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Data-driven discovery of dynamics via machine
learning is pushing the frontiers of modelling and
control efforts, providing a tremendous opportunity
to extend the reach of model predictive control (MPC).
However, many leading methods in machine learning,
such as neural networks (NN), require large volumes
of training data, may not be interpretable, do not
easily include known constraints and symmetries,
and may not generalize beyond the attractor where
models are trained. These factors limit their use
for the online identification of a model in the
low-data limit, for example following an abrupt
change to the system dynamics. In this work, we
extend the recent sparse identification of nonlinear
dynamics (SINDY) modelling procedure to include
the effects of actuation and demonstrate the ability
of these models to enhance the performance of
MPC, based on limited, noisy data. SINDY models
are parsimonious, identifying the fewest terms in
the model needed to explain the data, making
them interpretable and generalizable. We show that
the resulting SINDY-MPC framework has higher
performance, requires significantly less data, and is
more computationally efficient and robust to noise
than NN models, making it viable for online training
and execution in response to rapid system changes.
SINDY-MPC also shows improved performance over
linear data-driven models, although linear models
may provide a stopgap until enough data is available
for SINDY. SINDY-MPC is demonstrated on a variety
of dynamical systems with different challenges,
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including the chaotic Lorenz system, a simple model for flight control of an F8 aircraft, and an
HIV model incorporating drug treatment.

1. Introduction
Data-fuelled modelling and control of complex systems is currently undergoing a revolution,
driven by the confluence of big data, advanced algorithms in machine learning and modern
computational hardware. Model-based control strategies, such as model predictive control
(MPC), are ubiquitous, relying on accurate and efficient models that capture the relevant
dynamics for a given objective. Increasingly, first principles models are giving way to data-
driven approaches, for example in turbulence, epidemiology, neuroscience and finance [1].
Although these methods offer tremendous promise, there has been slow progress in distilling
physical models of dynamic processes from data. Despite their undeniable success, many modern
techniques in machine learning (e.g. neural networks (NN)) rely on access to massive datasets,
have limited ability to generalize beyond the attractor where data is collected, and do not
readily incorporate known physical constraints. The current challenges associated with data-
driven discovery limit its use for real-time control of strongly nonlinear, high-dimensional,
multi-scale systems, and prevent online recovery in response to abrupt changes in the dynamics.
Fortunately, a new paradigm of sparse and parsimonious modelling is enabling interpretable
models in the low-data limit. In this work, we extend the recent sparse identification of nonlinear
dynamics (SINDy) framework [2] to identify models with actuation, and combine it with MPC for
effective and interpretable data-driven, model-based control. We apply the proposed SINDY-MPC
architecture to control several nonlinear systems and demonstrate improved control performance
in the low-data limit, compared with other leading data-driven methods, including linear
response models and NNs.

Model-based control techniques, such as MPC [3,4] and optimal control [5,6], are cornerstones
of advanced process control, and are well-positioned to take advantage of the data-driven
revolution. MPC is particularly ubiquitous in industrial applications, as it enables the control
of strongly nonlinear systems with constraints, which are difficult to handle using traditional
linear control approaches [7–11]. MPC benefits from simple and intuitive tuning and the ability
to control a range of simple and complex phenomena, including systems with time delays,
non-minimum phase dynamics, and instability. In addition, it is straightforward to incorporate
known constraints and multiple operating conditions, it exhibits an intrinsic compensation for
dead time, and it provides the flexibility to formulate and tailor a control objective. The major
drawback of model-based control, such as MPC, lies in the development of a suitable model via
existing system identification or model reduction techniques [12], which may require expensive
and time-consuming data collection and computations.

Nearly all industrial applications of MPC rely on empirical models, and increasing plant
complexity and tighter performance specifications require models with higher accuracy. There
are many techniques to obtain data-driven models, including state-space models from the
eigensystem realization algorithm (ERA) [13] and other subspace identification methods, Volterra
series [14–16], autoregressive models [17] (e.g. ARX, ARMA, NARX and NARMAX [18] models),
and NN models [19–22], to name only a few. These procedures all tend to yield black-box models,
with limited interpretability, physical insights and ability to generalize. More recently, linear
representations of nonlinear systems using extended dynamic mode decomposition [23] have
been successfully paired with MPC [24,25]. Nonlinear models based on machine learning, such as
NNs, are increasingly used due to advances in computing power, and recently deep reinforcement
learning has been combined with MPC [26,27], yielding impressive results in the large-data limit.
However, large volumes of data are often a luxury, and many systems must be identified and
controlled with limited data, for example in response to abrupt changes. Current efforts are
focused on rapid learning based on minimal data.
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Figure 1. Applications of SINDY-MPC investigated in this work. (Online version in colour.)

