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Abstract

The impact of transposable elements (TEs) on genome structure, plasticity, and evolution is still not well understood. The recent

availability of complete genome sequences makes it possible to get new insights on the evolutionary dynamics of TEs from the

phylogenetic analysis of their multiple copies in a wide range of species. However, this source of information is not always fully

exploited.Here,weshowhowthehistoryof transpositionactivitymaybequalitativelyandquantitatively reconstructedbyconsidering

the distribution of transposition events in the phylogenetic tree, along with the tree topology. Using statistical models developed to

infer speciationandextinction rates in speciesphylogenies,wedemonstrate that it ispossible toestimate thepast transposition rateof

a TE family, as well as how this rate varies with time. This methodological framework may not only facilitate the interpretation of

genomic data, but also serve as a basis to develop new theoretical and statistical models.
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Introduction

As transposable elements (TEs) have no systematic role in gen-

omes beyond their own perpetuation, they are generally con-

sidered as selfish DNA sequences (Doolittle and Sapienza

1980; Orgel and Crick 1980). Nevertheless, their activity con-

sisting in self-promoting mobility and duplication has notice-

able consequences on host genomes, including mutation,

recombination, change in genome size, and modification of

the regulation patterns (Hua-Van et al. 2011). They are virtu-

ally universal, and they probably have existed since the origin

of life; describing the dynamical properties of TEs thus appears

as a necessary step toward a better understanding of genome

evolution (Lynch 2007).

The short- and long-term dynamics of TE families in their

host genome has generated a significant amount of theoret-

ical work in population and evolutionary genetics (Charles-

worth B and Charlesworth D 1983; Charlesworth 1991;

Charlesworth et al. 1994; Le Rouzic and Deceliere 2005).

Population genetic models and simulations confirm that para-

sitic TEs could realistically invade and maintain for a long time

in sexual populations. Theoretical approaches have also sug-

gested that several long-term scenarios were possible, includ-

ing the loss of all copies, or the persistence of TE activity, either

as a transposition-selection equilibrium, or as a succession of

burst and decay stages (Charlesworth B and Charlesworth D

1983; Le Rouzic and Capy 2006). Unfortunately, empirical

insights remain scarce and information about TE dynamics in

genomes, such as changes in the transposition rate or correl-

ations between different TE families, do not cover enough

species nor enough TE families to provide broad and general

inference about genome evolution. The recent improvement

in sequencing technology, as well as the availability of the

corresponding data in public databases, makes it possible to

anticipate significant progress on these issues. Yet, an import-

ant factor limiting the exploration of genome evolution re-

mains the availability of efficient statistical and analytical

tools able to extract meaningful and synthetic information

from such a large amount of data.

As a consequence of their propensity to duplicate, TEs are

present as multiple copies in genomes. The number of copies

varies according to the TE family and the host species, from a

very few insertion sequences in bacterial genomes (Chandler

and Mahillon 2002) to hundreds of thousands of LINE and

SINE elements in human (Lander et al. 2001). For RNA-

intermediate elements (class I), duplication is directly induced

by the “copy-and-paste” transposition mechanism, whereas
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for DNA “cut and paste” transposons (class II elements), du-

plication arises indirectly via DNA replication and repair

(Wicker et al. 2007). In any case, a transposition event may

generate a duplicated copy, inserted into a new genomic site,

with a sequence that is identical to the original element. From

this point, copies accumulate mutations independently, and

their divergence increases with time.

Reconstructing the phylogeny of TE copies from the

genome sequence of an individual could thus be used as a

basis to infer the evolutionary history of a TE family in the

whole species, and represents a rich source of information

about genome evolution (Kazazian 2004; Ray et al. 2009;

Biémont 2010). With this article, we intend to describe a

simple and satisfactory methodological framework to infer

TE evolutionary history in genomes, based on the birth–

death models that have been developed to infer speciation

and extinction rates in phylogenies (Yule 1924; Kendall 1948;

Nee et al. 1994). We then discuss how to interpret the distri-

bution of TE activity in the context of existing theoretical

models.

