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The binarization of consensus partition matrices (Bi-CoPaM) method has,

among its unique features, the ability to perform ensemble clustering over

the same set of genes from multiple microarray datasets by using various clus-

tering methods in order to generate tunable tight clusters. Therefore, we have

used the Bi-CoPaM method to the most synchronized 500 cell-cycle-regulated

yeast genes from different microarray datasets to produce four tight, specific

and exclusive clusters of co-expressed genes. We found 19 genes formed the

tightest of the four clusters and this included the gene CMR1/YDL156W,

which was an uncharacterized gene at the time of our investigations. Two

very recent proteomic and biochemical studies have independently revealed

many facets of CMR1 protein, although the precise functions of the protein

remain to be elucidated. Our computational results complement these biologi-

cal results and add more evidence to their recent findings of CMR1 as

potentially participating in many of the DNA-metabolism processes such as

replication, repair and transcription. Interestingly, our results demonstrate the

close co-expressions of CMR1 and the replication protein A (RPA), the cohesion

complex and the DNA polymerases a, d and 1, as well as suggest functional

relationships between CMR1 and the respective proteins. In addition, the analy-

sis provides further substantial evidence that the expression of the CMR1 gene

could be regulated by the MBF complex. In summary, the application of a novel

analytic technique in large biological datasets has provided supporting evi-

dence for a gene of previously unknown function, further hypotheses to test,

and a more general demonstration of the value of sophisticated methods to

explore new large datasets now so readily generated in biological experiments.
1. Introduction
The rate of data generation in biology has been much faster than that of devel-

opments in data analysis and integration [1]. The volume of the generated data

have reached a level that cannot be readily interpreted without some form(s) of

preprocessing by computational methods to produce comprehensible sum-

maries or to highlight small useful subsets of data in order to formulate new

hypotheses to target future research. Although the complete exploration and

interpretation of this large amount of raw data has become an increasingly chal-

lenging issue, raw data generation has not stopped; indeed, the rate of

accumulation of data is accelerating.

Gene clustering is one of many classes of in silico computational methods

that have been applied to high-throughput datasets for their analysis. Gene

clustering based on the genetic expression profiles measured by microarrays

aims to group the given set of genes in a set of clusters such that those
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genes that belong to one cluster are relatively more co-

expressed with each other, while not so co-expressed with

the genes that are assigned to the other clusters. Many studies

achieved this by using different clustering methods such as

k-means [2], hierarchical clustering (HC) [3], self-organizing

maps (SOMs) [4], self-organizing oscillator networks

(SOONs) [5] and others.

Because different clustering methods generate different

clustering results, ensemble clustering methods have been

proposed to scrutinize the results of many individual cluster-

ing experiments over the same set of genes in order to

produce one consensus result. Some of these ensemble clus-

tering methods are relabelling and voting [6], co-association

matrix-based methods [7], hypergraph-based methods [8]

and others.

A new paradigm of clustering has been proposed recently

through a new ensemble clustering method called binarization
of consensus partition matrix (Bi-CoPaM) that relaxes conven-

tional clustering constraints and allows any gene to be

assigned exclusively to one cluster, assigned simultaneously

to multiple clusters or unassigned from all the clusters

[9,10]. This method can be tuned to generate clusters with

different levels of tightness ranging from very tight clusters,

while leaving most of the genes unassigned, to very wide

and overlapping clusters passing through conventional

complementary clusters. The aim of this new paradigm of

clustering is to be able not only to restructure the raw biologi-

cal data into a set of well-defined clusters, but also, in the case

of generating tighter clusters, to shrink the size of these clus-

ters to more comprehensible levels appropriate to the specific

requirements of research.

One of the genes that have been extensively considered in

our Bi-CoPaM analysis is the newly characterized yeast gene

CMR1/YDL156W. Our experiment had begun before the

availability of the newly revealed information about this

gene in three recent studies that have investigated this gene

[11–13]. Choi et al. [11] used biochemical methods to find

that the CMR1 gene’s product binds the DNA and may be

involved in DNA-damage responses. Gilmore et al. [12]

used integrative bioinformatics, quantitative proteomics and

biochemical approaches to conclude that CMR1 is a

member of the core histone network and is highly associated

with the four histones as well as with many of the other

proteins within the network. Sufficient evidence was also

found to associate CMR1 with many cellular processes such

as chromatin remodelling, transcription and DNA repair/

replication [12]. Even more recently, Tkach et al. [13] have

thoroughly investigated the genetic and physical interactions

between CMR1 and DNA repair genes that are localized in

nuclear foci to characterize a previously unknown DNA

response pathway.

In this study, we aim to highlight the most tightly co-

expressed cell-cycle genes by applying the Bi-CoPaM

method over a set of cell-cycle genes from two relatively

recent yeast microarray datasets that have a high sampling

rate [14]. Moreover, we investigate the tightest of the gener-

ated clusters while putting more focus on the CMR1 gene

and its relation with the rest of the genes in the clusters.

We also aim to compare our in silico gene-expression-based

clusters with other CMR1-containing subsets of genes

recently obtained by biochemical approaches in order to gen-

erate testable hypotheses for the CMR1 gene and other genes

of previously unknown or poorly known function.
2. Datasets and experimental procedures
We apply the novel ensemble clustering method Bi-CoPaM
[9,10] over the 500 most periodic cell-cycle-regulated genes in

budding yeast from two different microarray datasets. The

aim was to exploit the benefits provided by the new paradigm

of clustering proposed through the Bi-CoPaM method to derive

four tight clusters of highly co-expressed genes to generate

hypotheses for further functional or genomic research.

The considered datasets are described in §2.1, a descrip-

tion of the Bi-CoPaM method is presented in §2.2 and the

set-up of the Bi-CoPaM experiment over the datasets is

described in §2.3.

2.1. Datasets
Two microarray datasets were generated for the yeast

Saccharomyces cerevisiae genome using the a-30 and a-38 syn-

chronization techniques, respectively [14]. Each experiment

captures the profiles for the genes over 2 h that cover two

complete cell cycles. The number of time samples in each is

25 with 5 min intervals between consecutive samples.

These two datasets as well as three older datasets synchro-

nized by alpha [15], cdc-15 [15] and cdc-28 [16] were combined

in Pramila et al. [14] and used to order the genes according to

their periodicity in the cell cycle. The average time of peak

expression for the 1000 most periodic genes was calculated

in that same study as a percentage of the time progress in

the cell cycle, i.e. peaking at 0 per cent means peaking at the

M/G1 transition point, peaking at 50 per cent means peaking

in the middle of the cell cycle and peaking at 99 per cent means

peaking at the very end of the M phase.