When abrupt changes occur in the system, an effective controller must rapidly characterize
and compensate for the new dynamics, leaving little time for discovery based on limited data.
A second challenge is the ability of models to generalize beyond the training data, which is
related to the ability to incorporate new information and quickly modify the model. Machine
learning algorithms often suffer from overfitting and a lack of interpretability, although the
application of these algorithms to physical systems offers a unique opportunity to incorporate
known symmetries and constraints. These challenges point to the need for parsimonious and
interpretable models [2,28,29] that may be characterized from limited data and in response to
abrupt changes [30]. Whereas traditional methods require unrealistic amounts of training data,
the recently proposed SINDY framework [2] relies on sparsity-promoting optimization to identify
parsimonious models from limited data, resulting in interpretable models that avoid overfitting.
It has also been shown recently [31] that it is possible to enforce known physics (e.g. constraints,
conservation laws and symmetries) in the SINDY algorithm, improving stability and performance
of models.

In this work, we combine SINDY with MPC for enhanced data-driven control of nonlinear
systems in the low-data limit. First, we extend the SINDY architecture to identify interpretable
models that include nonlinear dynamics and the effect of actuation. Next, we show the enhanced
performance of SINDY-MPC compared with linear data-driven models and with NN models.
The linear models are identified using dynamic mode decomposition with control (DMDc) [1,32],
which is closely related to SINDY and traditional state-space modelling techniques such as ERA.
SINDY-MPC is shown to have better prediction accuracy and control performance than NN
models, especially for small and moderate amounts of noisy data. In addition, SINDY models
are less expensive to train and execute than NN models, enabling real-time applications. SINDY-
MPC also outperforms linear models for moderate amounts of data, although DMDc provides a
working model in the extremely low-data limit for simple problems. Thus, in response to abrupt
changes, a linear DMDc model may be used until a more accurate SINDY model is trained.
We demonstrate the SINDY-MPC architecture on several systems of increasing complexity as
illustrated in figure 1.

2. SINDY-MPC framework
The SINDY-MPC architecture combines the systematic data-driven discovery of dynamics with
advanced model-based control to facilitate rapid model learning and control of strongly nonlinear
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2  < e
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Figure 2. Schematic of the proposed SINDY-MPC framework, using sparse nonlinear models for predictive control. (Online
version in colour.)

systems. The overarching SINDY-MPC framework is illustrated in figure 2. In the following
sections, we will describe the sparse identification of nonlinear dynamics with control and MPC
algorithms. We consider the nonlinear dynamical system

d
dt

x= f(x, u), x(0)= x0, (2.1)

with state x ∈R
n, control input u ∈R

q and smooth dynamics f(x, u) : R
n × R

q→R
n.

(a) Sparse identification of nonlinear dynamics with control
Advanced machine learning algorithms provide new opportunities for nonlinear system
identification. In particular, sparsity-promoting methods are playing an increasingly important
role by recognizing the importance of parsimony in models [2,33,34], i.e. the trade-off between
model complexity and data fit. Recent work based on compressed sensing has been used to
handle noise and outliers [35] for linear system identification and large libraries of candidate
functions [36]. Sparse regularization, which has been demonstrated for parameter and structure
identification [2,34,37,38], is a particularly promising direction as this can promote robustness
and generalizability in models. We refer the reader to an extensive review on nonlinear system
identification methods [39] and a recent review in the context of machine learning [40].

Here, we generalize the sparse identification of nonlinear dynamics (SINDY) method [2]
to include inputs and control as illustrated in figure 3. SINDY identifies nonlinear dynamical
systems from measurement data, relying on the fact that many systems have relatively few terms
in the governing equations. Thus, sparsity-promoting techniques may be used to find models
that automatically balance sparsity in the number of model terms with accuracy, resulting in
parsimonious models. In particular, a library of candidate nonlinear terms Θ(x) is constructed,
and sparse regression is used to identify the few active terms in Θ to approximate the function f.