Materials and Methods

Transposition Model

Several evolutionary mechanisms are involved in the variation

of the copy number in genomes. The number of elements

increases by replicative transposition, which explains the

maintenance of the genomic parasite. The transposition rate

is not necessarily constant, it may be affected by various

regulation mechanisms, or by the progressive loss of transpos-

ition activity by mutation accumulation on TE sequences.

Meanwhile, copies can be lost by different processes, includ-

ing transposition-related or spontaneous deletion. Natural

selection may also affect TE copy number: by assuming a de-

crease in fitness associated to copy accumulation, individuals

with less copies will reproduce more efficiently, thus reducing

the average copy number at the next generation.

Formal population genetic models of TEs stem from the

early 1980s (Hickey 1982; Charlesworth B and Charlesworth

D 1983), see Charlesworth et al. (1994), Le Rouzic and Decel-

iere (2005), and Lynch (2007) for review. Even if more elabo-

rated models (often not tractable analytically) have been

developed since then (Quesneville and Anxolabéhère 1998;

Le Rouzic and Capy 2005; Dolgin and Charlesworth 2006;

Le Rouzic et al. 2007), we will stick here to the simpler frame-

work described in Charlesworth B and Charlesworth D (1983),

predicting the dynamics of the average number of copies per

genome (�n) as:

�nt + 1 ’ �nt � ð1 + ut � vÞ, ð1Þ

where ut is the replicative transposition rate at time t, and v is

the deletion rate. In this setting, all parameters are considered

as constant, except the transposition rate ut that can change

with time. For simplicity, the impact of natural selection, which

tends to decrease the probability of fixation of deleterious

copies, is here considered together with transposition regula-

tion, and thus included in ut . In the simulations, all copies are

able to transpose (which does not necessarily mean that they

are all capable of producing the transposition machinery).

To use this setting in a phylogenetic context, two assump-

tions are necessary. First, in the original setting of Charles-

worth B and Charlesworth D (1983), time steps were

standing for generations. At an evolutionary scale, the trans-

position dynamics has to be assimilated to a continuous pro-

cess, u and v becoming transposition and deletion rates per

time unit. Second, the phylogenetic inference is generally

drawn from a single sequenced genome, and the recent

population process is ignored. The ancestral lineage of the

sequenced individual is thus assumed to be representative of

the whole species (i.e., recent transposition events could be

different in another lineage, but their dynamics should be

similar).

Birth–Death Models

A birth–death model describes a stochastic branching process

in which branches can split or disappear in the course of time.

In traditional phylogenetic analyses, branch splitting events

correspond to speciations, and dead branches correspond to

species extinctions. Here, we propose to use the same frame-

work, with a different interpretation: splitting branches are

duplication (transposition) events (followed by the fixation of

the duplicated copy), and extinct branches feature deletion

events (followed by the fixation of the deleted allele).

The simplest model involves only birth events with a con-

stant rate (using the notation presented in the previous sec-

tion, ut ¼ u and v ¼ 0), which describes a “pure birth” model

or Yule process (after Yule 1924). Branch extinctions (v > 0)

can be included in a more complex branching process as in

Kendall (1948), but application to statistical inference must

account for the fact that a splitting event can be noticed in

a phylogeny only if both lineages maintain up to the present

time. According to Nee et al. (1994), the waiting time t before

the next observable splitting event is described by the follow-

ing equation:

Probðt j u, vÞ ¼ Psplit � Pobs, ð2Þ

where Psplit is the probability for a splitting event, which fol-

lows an exponential distribution, and Pobs the probability of

observing this splitting event from survivor branches. The

model is usually reparameterized with r ¼ u� v, the net

diversification rate, and a ¼ v=u, the extinction fraction

(Rabosky 2006). The expression of these probabilities, as

well as the corresponding likelihood function, can be found

in, for example, Nee et al. (1994). Maximizing this likelihood

function numerically allows to get estimates for r and a (and

thus for u and v).
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Several extensions or alternatives to this model have been

developed to account for smooth or rapid changes in diversi-

fication and/or extinction rates (Rabosky 2006; Stadler 2011).