The subset of genes that we consider in this study includes

the most periodic 500 genes of these 1000 genes. We consider

their profiles from both the a-30 and a-38 microarray datasets

provided in Pramila et al. [14]. Electronic supplementary

material, S1 lists the names of these 500 genes, their peaking

times as percentages of the cell cycle that has been provided

by Pramila et al. [14], and their normalized log-ratio expression

profiles from both datasets a-30 and a-38.

2.2. Binarization of consensus partition matrix
Clustering methods have been increasingly applied over

microarray datasets in gene discovery research. However,

most of the traditional clustering methods apply the con-

straint that each gene must be exclusively included in one

and only one cluster in the results. In many gene studies, it

would be useful to develop different formats of the clustering

results by obtaining either tight clusters with a few genes

while leaving many genes unassigned to any cluster, or

obtaining wide clusters that overlap or allowing single

genes to be simultaneously included in multiple clusters.

The Bi-CoPaM method described in Abu-Jamous et al. [9]

relaxes conventional clustering constraints by allowing

these forms of clusters to be obtained.

The Bi-CoPaM method has four main steps illustrated in

figure 1 and described in the following sections.

2.2.1. Partitions generation
Different clustering results are obtained when different clus-

tering methods are applied over the same set of genes

either by using the same method with different parameters

or the same stochastic method and parameters over different
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runs. Moreover, if the same method and parameters are used

to cluster the same set of genes from different microarray

datasets, then different results are obtained [9,17].

The first step of Bi-CoPaM is to produce R clustering

results (partitions) by adopting R different clustering set-

ups that vary in the adopted method, parameters and/or

microarray dataset. These R partitions are represented by

the partition matrices fU1, . . . ,URg, where each partition

matrix has K rows representing the K clusters and M columns

representing the M genes. The element ur
i;j represents the

membership of the jth gene in the ith cluster based on the

rth partition.

2.2.2. Relabelling
Because clustering is unsupervised, the ith cluster of one of

the generated partitions does not necessarily correspond to

the ith cluster of any other partition. The relabelling step

aims to rearrange the clusters of the generated partitions,

i.e. the rows of the partition matrices, such that they are

aligned. After relabelling, the ith cluster of any partition

will correspond to the ith cluster of each one of the other par-

titions. The problem of rearranging the rows of a partition

matrix U to be aligned with a reference partition matrix

U ref is tackled by a min–max approach as follows [9,10]:

(1) A dissimilarity matrix SK�K is constructed such that its

element si,j represents the dissimilarity between the ith
cluster (row) of the partition U and the jth cluster (row)

of the reference partition U ref.

(2) The minimum of each column in S is calculated.

(3) The maximum of these minima is located, then the clus-

ters from U and U ref that represent this maximum of

minima are matched.

(4) The row and the column in which that maximum of

minima has been found are removed from S.

(5) Repeat the steps 2 to 4 until all clusters from both

partitions are matched and the matrix S is empty.

The relabelled version of the partition matrix U is therefore

denoted as Û, and the relabelling function is represented by

Û ¼ RelabelðU;UrefÞ.
2.2.3. CoPaM generation
The relabelled partitions are scrutinized to generate a single

fuzzy CoPaM that assigns each gene a different fuzzy mem-

bership value in each of the clusters based on the times in

which this gene was included in the corresponding cluster

in different individual clustering results. The membership

values for any gene follow the constraints of fuzzy logic in

that they can have any value between 0 (does not belong at

all) to 1 (definitely belongs). The summation of the mem-

bership values of any gene in all of the clusters must be

unity [9,18].

To generate the CoPaM, we define an intermediate

CoPaM partition matrix U int that initially represents the

first partition U1. The rest of the R partitions are then fused

within this intermediate partition matrix one by one. In

each step, the next partition matrix to be fused into U int is

relabelled by considering this U int as its relabelling reference.

After all of the R partitions are fused, the final U int represents

the CoPaM U*. Let the intermediate partition matrix after

fusing k partitions be U int(k), then the mathematical formu-

lation of this algorithm is

(1) U int(1) ¼ U1.

(2) For k ¼ 2 to R
(a) Û

k ¼ RelabelðUk;Uintðk�1ÞÞ
(b) UintðkÞ ¼ 1

k Û
k þ k�1

k Uintðk�1Þ

(3) U* ¼ Uint(R).

This final CoPaM U* is then passed to the final step,

which is binarization.

2.2.4. Binarization
Conventionally, the CoPaM is binarized; so that each gene

is exclusively assigned to a single cluster and unassigned

from all of the other clusters. Instead, Bi-CoPaM has

the novelty in the binarization step that allows any gene to

be either assigned exclusively to one cluster, or assigned

simultaneously to multiple clusters, or unassigned from all

of the clusters.

Six tunable binarization techniques have been proposed

in the Bi-CoPaM method that can be used to generate tunable



Table 1. Number of genes included in each of the four clusters at different
d values of the DTB technique. The shaded cases are the ones that are
selected to be the clusters’ cores.

DTB d value C1 C2 C3 C4

0 (MVB) 216 112 90 82

0.1 207 91 85 40

0.2 201 82 83 15

0.3 199 78 81 5

0.4 194 78 76 1

0.5 193 70 60 0

0.6 190 66 21 0

0.7 185 62 2 0

0.8 183 48 1 0

0.9 172 12 0 0

0.95 172 11 0 0

0.98 148 1 0 0

0.99 117 0 0 0

1.0 (IB) 19 0 0 0
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complementary, tight and wide clusters. Because we are

mainly interested in tight clusters’ cores rather than wide

ones, in this paper, we would mainly adopt the difference
threshold binarization (DTB) technique as well as the maximum
value binarization (MVB) and intersection binarization (IB)

techniques that are in fact special cases of the DTB. We

describe these three techniques below and refer the reader

to Abu-Jamous et al. [9] for the details of the other

binarization techniques.

DTB assigns a gene to a cluster if the membership of this

gene in that cluster is higher than its membership in all of the

other clusters and is far from the closest competitor’s mem-

bership with no less than a predefined parameter (d). In

other words, if a gene is not assigned to one cluster signifi-

cantly more often than all of the others, it is considered a

doubtful gene that has no certain cluster; thus, it would not

be assigned to any of the clusters by this binarization tech-

nique. The higher the value of d is, the tighter the clusters

are and the larger the number of unassigned genes is. DTB

is mathematically expressed as

b�i;j ¼
1; u�i;j � u�k;j � d; 1 � k � K; k = i;

0; otherwise,

�

where u�i;j and b�i;j; respectively, represent the consensus fuzzy

and the consensus binary membership values for the jth gene

in the ith cluster.