SINDY with control (SINDYc) is based on the same assumption, that equation (2.1) only has
a few active terms in the dynamics. SINDY is readily generalized to include actuation, as this
merely requires a larger library Θ(x, u) of candidate functions that include u; these functions can
include nonlinear cross terms in x and u. Thus, we measure m snapshots of the state x and the
input signal u in time and arrange these into two matrices:

X= [x1 x2 · · · xm] and U= [u1 u2 · · · um]. (2.2)

The library of candidate nonlinear functions Θ may now be evaluated using the data X and U:

Θ(X, U)= [1T XT UT (X⊗ X)T (X⊗U)T · · · sin(X)Tsin(U)T sin(X⊗U)T · · · ], (2.3)

where x⊗ y defines the vector of all product combinations of the components in x and u.
Although this definition includes repeated rows in Θ , in practice, the implementation is restricted
to unique combinations. A suitable library of candidate terms is crucial in the SINDYc algorithm.
One strategy is to start with a basic choice, such as polynomials, and increase the complexity of the
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library by including other terms (trigonometric functions, etc.). It is also possible to incorporate
partial knowledge of the physics (e.g. fluids versus quantum mechanics) to decide on a library.

The system in equation (2.1) can thus be written as:

Ẋ=ΞΘT(X, U). (2.4)

The time derivatives Ẋ= [ẋ1 ẋ2 · · · ẋm], if not measured directly, are computed by numerical
differentiation or approximated using the total variation regularized derivative [41,42] if the
data is noise-corrupted. The coefficients Ξ are sparse for many dynamical systems. Therefore,
we employ sparse regression to identify a sparse Ξ corresponding to the fewest nonlinearities in
our library that give good model performance:

ξ k = argmin
ξ̂ k

1
2
‖Ẋk − ξ̂ kθ

T(X, U)‖22 + λ‖ξ̂ k‖1, (2.5)

where Ẋk represents the kth row of Ẋ and ξ k is the kth row of Ξ .
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The ‖ · ‖1 term promotes sparsity in the coefficient vector ξ k. This optimization may be
solved using the LASSO [43] or the sequentially thresholded least squares procedure [2] (see
algorithm 1.). General conditions for the uniqueness of the l1 relaxed solution have been provided
in [44]. In practice, these conditions may not be readily met, and false discoveries may occur,
although they may be avoided under certain conditions [45]. Specific conditions under which
the sequentially thresholded least-squares algorithm in SINDy converges are provided in [46].
More recently, convergence and recovery has been explored in a generalized framework for sparse
relaxed regularized regression [47], for which SINDy constitutes a special case. Conditions under
which a model structure can be recovered from input–output data have also been examined in
the context of identifiability [48,49].

Algorithm 1. Sequentially thresholded least squares to learn the active library components.

Input: Time derivative Ẋ, library of candidate functions θT(X, U), thresholding parameter ε

Output: Matrix of sparse coefficient vectors Ξ

1: function STLS_REGRESSION(Ẋ, θT(X, U), ε, N)

2: Ξ̂
0← (θT)†Ẋ � Initial least squares guess.

3: while not converged do
4: k← k+ 1
5: Ismall← (abs(Ξ̂ ) < ε) � Find small entries ...

6: Ξ̂
k
(Ismall)← 0 � ... and threshold.

7: for all variables do
8: Ibig←∼ Ismall(:, ii) � Find big entries ...

9: Ξ̂
k
(Ibig, ii)← (θT(:, Ibig))†Ẋ(:, ii) � ... and regress onto those terms.

10: end for
11: end while
12: end function

The parameter λ (or equivalently ε in algorithm 1.) is selected to identify the Pareto optimal
model that best balances model complexity with accuracy. A coarse sweep of λ is performed
to identify the rough order of magnitude where terms are eliminated and where error begins
to increase. Then this parameter sweep may be refined, and the models on the Pareto front are
evaluated using information criteria [50]. It is interesting to note, that a similar idea, identifying
active components in f from a library of candidate functions using sparse regularization, was
discarded in favour of a Bayesian formulation, as the non-orthogonality of the columns in
the library was seen as problematic [38]. However, as in [2], we will demonstrate here the
effectiveness of the approach.