Here, we explored four models, available as contributed pack-

ages in R (version 2.14) (R Development Core Team 2011): the

“pure birth” model, implemented in the function yule() from

the package “ape” version 3.0–4 (Paradis et al. 2004), the

“birth–death” model from the function bd(), package “laser”

version 2.3 (Rabosky 2006), the exponential change in birth

rate (ut ¼ u0e�kt , k being the rate of the change) from a

modified version of function fitSPVAR() in “laser,” and the

diversity-dependence model from function dd_ML() in pack-

age “DDD” version 1.2 (Etienne and Haegeman 2012), in

which u ¼ u0 � ðu0 � vÞn=K (K being the diversity depend-

ence parameter). Changes in fitSPVAR() include 1) the possi-

bility to fit negative k values (increase in diversification rate

with time) and 2) setting the extinction rate to 0. The corres-

ponding code and scripts are available on demand. Support

intervals of parameters were estimated from 100 boot-

strapped trees (95% central values of the bootstrapped par-

ameter distribution).

Tree Imbalance

Another meaningful piece of information that can be ex-

tracted from TE phylogenetic analysis is related to the balance

(or imbalance) of the trees. In a perfectly balanced tree, all

branches duplicate once, while the most unbalanced tree cor-

responds to the situation where all duplications happen in the

same branch. In a TE-related context, balanced trees arise

when all copies can duplicate at the same rate, while unba-

lanced trees correspond to “master copy” models when only

one copy in the genome is able to transpose. Being able to

quantify the balance of TE phylogenetic trees may thus lead to

meaningful insights on transposition history.

The definition of mathematical and statistical tools to esti-

mate phylogenetic tree imbalance has generated a significant

amount of literature that cannot be explored here (see e.g.,

Kirkpatrick and Slatkin 1993; Aldous 2001; Blum and François

2006). We focused on a classical imbalance index, the b index.

Index estimation by maximum likelihood (ML) and statistical

analyses were performed with the package “apTreeshape”

version 1.4–5 (Bortolussi et al. 2006) for R.

Interestingly, there is no general definition of balanced

random trees. The literature reports two traditional models

of random trees, the “Proportional to Distinguishable

Arrangements” (PDA) model (assuming a uniform probability

for all tree shapes), and the “Equal Rate Markov” (ERM)

model, which corresponds to trees generated by a Yule pro-

cess. Trees generated under the ERM model have a b index of

0, whereas PDA trees are characterized by b ¼ �1:5. The b
index can thus be interpreted along the following scale: imbal-

anced trees (�2 < b < �1:5), random trees (�1:5 � b � 0),

and trees which are too perfectly balanced to be random

(0 < b <1).

Simulations

Stochastic simulations were run to provide reference dynamics

for interpretation. Simulations consider a unique genome

reproducing clonally (the “average genome” of the species),

and for simplicity, time steps are discrete. TE copies are fol-

lowed individually and their pedigree is stored by the simula-

tion program. The deletion rate v per time step is constant,

and the transposition rate ut can vary with time arbitrarily. The

system evolves according to equation (1): every time step,

x1 � Pðnt � utÞ new elements are created (all elements

having equal probabilities of being the master copy; PðxÞ

stands for the Poisson distribution of mean x), and

x2 � Bðnt , vÞ are randomly removed (BðN, pÞ stands for the

Binomial distribution). Distance matrices and phylogenetic

trees were reconstructed from the exact evolutionary relation-

ships between elements (no further stochasticity is introduced

to mimic the accumulation of mutations). Simulations were

run for 30 time steps with four sets of parameters: 1)