MVB assigns a gene to the cluster in which it has the maxi-

mum membership value whatever the difference from the

competitor cluster is. This is equivalent to DTB with d ¼ 0

and does not leave any gene without being assigned to some

cluster. IB assigns a gene to a cluster if all the individual clus-

tering experiments assigned this gene to it consensually; it

leaves the gene otherwise unassigned. This is equivalent to

DTB with d ¼ 1.0 and generates the tightest possible clusters.

MVB is mathematically expressed as

b�i;j ¼
1; u�i;j ¼ max

1�k�K
u�k;j;

0; otherwise,

(

and IB is mathematically expressed as

b�i;j ¼
1; u�i;j ¼ 1
0; otherwise.

�

2.3. Experimental set-up
The profiles of the selected 500 genes from both a-30 and

a-38 microarray datasets are clustered into four clusters

by using the clustering methods: k-means [2], SOMs [4,19],

HC [3] and SOONs [5,20]. Both bubble and Gaussian neigh-

bourhood types are used in SOMs; complete, average and

Ward’s linkage techniques are used in HC; and varying

values of three internal parameters are used in SOON.

More about these clustering methods can be found in the

relevant references.

The results of these individual clustering experiments are

scrutinized to generate one fuzzy CoPaM that was then binar-

ized by the DTB technique while varying the parameter d

from 0 to 1 in order to get varying levels of tightness for

the clusters.

To justify our choice of clustering the 500 genes into four

clusters, we have provided more detailed analysis in the

electronic supplementary material, S2.
3. Results
3.1. Bi-CoPaM results
The numbers of genes (out of a possible 500) included in each

of the four clusters C1, C2, C3 and C4 after applying the DTB

technique with d values from 0 to 1.0 are listed in table 1. The

complete lists of genes included in each of the clusters at all of

the considered tightness levels are included in the electronic

supplementary material, S1. Note that DTB with d ¼ 0 is

equivalent to MVB, and DTB with d ¼ 1.0 is equivalent to IB.

It can be seen that with MVB, the total number of genes

assigned to the four clusters is 500 which indicates that comp-

lementary clusters are generated where each gene is exclusively

assigned to one and only one cluster. While increasing the

value of d to tighten the clusters, fewer genes are included in

the clusters and more genes are left unassigned.

It can be seen that the cluster C1 is the tightest cluster as it

is the only cluster to survive without being empty until IB.

The rest of the clusters ordered by decreasing levels of tight-

ness are C2, C3 and C4. Note that by moving from the

absolute tightest case of C1 at IB with 19 genes to the case

of DTB with d ¼ 0.95, which is indeed an extremely tight

case, the C1 cluster inflates significantly to include 172

genes, whereas the other three clusters contain few genes if

not empty. Less tight clusters derived with DTB and d �
0.95 do not show big differences in the numbers of genes

included in C1.

To focus on a small subset of genes of potential importance,

the smallest reasonable number of genes in each of the four

clusters was chosen as the core of that cluster. The chosen

cores’ cases are shaded with grey in table 1. The cores’ average

peak times as percentages of the cell cycle as well as the

expected corresponding cell-cycle phases from Pramila et al.
[14] are listed in table 2. Based on the previous discussion, in

the case of the C1 cluster, although the analysis concentrates

on the core at IB, the genes down to DTB with d ¼ 0.95 are

also considered significant and will be referred to as



Table 2. For each of the four clusters’ cores, the first to the fourth rows, respectively, show the average peak time as a percentage of the cell cycle, its
standard deviation (s.d.), minimum (min.) and maximum (max.) values. The last row shows the estimated cell-cycle phase for each core based on its average
peaking time.

cluster C1 (%) C2 (%) C3 (%) C4 (%)

average peak time for core genes 20 66 97 46

s.d. 3.2 3.3 4.9 6.7

min. 14 62 88a 40

max. 27 75 6a 67

expected cell-cycle phase late G1/S G2 M/early G1 S/G2
aThese percentage values are cyclic, i.e. after 99%, the cycle goes back to 0%. So the earliest peak in C3 is at 88% of the cycle
and the latest is at 6% of the next cycle.

Table 3. The names of the genes included in each of the four clusters’ cores. For each of these clusters, the title row shows the cluster’s label, the binarization
configuration under which it has been chosen and the number of genes included in it.

C1 core at IB (DTB with
d 5 1.0) (19 genes)

C2 core at DTB with
d 5 0.9 (12 genes)

C3 core at DTB with
d 5 0.6 (21 genes)

C4 core at DTB with
d 5 0.2 (15 genes)

AXL2 SLK19 BUD20 ASH1 PIG1 ABF1 YGL101W

CDC45 SMC1 CDC5 CHS1 PIL1 CSN9 YJL118W

CHR1 SMC3 CLB1 FAR1 PRY1 FLR1 YLR455W

CMR1 SPC42 CLB2 HSP150 PST1 GDA1

EXO1 URH1 FET3 HXT2 ROD1 GDT1

MSH2 YDL163W FRK1 LSP1 SED1 MBP1

POL2 YJR030C PMP3 MCM2 TEC1 MSB1

POL3 SCW4 MCM3 YLR194C NDD1

RAD27 SHE2 MCM4 YNL134C SSA1

RFA2 SML1 MCM5 STU2

RNR1 SRC1 MCM7 TOF2

RTT107 SWI5 NIS1 VID22
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appropriate, see electronic supplementary material, S2 for

more detail about the profiles of the genes included in C1 at

these less tight levels. Revealing the difference in the precision

of assignment for these four clusters as well as the ability of

choosing different clusters’ cores by tuning the level of strict-

ness for different clusters are potentially useful outcomes of

using the Bi-CoPaM method.

The full lists of the genes in these four cores are listed in

table 3, and the profiles for the genes in these core clusters

from both a-38 and a-30 datasets are plotted in figures 2 and

3, respectively. Note that in the lists of genes, if any yeast ORF

has not been characterized previously, and thus does not have

a gene name, the ORF name is used instead.

From figures 2 and 3, many observations can be made.

First, the a-30 and the a-38 datasets have very close profiles

except for some outlier values; this allows us to use either

set for most of the remaining discussions. Second, the profiles

of expression over time for the genes that are within each

cluster’s core clearly show the usefulness of the Bi-CoPaM

approach in obtaining tighter and more specific clusters.

