS epidemics. The latest coronavirus infection,
COVID-19, caused by the highly pathogenic and transmissible SARS-CoV-2, turned into a
pandemic in sheer three months. This work provides a brief review of the taxonomy,
history, origin, and genome organization of the virus, followed by comparative genomics
research focused on understanding the evolutionary relationship amongst 167
SARS-CoV-2, 312 SARS-CoV and 5 Pangolin CoV genome sequences as available on
29 March 2020. We identified that SARS-CoV-2 strains form a monophyletic clade distinct
from SARS-CoV and Pangolin CoV. This study reaffirmed that they are closest to the
Bat CoV RaTGl13 strain followed by Pangolin CoV, suggesting that SARS-CoV-2 evolved
from a common ancestor putatively residing in bat or pangolin hosts. We identified several
mutation sites and hotspots within SARS-CoV genomes with high, medium and low
probabilities. Homology studies based on 100 nucleotide segments in the SARS-CoV-2
reference genome pointed out their close relationships with Bat and Pangolin CoVs, along
with the unique nature of a few segments. We recognized that 44 protein-coding regions
constitute the pan-genome for nineteen genus Betacoronavirus strains. Moreover, their
pan-genome is open, highlighting the wide diversity provided by newly identified novel
strains. Even members of subgenus Sarbecovirus are diverse relative to each other due to
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the relative presence of unique protein-coding regions orf3b, orf7b, orf8 and orfOb and
orf10. Overall, this review and research highlight the diversity within the available
SARS-CoV-2 genomes, their potential mutational sites hotspots, and probable
evolutionary relationship with other coronaviruses, which might further assist in our
understanding of their evolution, epidemiology and pathogenicity.
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