u ¼ 0:109 and v ¼ 0, 2) u ¼ 0:159 and v ¼ 0:05, 3)

u0 ¼ 0:1! u30 ¼ 0:219 and v ¼ 0:05, and 4)

u0 ¼ 0:219! u30 ¼ 0:1 and v ¼ 0:05 (the ! symbol

representing a linear change with time). These parameters

were chosen so that the expected number of copies after

30 time steps should be 20. Simulations started with a

unique copy, and 1,000 runs in which the final copy

number was between 15 and 25 were kept for each para-

meter set.

The Fot Elements in Fusarium

We used real genomic data from a recent work by Dufresne

et al. (2011) to illustrate this theoretical framework. Fot TEs are

Tc1-mariner-pogo elements found in filamentous fungi. Four

subfamilies extracted from the genome sequence of Fusarium

oxysporum were selected for their average number of inde-

pendent copies (a few dozen): Fot2 (28 copies), Fot3

(46 copies), Fot5 (145 copies), and Fot6 (38 copies). Duplicates

with homologous flanking regions, corresponding to transpo-

sition-unrelated mechanisms (e.g., segmental duplication),

have been removed from the data set (only one copy is ran-

domly kept for each set of duplicates). Further details are

provided in Dufresne et al. (2011).

The phylogenetic analysis was performed in R (version 2.14)

(R Development Core Team 2011), using packages ape

(Paradis et al. 2004) version 3.0–4 and phangorn (Schliep

2011) version 1.6–3. An ML phylogeny was derived for each

Fot family, using a GTR + G (Gamma) model of substitutions.

Trees were rooted with elements from other families. Ultra-

metric trees were calculated from the ML trees (without the

outgroup) using the “pathd8” method (Britton et al. 2007),

which happened to give visually more convincing results than

Evolutionary History of TEs GBE
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penalized likelihood (Sanderson 2002), or mean path length

(Britton et al. 2002), perhaps because of the uneveness of the

evolutionary rates across branches. Reproducing the analysis

with mean path length ultrametric trees provide very similar

results (not shown).

Results

Interpretation of Phylogenetic Patterns

In this article, we propose to quantify transposition activity

over time from the distribution of transposition events. The

steps required for such an analysis consist in 1) reconstructing

the phylogeny of TE sequences from a clean and exhaustive

sequence data set of the TE family in the studied genome,

from which duplicates (copies gained by other mechanisms

than transposition, e.g., polyploidization or segmental dupli-

cation) are removed, 2) estimating the age of the visible trans-

position events, corresponding to the nodes in the tree, and

3) inferring the past transposition dynamics from the branch-

ing pattern.

Simulation results illustrate how the divergence between

homologous TE sequences reflects meaningful information

about the transposition dynamics in this TE family. Transposi-

tion is an exponential process: if the transposition rate per

copy is constant (fig. 1A), the number of new transpositions

increases with the copy number (fig. 1B). As a result, a con-

stant transposition rate mainly generates recent copies. One of

the most convenient visualization tool is the “lineage through

time” (LTT) plot, displaying the increase in the number of

branches in the tree with time (figs. 1C and 2). An exponential

increase of the number of lineages with time (linear trend on a

logarithmic LTT plot) reflects a “pure birth” process with a

constant transposition rate and no deletion. Departure from

this linear pattern denotes deletions or changes in the trans-

position rate and can be used as a basis for parameter

estimation.

Application to the Dynamics of Fot Elements in
F. oxysporum

Four subfamilies of Fot elements, numbered Fot2, Fot3, Fot5,

and Fot6, were retrieved from the genome of the filamentous

fungus F. oxysporum, as described in Dufresne et al. (2011).