Third, although all of these clusters’ cores are tight, the clus-

ter C1 is clearly the tightest, as shown by the d value at which

this core was obtained compared with the others (table 1).

Finally, each set of genes in the four clusters’ cores shows
periodic peaking at a different stage of the cell cycle, which

demonstrates clustering has derived sets of genes with

distinct properties (table 2).

3.2. Gene ontologies analysis
We have performed gene ontologies (GOs) analysis for the

genes included in the C1 cluster by using the GO Slim tool

[21]. We have used this tool to search for biological processes,

functions and components GO terms that are enriched in

C1 at DTB with all of the values of d reported in table 1.

Full results lists of this GO Slim analysis for processes, func-

tions and components have been provided in the electronic

supplementary material, S3, S4, and S5, respectively.
4. Analysis and discussion
Our study is based on the computational analysis of high-

throughput data from different experiments by using the

Bi-CoPaM method, rather than by pure biological or bio-

chemical experiments. It highlights important subsets of

genes and has led to a set of proposed hypotheses. We

hypothesize that CMR1 has a biological relationship with

the replication factor A (RPA) complex, DNA polymerases
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cluster of genes by using the Bi-CoPaM method in our study.
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a, d and 1 as well as the cohesion complex. Also our study

provides support for some previously unconfirmed, or not

fully understood, hypotheses such that the CMR1 gene is a

potential target for the MBF transcription complex [22], that

it has a role at the G1/S transition within the cell cycle [12],

and that it has a role in DNA repair and some other DNA-

related processes such as synthesis and transcription

[11–13]. We also provide a set of novel clusters of genes

with tunable co-expression levels that can serve as a resource

for further focused gene discovery studies.

In reference [12], a quantitative proteomics approach was

adopted to extend the protein network of core histones (H2A,

H2B, H3 and H4) in the budding yeast S. cerevisiae and ident-

ified CMR1 as a member in this network. Some 556 proteins

were found binding to one or more histones, whereas only 25

proteins of these were found binding to the four core histones.

The 25 proteins include the four histones (H2A, H2B, H3 and

H4), two units of the RPA complex (RFA2 and RFA3), two

units of the Ku complex (YKU70 and YKU 80), many units

of the RNA polymerase complex (RET1, RPO31, RPC17,

RPC37, RPC40 and RPC82), many single-unit proteins

(RIM1, YTA7, PSH1, CSE4, ABF2, CKA2, TIF3, DEM1, SUB2

and SMC3) and the previously uncharacterized pro-

tein YDL156W/CMR1. Then, associations with the CMR1
protein were investigated, and it was found that many proteins

showed stable association with YDL156W, including the six

proteins RIM1, RFA2, RFA3, YTA7, YKU70 and YKU80

which are within the 25 proteins found binding to all of the

four core histones [12].

In our Bi-CoPaM gene expression analysis, CMR1 has

been found in a small subset of 19 tightly co-expressed

genes; figure 4 illustrates the relation between the core his-

tone genes subset and our co-expressed genes subset. It can

be seen that three of the 19 co-expressed genes, CMR1,

RFA2 and SMC3, in Bi-CoPaM are found to be associated

with all the four core histones. Moreover, RFA2 not only

associates with the four histones, it associates with CMR1

itself and is co-expressed with it. Thus, Bi-CoPaM provides

stronger evidence for the relation between CMR1 and RFA2

in the cellular processes.

It is worth mentioning that in our results the histones them-

selves have been found in the cluster C4 at DTB with d ¼ 0.2

and not in the cluster C1 which includes CMR1 (see electronic

supplementary material, S1). This is because the transcription

of histones occurs in the S phase in order to synthesize the

chromosomes of the forthcoming daughter cells [14,23]; recall

from table 2 that the C4 cluster peaks at the S/G2 phase.

Despite that, histone proteins exist within the nucleus, packa-

ging the DNA molecules, at all of the stages of the cell cycle.

Thus, although the CMR1 gene has not been found co-

expressed with the histones themselves, it has been found

co-expressed with many genes whose products interact with

the histones.

We will now focus our analysis and discussion around the

genes within the very tight novel cluster of genes obtained at

the strictest binarization technique, IB. When needed, we
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shall refer to some of the genes included in the C1 cluster at

just below the tightest binarization levels such as DTB with d

values of 0.99, 0.98 and 0.95. The full gene membership lists

for the four clusters at all of the cases listed in table 1 are pro-

vided in the electronic supplementary material, S1. They can

serve as an important resource for further yeast gene

discovery studies.

4.1. Replication factor A
RFA2 is part of the heterotrimeric RPA complex that also

includes RFA1 and RFA3 proteins. RPA participates in

many of the DNA-metabolism pathways such as DNA repli-

cation, recombination, repair and transcription [24]. In

addition to Gilmore et al.’s [12] findings, Tkach et al. [13]

also reported genetic and/or physical interactions between

the CMR1 gene and all of the three components of the RPA

complex. Interestingly, in our results at DTB with d ¼ 0.99,

RFA1 is included within the cluster C1, whereas RFA3, to

its slightly noisier profile, can be found in C1 by going

back to complementary clusters at MVB. Thus, the three com-

ponents of the RPA complex are seen to be clustered with

CMR1 from the Bi-CoPaM co-expression point of view,

adding stronger evidence to the findings of Gilmore and

Tkach and their co-workers [12,13].

Furthermore, it was shown by Longhese et al. [24] that

RPA interacts with both DNA polymerase a-primase com-

plex and DNA polymerase d complex. Bi-CoPaM finds that

most of this complex’s components are co-expressed with

the RPA components as well as the CMR1 gene at very

tight levels of the cluster C1. The significance of co-expression

of DNA polymerases, CMR1 and related genes, and protein

complexes is provided in §4.2.

4.2. DNA polymerases and the mini-chromosome
maintenance complex (MCM2 – 7)

DNA polymerases catalyse DNA replication and repair.

A striking level of co-expression among these complexes’

genes is clear in our Bi-CoPaM results. All of the units com-

posing DNA polymerase d complex (POL3, POL31 and

POL32), three of the four units composing DNA polymerase

a complex (POL1, POL12 and PRI2), and two of the five units

composing DNA polymerase 1 complex (POL2 and DPB2)

are found in the C1 cluster’s core at the very strict level of

tightness of DTB with d ¼ 0.98. Most of these genes also

appear at d ¼ 0.99 and two of them (POL2 and POL3)

appear at the absolute strictest case of IB. In fact, those

units of DNA polymerase complexes that have not been

included in C1 at these extreme levels of tightness are not pre-

sent in the 500 genes considered in this study, indicating the

100 per cent clustering accuracy of Bi-CoPaM for the known

components of the DNA polymerase complexes.