Since the original SINDY paper [2], it has been extended to include constraints and known
physics [31], for example, to enforce energy preserving constraints in an incompressible fluid
flow. SINDY has also been extended to high-dimensional systems, by identifying dynamics on
principal components [2], learning partial differential equations [51,52] and extracting dynamics
on delay coordinates [53]. Robust variants of SINDY have been formulated to identify models
despite large outliers and noise [54,55].

(i) Discovering discrete-time dynamics

In the original SINDY algorithm, it was shown that it is possible to identify discrete-time models
of the form xk+1 = F(xk). It is also possible to extend SINDY to identify discrete-time models with
inputs and control:

xk+1 = F(xk, uk). (2.6)
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Instead of computing derivatives, we collect a matrix X′ with the columns of X advanced one
timestep: X′ = [x2 x3 · · · xm+1]. Then, the dynamics may be written as

X′ =ΞΘT(X, U), (2.7)

and the regression problem becomes

ξ k = argmin
ξ̂ k

1
2
‖X′k − ξ̂ kΘ

T(X, U)‖22 + λ‖ξ̂ k‖1. (2.8)

(ii) Relationship to dynamic mode decomposition

The SINDY regression is related to the dynamic mode decomposition (DMD), which originated
in the fluids community to extract spatiotemporal coherent structures from large fluid
datasets [1,56–58]. DMD modes are spatially coherent and oscillate at a fixed frequency and/or
growth or decay rate. Since fluids data are typically high-dimensional, DMD is built on the
proper orthogonal decomposition (POD) [59], effectively recombining POD modes in a linear
combination to enforce the temporal coherence. The dynamic mode decomposition has been
applied to a wide range of problems including fluid mechanics, epidemiology, neuroscience,
robotics, finance and video processing [1]. Many of these applications have the ultimate goal of
closed-loop feedback control.

In DMD, a similar regression is performed to identify a linear discrete-time model A mapping
X to X′:

X′ =AX. (2.9)

Thus, SINDY reduces to DMD if formulated in discrete-time, with linear library elements in Θ ,
and without a sparsity-promoting L1 penalty term, i.e. λ= 0.

DMD was recently extended to include actuation inputs by Proctor et al. [32], to disambiguate
the effect of internal dynamics and control. In dynamic mode decomposition with control
(DMDc), a similar regression is formed, but with the actuation input matrix U:

X′ =AX+ BU. (2.10)

Thus, SINDY with control similarly reduces to DMDc under certain conditions. In this work, we
will use DMDc and SINDYc to discover dynamics for MPC. The DMDc algorithm has also been
shown to be related to other subspace identification methods, such as the ERA [13], but designed
for high-dimensional input–output data.

It is interesting to note that the extended DMD (eDMD) [23] regression is performed on the
nonlinear library Θ(X′)=AΘ(X), and an l1 penalty may also be added. eDMD may also be
modified to incorporate actuation inputs, and these models have recently been used effectively
for MPC [24].

(iii) Identification of dynamics with feedback control

If the input u corresponds to feedback control, so that u=K(x), then it is impossible to
disambiguate the effect of the feedback control u with internal feedback terms K(x) within the
dynamical system; namely, the SINDYc regression becomes ill-conditioned. In this case, we may
identify the actuation u as a function of the state:

U=ΞuΘT(X). (2.11)

To identify the coefficients Ξ in equation (2.4), we perturb the signal u to allow it to be
distinguished from K(x) terms. This may be done by injecting a sufficiently large white noise
signal, or occasionally kicking the system with a large impulse or step in u. An interesting future
direction would be to design input signals that aid in the identification of the dynamical system
in equation (2.1) by perturbing the system in directions that yield high-value information.
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(b) Model predictive control
In this section, we outline the control problem and summarize key results in MPC, which is shown
schematically in figure 4. MPC solves an optimal control problem over a receding horizon, subject
to system constraints, to determine the next control action. This optimization is repeated at each
new timestep, and the control law is updated, as shown in figure 4b.