All of these TE families are ancient families, elements display-

ing genetic distances up to 35%. In all four subfamilies, recent

transposition events (identical or nearly identical sequences

inserted in nonhomologous positions) were detected, sug-

gesting that they are all still active. ML phylogenetic trees

suggest important changes in the molecular evolutionary

rates in some branches, most of them corresponding to

repeat-induced-point mutations, a fungus-specific (but not

very active in F. oxysporum) defense mechanism against selfish

DNA (Cambareri et al. 1989; Galagan and Selker 2004). This

may lead to poor temporal estimates for some nodes, but

most copies remain unaffected, making further analysis on

ultrametric trees (fig. 3) meaningful.

Branch lengths estimated by ML are corrected for multiple

mutations, and are thus expected to be proportional to the

evolutionary distance, assuming some approximative molecu-

lar clock. As all sequenced elements are present in the gen-

omes of modern species, all the tips should be aligned when

the tree scales with time: the corresponding ultrametric trees

were obtained by the “pathd8” method, after removal of the

outgroups (see Materials and Methods). We first applied a
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FIG. 1.—Single simulation of the temporal dynamics of a TE family

with a constant transposition rate (u ¼ 0:1 per copy and per time step),

and no deletion (“pure birth” model). X axes are oriented from past to

present in reconstructed dynamics (A, B, C) (x ¼ 0 corresponds to the start

of the transposition history, each bar stands for four successive genera-

tions). With a constant transposition rate per copy (dashed line on A), the

number of copies increases exponentially. This increase is reflected by the

log-linear pattern of the LTT plot (C), which can be used as a basis for

reconstructing the dynamics of the TE family.
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“pure birth” model (constant transposition rate and no dele-

tion) (table 1). The estimated transposition rates across the TE

families are quite similar, between 0.09 and 0.16 per percen-

tage of divergence. Nevertheless, the dynamics of these four

families are not identical, since the birth–death model

(allowing both transposition and deletion) could detect a non-

null deletion rate for Fot5, whereas no significant deletions

could be identified for the other families.

The resulting LTT (or more exactly, lineage-through-diver-

gence) plots (fig. 4) suggest important departure from simple

models. The curves for all Fot families are above the “pure

birth” prediction, which suggests that the past rate of dupli-

cation per copy was higher than the current one. To check for

changes in the transposition rate, we fit models in which

transposition rates vary exponentially with time. Figure 5 illus-

trates the resulting dynamics, as well as the 95% support

intervals calculated from bootstrapped phylogenies. At least

two TE families show clear changes in their transposition

dynamics: in Fot2 and Fot6, the transposition rate tends to

decrease with time. The slightly decreasing trends for Fot3 and

Fot5 are not supported statistically.

Finally, we exploited an existing model for diversity-depen-

dent speciation to test the hypothesis of transposition regula-

tion. Transposition regulation assumes that the transposition

rate decreases with the number of copies, which is necessary

to avoid an exponential invasion of TEs in genomes. The

model developed by Etienne et al. (2012) assumes that the

“ecosystem” (in our case, the genome) has a carrying capacity

K, so that the transposition rate varies with 1� n=K, where n

is the number of TE copies of the family under consideration.

For all four TE families, the diversity dependent model signifi-

cantly outperforms the birth–death model, with Akaike

Information Criterion (AIC) differences ranging from 15

units (Fot2) to 87 units (Fot5). However, estimated carrying

capacities (the number above which transposition would stop

completely) were well above the observed number of copies

(Fot2, Fot3, Fot5, and Fot6 occupy only 8%, 5%, 13%, and

4% of their theoretical niche, respectively). Although statisti-

cally significant, diversity-dependence remains moderate, and

affects the transposition rate only marginally (the current

transposition rate for all families is more than 85% of the

estimated initial transposition rate when one copy only was

present in the genome). This result supports the idea that

transposition regulation by the number of copies is not

strong enough to allow for a stable transposition–deletion

equilibrium, although interpretation is obscured by the pre-

sence in the genome of TE copies caught in segmental dupli-

cations, which were not included in the phylogenetic analysis,

but which could be involved in regulation.