Moreover, the proliferating cell nuclear antigen PCNA/

POL30, which functions as a sliding clamp for the DNA poly-

merase d, is found in the cluster C1 at the very tight level of

DTB with d ¼ 0.95. In Huttner & Ulrich [25], it was shown

that the RPA complex is required for the ubiquitylation of

PCNA at the replication fork. Again, Bi-CoPaM finds that

all of these co-operating genes are tightly co-expressed.

It was shown that POL2, the catalytic unit of the DNA

polymerase 1, interacts extensively with MRC1 at the G1/S

checkpoint and during the S phase for DNA replication
and in response to DNA damage on the leading strand

[26]. Lou et al. [26] have also shown that MRC1 and POL2

co-immunoprecipitate and associate with CDC45, GINS and

the MCMs. They then provided a model for the functional

interaction between these proteins on the leading DNA

strand during both normal DNA replication and replication

stress. Interestingly, POL2 and CDC45 appear within C1 clus-

ter at the tightest case of IB (figure 4), MRC1 and other genes

associated with it as components of the replication check-

point complex such as CSM3 and TOF1 [27] appear in C1

at the very tight case of DTB with d ¼ 0.99, whereas GINS

is not one of the 500 genes included in this study.

The MCMs have a different story; Lou and co-workers

proposed a parallel model at the lagging DNA strand

during replication in which the six MCM units, MCM2,

MCM3, MCM4, MCM5, MCM6 and MCM7, are loaded in

late M phase and early G1 phase onto chromatin to form

the ring-shaped heterohexamer complex MCM2–7 [26,28].

Then, the DNA polymerase a is loaded onto the chromatin

and recruited to the MCM2–7 complex by MCM10, CTF4

and CDC45 [29].

The notable aspect of our results in relation to previous

observations is that CDC45, most of the units in the DNA poly-

merase a complex, and CTF4 are found within the very tight

cluster C1 at DTB with d ¼ 0.99 (except for MCM10 which is

not one of the 500 genes considered in this study). More inter-

estingly, the six MCM units within the MCM2–7 complex are

all included in the same co-expressing comparatively tight

cluster C3 at DTB with d ¼ 0.5 with five of them also included

in the even tighter core case at d ¼ 0.6 (figure 4).

The genes in the cluster C3 show peak expression at the

late M phase and the early G1 phase (table 2). The obser-

vations drawn from the two models at the leading and the

lagging DNA strands during the replication checkpoint

[26], in addition to the clear phase shift between the MCMs

in the cluster C3 and the replication checkpoint genes in the

cluster C1 shown in our tight co-expression clustering results,

would indicate that the MCMs are co-regulated with the

replication checkpoint genes, not only at the lagging strand

but at the leading strand as well.

4.3. Yeast cohesion complex
The protein SMC3, which was found previously [12] to be

associated with the four histones, is found within the tightest

case of the cluster C1 in our study (figure 4). SMC3 associates

with SMC1 to make a heterodimer that associates with MCD1

and IRR1 to compose the yeast cohesion complex, which is

required for sister chromatid cohesion [30,31]. Interestingly,

SMC1 and SMC3 are found in the tightest case of C1 at IB

(figure 4), whereas MCD1 and IRR1 are found as well at

DTB with d ¼ 0.99. Bi-CoPaM proposes that these genes are

not only physically associated but also tightly co-expressed.

4.4. CMR1 as a potential target for the Mlu1 cell-cycle
box binding factor complex

Many genes that are expressed at the G1/S transition have

the Mlu1 cell-cycle box (MCB) element in their promoters

[15,32,33], which is the target for the MCB binding factor

(MBF) complex for transcription [22].

McIntosh [34] provided a list of 31 budding yeast genes

that are regulated (or potentially regulated) by the MBF
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complex. Strikingly, 20 of these genes are included in our C1

cluster at no looser levels of tightness than DTB with d ¼ 0.95

except for the gene RFA3 that appears in C1 at MVB. Ten of

these 31 genes are not included in our study, and one gene,

TOP2, is included but clustered differently in C4 at the

MVB case. The 20 matched genes are CDC21, RNR1, POL1,

POL2, POL3, POL12, POL30, PRI1, DPB2, CTF4, CDC9,

RFA1, RFA2, RFA3, RAD5, RAD51, TAD54, CLN1, CLN2

and PCL1. Four of these 20 genes survived up to the tightest

case of IB. The cohesion complex genes SMC1, SMC3, MCD1

and IRR are among the genes that have the MCB element in

their promoters [31]. This adds four more genes to the list of

genes that have this element and appeared in the C1 cluster in

our results. Moreover, SMC1 and SMC3 are among the 19

genes in the C1 cluster at IB.

The MBP1 protein, which associates with SWI6 to com-

pose the MBF complex, is found in the core of the C4

cluster (table 3). As shown in table 2, the average peak time

for the members of this cluster is between S and G2 phases

that might indicate that the transcription of the G1/S tran-

sition genes starts at the middle of the previous cell cycle.

According to the datasets used in this study (figures 2

and 3), the time period between the peaking of the MBP1

gene expression and the first following peaking of the G1/S

transition genes is about 40 min.

The facts, that CMR1 has an MCB element in its promoter

[22] and that Bi-CoPaM finds it tightly co-expressed with the

G1/S transition genes, indicate strongly that the MBF com-

plex is the transcription factor for the CMR1. Although

previous studies have indicated the possibility of the CMR1

gene being a potential target for the MBF complex [22], it

has not been confirmed yet; our results give stronger evi-

dence to that especially by the survival of the CMR1’s

membership in the cluster that includes the G1/S genes

even at the tightest case of IB.
4.5. Gene ontologies analysis
At all of the adopted d values, figure 5a–c show the fractions of

C1 cluster genes that represent the most enriched GO terms for

processes, functions and components, respectively. Figure 5a
shows that DNA-related and cell-cycle-related processes have

led the biological processes represented by the genes in C1.

This quantitatively and systematically supports our analysis

in the previous sections. This is even more strongly supported

by the fact that the most enriched biological function in this

cluster is DNA binding (figure 5b), and the most enriched cel-

lular component is the nucleus (figure 5c). Indeed, DNA repair,

replication and recombination in budding yeasts require DNA

binding proteins and occur in the nucleus.

CMR1 has been annotated with the function ‘DNA bind-

ing’ and has been reported to localize in the nucleus as well

as the cytoplasm, but its GO process term is still ‘biological

process unknown’. The findings of our study, backed up

with the finding by the studies of Gilmore, Choi and Tkach

[11–13], help in directing the research towards unveiling

the correct biological process for CMR1.

4.6. Other genes included in the C1 cluster core
RAD27 is a nuclease that participates in many DNA-related

processes such as DNA replication, base excision repair

and maintaining genome stability [35]. It was found that

the cells with a deleted RAD27 are sensitive to the DNA

damaging agent methyl methanesulphonate (MMS) and the

ultraviolet (UV) light [36]. This information might link with

the possible role of CMR1 in the UV DNA-damage response

pathway [11]. RAD27 and CDC9 were found to be brought to

the replication fork during the lagging DNA strand replica-

tion by the sliding clamp PCNA (POL30) [37]. Here, the

relationship between RAD27 and the genes EXO1, RAD2

and RAD51 in DNA repair processes was proposed [37]. In
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our results, RAD27 and EXO1 are found within the tightest

C1 cluster at IB, whereas PCNA (POL30), CDC9 and

RAD51 are found in the same cluster at DTB with d ¼ 0.99.

Another gene included in the tightest cluster C1 at IB is

MSH2 that forms a heterodimer with MSH6 to repair base-

pair mismatches in DNA [38]. This gene MSH6 is also

found in C1 at DTB with d ¼ 0.99.

An epistatic miniarray map has been constructed that

shows quantitative measurements of the genetic interactions

between 743 budding yeast genes from different chromosome

biology pathways [2]. By clustering a subset of this array

that have the DNA replication and repair genes based on

their patterns of mutual genetic interactions (not genetic

expressions), the genes RTT101, RTT107, MMS1, MMS22,

RTT109 and ASF1 formed a small cluster which was investi-

gated further [2]. It was found that RTT109 and ASF1

participate in the histone H3 K56 acetylation pathway at the

transmission to the S phase. This was significant because

the 25 gene products found to be associated with the four his-

tones (figure 4) do not include any of these genes [12].

Nonetheless, in our tightly co-expressing clusters, the genes

RTT107, RTT109 and ASF1 are found in the tight cluster C1

at DTB with d ¼ 0.98 (RTT107 was found at IB; figure 4).

We also note that the gene YRF1 is repeated seven times

in the budding yeast genome and all of them appear in C1 at

the very tight level of DTB with d ¼ 0.98.

4.7. Summary and conclusions
The new paradigm of clustering realized by the Bi-CoPaM

method possesses the unique ability to perform tightness-

tunable ensemble clustering, and it has been adopted to

generate a small subset of tightly co-expressed genes. This

subset and another subset generated by Gilmore et al. [12]

are two different but overlapping small CMR1-including sub-

sets of genes involved in DNA-related cellular processes such

as DNA replication, repair and transcription. This comp-

lements the quantitative proteomics approach described by

Gilmore et al. [12] extending the core histone network. The

common factor for the genes in the subset provided in

Gilmore et al. [12] is the association with the four histones,

whereas the common factor for the genes in our results is

highly synchronous co-expressions through the cell cycle.

The notable observation in both subsets is the existence of

strongly functionally related genes that are often components

of the same protein complex or the same pathway. The three

components of the replication protein A (RPA); RFA1, RFA2
and RFA3 seem to be the closest to the newly characterized

gene CMR1 in that RFA2 appeared in both sets of results associ-

ating with the four histones, associating with CMR1 and co-

expressed with it, and that RFA1 and RFA3 appeared in the

same subset of CMR1 in either results. Gilmore and co-workers

[15] explored the relationship between CMR1 and the RNA

polymerase complex III. Although they noticed the possibility

that CMR1 would participate in the DNA repair at the G1/S

checkpoint, they did not investigate this further. Our results

suggest such a relationship may be functionally significant.

We propose that CMR1 may have a functional relationship

not only with DNA polymerases but also with the cohesion

complex. Most of the components of the DNA polymerases a,

d and 1 are found to be tightly co-expressed with CMR1

and suggests a possible role of CMR1 in DNA replication and

repair. SMC3, a core component of the cohesion complex, is

found in Bi-CoPaM results and by Gilmore et al. [12] was associ-

ated with CMR1, whereas the other components of the complex

were associated with CMR1 in our analysis. The strong associ-

ation of CMR1 with the known targets of the MBF complex

even in the extreme tightest cases clearly suggests the hypoth-

esis that CMR1 expression is controlled by MBF complex and

can be tested in future experimental work.

Taken together, our results have highlighted important

subsets of genes based on the computational analysis of

high-throughput data from different experiments instead of

pure biological or biochemical experiments. They not only

add stronger evidence for the main findings of the study of

Gilmore et al. [12], but they also strongly highlight areas of

less previous attention about the function of the CMR1

gene. CMR1 has been postulated to have functions in DNA

processing. We have shown its expression through the cell

cycle would support a relation between CMR1 with the

RPA complex, DNA polymerases and the cohesion complex

in addition to its role at the G1/S transition.

Finally, we also provide novel co-expressing genes clus-

ters with tunable tightness levels. The evidence for the

validity of these clusters’ tight cores comes from genes that

are strongly related by being in the same complex or path-

way. These novel clusters can serve as an important

resource for further focused gene discovery studies.

The project (ref. no. NIHR-RP-PG-0310-1004-AN) is supported by
National Institute for Health Research (NIHR), UK. We thank Pro-
fessor Steve Oliver and Dr Duygu Dikicioglu from the Cambridge
Systems Biology Centre and the Department of Biochemistry at the
University of Cambridge (Cambridge, UK) for fruitful discussions.
References
1. Palsson B, Zengler K. 2010 The challenges of
integrating multi-omic data sets. Nat. Chem. Biol. 6,
787 – 789. (doi:10.1038/nchembio.462)

2. Pena JM, Lozano JA, Larranaga P. 1999 An empirical
comparison of four initialization methods for the K-
Means algorithm. Pattern Recognit. Lett. 20, 1027 –
1040. (doi:10.1016/S0167-8655(99)00069-0)

3. Eisen MB, Spellman PT, Brown PO, Botstein D. 1998
Cluster analysis and display of genome-wide
expression patterns. Proc. Natl Acad. Sci. USA 95,
14 863 – 14 868. (doi:10.1073/pnas.95.25.14863)

4. Kohonen TE. 1997 Self-organizing maps. New York,
NY: Springer.
5. Salem SA, Jack LB, Nandi AK. 2008 Investigation of
self-organizing oscillator networks for use in
clustering microarray data. IEEE Trans. Nanobiosci. 7,
65 – 79. (doi:10.1109/TNB.2008.2000151)

6. Ayad HG, Kamel MS. 2010 On voting-based
consensus of cluster ensembles. Pattern Recogn. 43,
1943 – 1953. (doi:10.1016/j.patcog.2009.11.012)

7. Fred A, Jain AK. 2002 Data clustering using evidence
accumulation. Proc. 16th Int. Conf. Pattern Recognit.
4, 276 – 280.