Phylogenetic Tree Balance

The b index for tree imbalance was computed as detailed in

the Materials and Methods section. ML estimates of b, as well

as 95% support intervals calculated from 500 bootstraps,

were as follows: b̂Fot2 ¼ �1:02 ð�1:75, 4:04Þ, b̂Fot3 ¼

�1:01 ð�1:61, 0:35Þ, b̂Fot5 ¼ �1:03 ð�1:30, � 0:70Þ,

and b̂Fot6 ¼ �1:16 ð�1:78, � 0:20Þ. The estimates of tree

imbalance are thus very similar across the four TE families,

estimates being more precise in larger trees. All b estimates

are consistent with random trees. Tree imbalance is intermedi-

ate between the two extreme models of random trees

(the Yule process or ERM model, b ¼ 0, and the uniform

PDA model, b ¼ �1:5). Fot5 and Fot6 trees exclude a Yule

process as a generating mechanism (b ¼ 0 being outside of

the support interval), suggesting that the actual transposition

rate differs across clades. However, the “master copy”
hypothesis, which generates highly imbalanced trees

(b <�1:5), can be statistically rejected for most families.

Alternative indexes (Colless and Sackin indexes, as implemen-

ted in the package “apTreeshape,” Bortolussi et al. 2006)

provided identical results (tree imbalance intermediate

between ERM and PDA models, not shown).

Discussion

Transposition Dynamics

With this article, our intention is to demonstrate how the

phylogenetic pattern of repeated genomic sequences could

be analyzed in terms of temporal dynamics. We showed that

different transposition dynamics lead to different distributions

of transposition events, and that it was possible to derive

models to reconstruct transposition history from available
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how the branching pattern from phylogenetic trees can be used to esti-

mate the transposition history.
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sequence data, based on a quantitative statistical framework

used for species phylogenies.

We believe that this strategy represents a significant

improvement compared with the state of the art in genomics.

The literature reports several ways to interpret phylogenetic

and divergence data in similar contexts (Ray et al. 2008; Zerjal

et al. 2009; Cordaux et al. 2010; Han et al. 2010; Dufresne

et al. 2011). However, most of these methods are not devoid

of limitations, biases, or caveats. Frequently, the age of a TE

family is calculated as the average distance between copies

and a consensus sequence (supposedly close to the ancestral

sequence). Yet, this procedure does not allow the exploration

of within-family dynamics. This issue is sometimes overcome

by assuming several successive transposition bursts (Pace and

Feschotte 2007), which is restricted to TE families with many

copies. Visual comparison of tree topologies is qualitative

only, and information about absolute branch lengths is disre-

garded. Alternatively, the distribution of pairwise distances

between copies may provide quantitative results, but ancient

transposition events (deep and bushy nodes in the tree) are

counted several times, which severely hinders data interpreta-

tion. These approaches are difficult to apply to other species or

TE families with smaller copy number or different transposition

activity, and are probably not suitable for systematic explora-

tion of available data. An exception lies in the ingenious

method proposed by SanMiguel et al. (1998), which consists

in estimating the insertion date of retro-elements based on the

similarity between their two long-terminal repeats (LTRs),

strictly identical after transposition. Unfortunately, this strat-

egy can be applied only to complete LTR retro-elements, and

remains associated with large sampling errors due to the small

size of LTR sequences.