8. Strehl A, Ghosh J. 2002 Cluster ensembles: a
knowledge reuse framework for combining multiple
partitions. J. Mach. Learn. Res. 3, 583 – 617.
9. Abu-Jamous B, Fa R, Nandi AK, Roberts DJ. 2012
Binarization of consensus partition matrix for
ensemble clustering. In Proc. 20th European
Signal Processing Conf. (EUSIPCO-2012),
Bucharest, Romania, 27 – 31 August 2012,
pp. 2193 – 2197.

10. Abu-Jamous B, Fa R, Roberts RJ, Nandi AK. 2012
Comprehensive analysis of multiple microarray
datasets by binarization of consensus partition
matrix. In 2012 IEEE Int. Workshop on Machine
Learning for Signal Processing (MLSP 2012),
Santander, Spain, 23 – 26 September 2012.
(doi:10.1109/MLSP.2012.6349787)

http://dx.doi.org/10.1038/nchembio.462
http://dx.doi.org/10.1016/S0167-8655(99)00069-0
http://dx.doi.org/10.1073/pnas.95.25.14863
http://dx.doi.org/10.1109/TNB.2008.2000151
http://dx.doi.org/10.1016/j.patcog.2009.11.012
http://dx.doi.org/10.1109/MLSP.2012.6349787


rsif.royalsocietypublishing.org
JR

SocInterface
10:20120990

10
11. Choi DH, Kwon SH, Kim JH. 2012 Saccharomyces
cerevisiae Cmr1 protein preferentially binds to UV-
damaged DNA in vitro. J. Microbiol. 50, 112 – 118.
(doi:10.1007/s12275-012-1597-4)

12. Gilmore JM, Sardiu ME, Venkatesh S, Stutzman B,
Peak A, Seidel CW, Workman JL, Florens L,
Washburn MP. 2012 Characterization of a highly
conserved histone related protein, Ydl156w, and its
functional associations using quantitative proteomic
analyses. Mol. Cellular Proteomics 11, M111.011544.
(doi:10.1074/mcp.M111.011544)

13. Tkach JM et al. 2012 Dissecting DNA damage
response pathways by analysing protein localization
and abundance changes during DNA replication
stress. Nat. Cell Biol. 14, 966 – 976. (doi:10.1038/
ncb2549)

14. Pramila T, Wu W, Miles S, Noble WS, Breeden LL.
2006 The Forkhead transcription factor Hcm1
regulates chromosome segregation genes and fills
the S-phase gap in the transcriptional circuitry of
the cell cycle. Genes Dev. 20, 2266 – 2278. (doi:10.
1101/gad.1450606)

15. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders
K, Eisen MB, Brown PO, Botstein D, Futcher B. 1998
Comprehensive identification of cell cycle-regulated
genes of the yeast Saccharomyces cerevisiae by
microarray hybridization. Mol. Biol. Cell 9,
3273 – 3297.

16. Cho RJ et al. 1998 A genome-wide transcriptional
analysis of the mitotic cell cycle. Mol. Cell 2, 65 –
73. (doi:10.1016/S1097-2765(00)80114-8)

17. Vega-Pons S, Ruiz-Shulcloper J. 2011 A survey of
clustering ensemble algorithms. Int. J. Pattern
Recognit. Artif. Intell. 25, 337 – 372. (doi:10.1142/
S0218001411008683)

18. Dimitriadou E, Weingessel A, Hornik K. 2002 A
combination scheme for fuzzy clustering.
Int. J. Pattern Recognit. Artif. Intell. 16, 901 – 912.
(doi:10.1142/S0218001402002052)

19. Xiao X, Dow ER, Eberhart R, Miled ZB, Oppelt RJ.
2003 Gene clustering using self-organizing maps
and particle swarm optimization. In IEEE Parallel
and Distributed Processing Symp. Proc., Indianapolis,
USA, 22 – 26 April 2003, pp. 154 – 163. (doi:10.
1109/IPDPS.2003.1213290).
20. Rhouma MBH, Frigui H. 2001 Self-organization of
pulse-coupled oscillators with application to
clustering. IEEE Trans. Pattern Anal. Mach. Intell. 23,
1 – 16. (doi:10.1109/34.908968)

21. SGD. 2012 GO Slim Mapper. (accessed 2012
November) See http://www.yeastgenome.org/cgi-
bin/GO/goSlim-Mapper.pl.

22. Brohee S, Janky R, Abdel-Sater F, Vanderstocken G,
Andre B, Helden JV. 2011 Unraveling networks of
co-regulated genes on the sole basis of genome
sequences. Nucleic Acids Res. 39, 6340 – 6358.
(doi:10.1093/nar/gkr264)

23. Fernandez MA, Rueda C, Peddada SD. 2012
Identification of a core set of signature cell cycle
genes whose relative order of time to peak
expression is conserved across species. Nucleic
Acids Res. 40, 2823 – 2832. (doi:10.1093/nar/
gkr1077)

24. Longhese MP, Plevani P, Lucchini G. 1994
Replication factor A is required in vivo for DNA
replication, repair, and recombination. Mol. Cell.
Biol. 14, 7884 – 7890.