Model Limits

The dynamics of TE sequences in genomes remain quite a

complex process, and a simple model necessarily relies on

approximations. In particular, quantifying the statistical error
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FIG. 3.—ML reconstructed phylogenies for the four Fot subfamilies. Trees were rooted with the other subfamilies. Ultrametric trees were obtained

through the “pathd8” algorithm (see “Materials and Methods”). Asterisks (*) denote nodes that are supported by bootstrap scores �50.
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in phylogenetic analysis is known to be a complex issue

(Felsenstein 1988; Wróbel 2008; Kumar et al. 2012), because

errors are both quantitative (branch lengths) and qualitative

(tree topology, selection of the evolutionary model). Here, we

estimated errors using the same resampling strategy as for

phylogeny: confidence intervals of, for example, transposition

rates were derived from the distribution of estimated rates

obtained by running the model on a large number of boot-

strapped trees. This time-consuming resampling strategy has

the advantage to be applicable to any phylogenetic recon-

struction method.

However, estimating the sampling noise associated to para-

meter estimates does not inform about potential biases.

Estimates of transposition dynamics are reliable only if the

models on which they are based are good approximations

of the real processes, including sequence alignment, phyloge-

netic reconstruction, tree datation, and transposition model.

A critical step here is the estimation of an ultrametric tree

(in which all tips are aligned and distances scale with time)

from an ML tree with different branch lengths. The evolution-

ary rate of TE sequences is not very well understood, and is

known to vary dramatically between TE clades, due to, for

example, sequence inactivation (equivalent to pseudogeni-

zation), or more specifically in our example, repeat-induced

point mutations, a fungus-specific regulation mechanism

(Cambareri et al. 1989; Galagan and Selker 2004). Tree topol-

ogy can also be affected by various biases; for instance, simu-

lation studies show that poor data tend to generate

imbalanced trees (see Mooers and Heard 1997 for review).

The estimated branching dynamics (branch length and topol-

ogy) thus rely on the robustness of a series of biological

assumptions; improving the phylogenetic reconstruction

(e.g., by implementing TE-specific features) may thus improve

significantly the reliability of the inferred transposition history.

Table 1

Estimates of the Diversification Rate r ¼ u� v in the “Pure Birth”
Model and in the “Birth–Death” Model (for Which the Extinction

Fraction a ¼ v=u Is Also Provided)

Pure Birth Birth–Death

Fot 2

r 0.155 (0.145, 0.168) 0.161 (0.144, 0.175)

a 0.000 (0.000, 0.000)

u 0.155 (0.145, 0.168) 0.161 (0.144, 0.175)

v 0.000 (0.000, 0.000)

Fot 3

r 0.118 (0.111, 0.124) 0.121 (0.091, 0.126)

a 0.000 (0.000, 0.004)

u 0.118 (0.111, 0.124) 0.121 (0.112, 0.148)

v 0.000 (0.000, 0.051)

Fot 5

r 0.118 (0.111, 0.125) 0.092 (0.067, 0.094)

a 0.004 (0.004, 0.006)

u 0.118 (0.111, 0.125) 0.157 (0.155, 0.197)

v 0.065 (0.063, 0.126)

Fot 6

r 0.122 (0.114, 0.130) 0.126 (0.109, 0.134)

a 0.000 (0.000, 0.000)

u 0.122 (0.114, 0.130) 0.126 (0.109, 0.134)

v 0.000 (0.000, 0.000)

NOTE.—95% support intervals, calculated from 100 bootstrapped trees, are
indicated between parentheses. Estimates of u and v calculated from r and a
are also provided. r, u, and v are expressed in “events per percentage of
divergence,” whereas a is unitless.
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FIG. 4.—Lineage-through-divergence plots for the four Fot subfamilies. The dashed line illustrates the expectation for a “pure birth” model (constant

transposition, no deletions).
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Although powerful and widely used in phylogenetics,

branching models should be interpreted carefully. One of

the most problematic issues is the lack of power to compute

the extinction rate (v in our case) compared with the net

diversification rate (r ¼ u� v), up to the point that some

authors consider that extinction rates should not be estimated

at all from phylogenies (Rabosky 2010). In our examples, a

significant (but relatively small) deletion rate could be detected

for one out of four Fot families. The estimated value of v is

realistic, but alternative interpretation could be proposed,

such as a recent increase in the transposition rate. More

robust estimates of transposition rates could be obtained

from more extensive data, for example, by comparing ortho-

logous insertion sites between close species.

Interpreting variation of the transposition rate may also

depend on the detailed nature of TEs. Here, we present an

example based on cut-and-paste, class II TEs. In Fot elements,

tree topologies appear to be roughly balanced, and most

copies are able to transpose and to generate new branches

in the tree, supporting (at least partially) the exponential Yule

model. This pattern appears to be widespread for TE phylo-

genies (Cordaux et al. 2004). However, other TEs (such as class

I elements) are known to generate a high proportion of “dead

on arrival” copies after transposition (i.e., most transposition

events are asymmetric and generate a nonfunctional copy),

resulting in an extremely imbalanced tree. Therefore, in the

latter case, known as the “master copy” model (Clough et al.

1996; Brookfield and Johnson 2006; Johnson and Brookfield

2006), the evolutionary dynamics should not be necessarily

interpreted as a drop in transposition activity as long as the

transposition rate per genome remains constant, even if the

transposition rate per copy mechanically decreases with time.

Both tree topology and branching dynamics, although almost

independent statistically, thus provide complementary infor-

mation to reconstruct the evolutionary history of repeated

sequences.

Perspectives

A natural (yet, not trivial) evolution of the model should

account for the activity of TE sequences. In general, genome

scans reveal at least three functional categories: active copies

(canonical elements), relic copies (equivalent to pseudogenes),

and nonautonomous copies (unable to code for the transposi-

tion machinery, but mobile when trans-mobilized). Simulation

models have shown that the relative proportion of each kind

of copies may affect significantly the dynamics of the whole TE

family (Le Rouzic et al. 2007; Boutin et al. 2012). Ideally, such a

TE-specific evolutionary model should be taken into account in

the phylogenetic reconstruction, including, for example, dif-

ferent mutation rates depending on the status of the copy, as

well as the location of pseudogenization events in the tree

based on the observed status of the sequences and the tree

topology. Yet, implementing such a model may require deep

changes in the phylogenetic algorithm.

Another issue with the most recent duplication events is

that the branching model ignores recent population genetics

mechanisms (such as natural selection against slightly deleter-

ious TE copies), and that the phylogeny reconstructed from a

single individual genome might provide a biased view of the

recent transposition history. There is little doubt that, along

with progress in sequencing, the genome of several individuals

per species will be available soon as it is already the case with

model species, which is likely to help fixing this issue (provided

a suitable theoretical framework).

In any case, the nature of the genomic data makes it pos-

sible to obtain independent estimates of parameters of inter-

est, which could validate phylogenetic models, or be used as

fixed parameters to derive more complex models. For

instance, deletion rates can be independently estimated by

identifying and dating deletion events from TEs inserted in

duplicated parts of the genome, which were not included in

the phylogeny. The robustness of the procedure could also be

improved by dating some of the tree nodes, by comparing

insertions shared by close species, and inferring transposition

timing based on estimates of speciation events from fossil data

or phylogenies of conserved genes.

Reconstructing the activity dynamics of TEs from genome

sequences thus requires to combine tools from bioinformatics,

phylogenetic analysis, and population genetics. Here, we pro-

vide a methodological framework to estimate and interpret

the pattern of transposition activity, using the statistical frame-

work developed to infer speciation and extinction dynamics in

species phylogenies. This framework can be complexified, and

makes it possible to derive more efficient procedures and

more realistic models. Given the rapid accumulation of new

genome sequences, the development of a new set of tools
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FIG. 5.—Illustration of the estimated ML exponential dynamics (dots),

and the corresponding 95% support intervals from 100 bootstrapped

trees.
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devoted to the study of repeated sequences appears as one of

the keys for improving the efficiency of the analysis of such

massive, costly, and informative data.
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