25. Huttner D, Ulrich HD. 2008 Cooperation of
replication protein A with the ubiquitin ligase
Rad18 in DNA damage bypass. Cell Cycle 7,
3629 – 3633. (doi:10.4161/cc.7.23.7166)

26. Lou H, Komata M, Katou Y, Guan Z, Reis CC, Budd
M, Shirahige K, Campbell JL. 2008 Mrc1 and
DNA polymerase epsilon function together in
linking DNA replication and the S phase checkpoint.
Mol. Cell 32, 106 – 117. (doi:10.1016/j.molcel.2008.
08.020)

27. Collins SR et al. 2007 Functional dissection
of protein complexes involved in yeast
chromosome biology using a genetic interaction
map. Nature 446, 806 – 810. (doi:10.1038/
nature05649)

28. Kawasaki Y, Kim HD, Kojima A, Seki T, Sugino A.
2006 Reconstitution of Saccharomyces cerevisiae
prereplicative complex assembly in vitro. Genes Cells
11, 745 – 756. (doi:10.1111/j.1365-2443.2006.
00975.x)

29. Zhu W, Ukomadu C, Jha S, Senga T, Dhar SK,
Wohlschlegel JA, Nutt LK, Kornbluth S, Dutta A.
2007 Mcm10 and And-1/CTF4 recruit DNA
polymerase a to chromatin for initiation of DNA
replication. Genes Dev. 21, 2288 – 2299. (doi:10.
1101/gad.1585607)

30. Strunnikov AV, Jessberger R. 1999 Structural
maintenance of chromosomes (SMC) proteins:
conserved molecular properties for multiple
biological functions. Eur. J. Biochem. 263, 6 – 13.
(doi:10.1046/j.1432-1327.1999.00509.x)

31. Jones S, Sgouros J. 2001 The cohesin complex:
sequence homologies, interaction networks and
shared motifs. Genome Biol. 2, 0009 – 00012.
(doi:10.1186/gb-2001-2-3-research0009)

32. Koch C, Moll T, Neuberg M, Ahorn H, Nasmyth K.
1993 A role for the transcription factors Mbpl
and Swi4 in progression from G1 to S phase.
Science 261, 1551 – 1557. (doi:10.1126/science.
8372350)

33. Bahler J. 2005 Cell-cycle control of gene expression
in budding and fission yeast. Annu. Rev. Genet. 39,
69 – 94. (doi:10.1146/annurev.genet.39.110304.
095808)

34. McIntosh EM. 1993 MCB elements and the
regulation of DNA replication genes in yeast.
Curr. Genet. 24, 185 – 192. (doi:10.1007/
BF00351790)

35. Liu Y, Kao HI, Bambara RA. 2004 Flap endonuclease
1: a central component of DNA metabolism. Annu.
Rev. Biochem. 73, 589 – 615. (doi:10.1146/annurev.
biochem.73.012803.092453)

36. Reagan MS, Pittenger C, Siede W, Friedberg EC. 1995
Characterization of a mutant strain of Saccharomyces
cerevisiae with a deletion of the RAD27 gene, a
structural homolog of the RAD2 nucleotide excision
repair gene. J. Bacteriol. 177, 364 – 371.

37. Karanja KK, Livingston DM. 2009 C-terminal flap
endonuclease (rad27) mutations: lethal interactions
with a DNA ligase I mutation (cdc9-p) and
suppression by proliferating cell nuclear antigen
(POL30) in Saccharomyces cerevisiae. Genetics 183,
63 – 78. (doi:10.1534/genetics.109.103937)

38. Bowers J, Sokolsky T, Quach T, Alani E. 1999 A
mutation in the MSH6 subunit of the Saccharomyces
cerevisiae MSH2 – MSH6 complex disrupts mismatch
recognition. J. Biol. Chem. 274, 16 115 – 16 125.
(doi:10.1074/jbc.274.23.16115)

http://dx.doi.org/10.1007/s12275-012-1597-4
http://dx.doi.org/10.1074/mcp.M111.011544
http://dx.doi.org/10.1038/ncb2549
http://dx.doi.org/10.1038/ncb2549
http://dx.doi.org/10.1101/gad.1450606
http://dx.doi.org/10.1101/gad.1450606
http://dx.doi.org/10.1016/S1097-2765(00)80114-8
http://dx.doi.org/10.1142/S0218001411008683
http://dx.doi.org/10.1142/S0218001411008683
http://dx.doi.org/10.1142/S0218001402002052
http://dx.doi.org/10.1109/IPDPS.2003.1213290
http://dx.doi.org/10.1109/IPDPS.2003.1213290
http://dx.doi.org/10.1109/34.908968
http://www.yeastgenome.org/cgi-bin/GO/goSlim-Mapper.pl
http://www.yeastgenome.org/cgi-bin/GO/goSlim-Mapper.pl
http://www.yeastgenome.org/cgi-bin/GO/goSlim-Mapper.pl
http://dx.doi.org/10.1093/nar/gkr264
http://dx.doi.org/10.1093/nar/gkr1077
http://dx.doi.org/10.1093/nar/gkr1077
http://dx.doi.org/10.4161/cc.7.23.7166
http://dx.doi.org/10.1016/j.molcel.2008.08.020
http://dx.doi.org/10.1016/j.molcel.2008.08.020
http://dx.doi.org/10.1038/nature05649
http://dx.doi.org/10.1038/nature05649
http://dx.doi.org/10.1111/j.1365-2443.2006.00975.x
http://dx.doi.org/10.1111/j.1365-2443.2006.00975.x
http://dx.doi.org/10.1101/gad.1585607
http://dx.doi.org/10.1101/gad.1585607
http://dx.doi.org/10.1046/j.1432-1327.1999.00509.x
http://dx.doi.org/10.1186/gb-2001-2-3-research0009
http://dx.doi.org/10.1126/science.8372350
http://dx.doi.org/10.1126/science.8372350
http://dx.doi.org/10.1146/annurev.genet.39.110304.095808
http://dx.doi.org/10.1146/annurev.genet.39.110304.095808
http://dx.doi.org/10.1007/BF00351790
http://dx.doi.org/10.1007/BF00351790
http://dx.doi.org/10.1146/annurev.biochem.73.012803.092453
http://dx.doi.org/10.1146/annurev.biochem.73.012803.092453
http://dx.doi.org/10.1534/genetics.109.103937
http://dx.doi.org/10.1074/jbc.274.23.16115

	Yeast gene CMR1/YDL156W is consistently co-expressed with genes participating in DNA-metabolic processes in a variety of stringent clustering experiments
	Introduction
	Datasets and experimental procedures
	Datasets
	Binarization of consensus partition matrix
	Partitions generation
	Relabelling
	CoPaM generation
	Binarization

	Experimental set-up

	Results
	Bi-CoPaM results
	Gene ontologies analysis

	Analysis and discussion
	Replication factor A
	DNA polymerases and the mini-chromosome maintenance complex (MCM2-7)
	Yeast cohesion complex
	CMR1 as a potential target for the Mlu1 cell-cycle box binding factor complex
	Gene ontologies analysis
	Other genes included in the C1 cluster core
	Summary and conclusions

	The project (ref. no. NIHR-RP-PG-0310-1004-AN) is supported by National Institute for Health Research (NIHR), UK. We thank Professor Steve Oliver and Dr Duygu Dikicioglu from the Cambridge Systems Biology Centre and the Department of Biochemistry at the University of Cambridge (Cambridge, UK) for fruitful discussions.
	References