The receding horizon control problem can generally be formulated as an open-loop
optimization at each step, which determines the optimal sequence of control inputs u(·|xj) :=
{uj+1, . . . , uj+k, . . . , uj+mc } over the control horizon Tc =mc�t given the current measurement xj
that minimizes a cost J over the prediction horizon Tp =mp�t; �t is the timestep of the model,
which may be different from the sampling time of measurements. The control horizon is generally
less than or equal to the prediction horizon, so that Tc ≤ Tp; if Tc < Tp, then the input u is
assumed constant thereafter. The first control value uj+1 is then applied, and the optimization is
reinitialized and repeated at each subsequent timestep to solve for the unknown sequence u(·|xj).
This results in an implicit feedback control law

K(xj)= u(j+ 1|xj)= uj+1, (2.12)

where uj+1 is the first in the optimized actuation sequence starting at the initial condition xj.
The cost optimization at each timestep is given by

min
û(·|xj)

J(xj)= min
û(·|xj)

⎡
⎣‖x̂j+mp − x∗mp

‖2Qmp
+

mp−1∑
k=0

‖x̂j+k − x∗k‖2Q +
mc−1∑
k=1

(‖ûj+k‖2Ru
+ ‖�ûj+k‖2R�u

)

⎤
⎦ ,

(2.13)

subject to the discrete-time system dynamics with F̂ : R
n × R

q→R
n

x̂k+1 = F̂(x̂k, uk), (2.14)

the input constraints,

�umin ≤�uk ≤�umax (2.15a)

and

umin ≤ uk ≤ umax, (2.15b)
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and possibly additional equality or inequality constraints on the state and input. Here, we assume
the availability of full-state measurements y= x. The cost functional J penalizes deviations of the
predicted state x̂k along the trajectory x∗k and also includes a terminal cost at x̂mp . Expenditures
of the input uk and input rate �uk = uk − uk−1 are also penalized. Each term is computed as
the weighted norm of a vector, i.e. ‖x‖2Q := xTQx. The weight matrices Q≥ 0, Qmp

≥ 0, Ru > 0
and R�u > 0 are positive definite and positive semi-definite, respectively. Note that the model
prediction x̂k, which is forecast, may differ from the true measured state xk.

The dynamics are given by the identified SINDYc model, e.g. ẋ= F(x, u)=ΞΘT(x, u); F̂
represents a discrete-time or discretized SINDYc model. While the model and the control law
may be learned simultaneously, we adopt a two-stage process, where the model is first learned
from data and then used in the control optimization with MPC. A joint optimization of the model
and the control law may be challenging, as the particular control action depends on the model.
However, it may be possible to develop a streaming algorithm to adapt the model to abrupt
system changes [30], iterating between model identification and control optimization.

MPC is one of the most powerful model-based control techniques due to the flexibility in
the formulation of the objective functional, the ability to add constraints, and extensions to
nonlinear systems. The most challenging aspect of MPC involves the identification of a dynamical
model that accurately and efficiently represents the system behaviour when control is applied.
If the model is linear, minimization of a quadratic cost functional subject to linear constraints
results in a tractable convex problem. Nonlinear models may yield significant improvements;
however, they render MPC a nonlinear program, which can be expensive to solve, making it
particularly challenging for real-time control. Conditions on the well-posedness of the problem
and existence and uniqueness of the solution of the nonlinear optimization problem are, e.g.
provided in [60]. Fortunately, improvements in computing power and advanced algorithms are
increasingly enabling nonlinear MPC for real-time applications.

3. A simple model for population dynamics
We first demonstrate the SINDY-MPC architecture on the Lotka–Volterra system, a two-
dimensional, weakly nonlinear dynamical system, describing the interaction between two
competing populations. These dynamics may represent two species in biological systems,
competition in stock markets [61], and can be modified to study the spread of infectious
diseases [62]. We will consider more sophisticated examples in the following sections.

The dynamics of the prey and predator populations, x1 and x2, respectively, are given by

ẋ1 = ax1 − bx1x2 (3.1a)

and
ẋ2 =−cx2 + dx1x2 + u, (3.1b)

where the constant parameters a= 0.5, b= 0.025, c= 0.5 and d= 0.005 represent the growth/death
rates, the effect of predation on the prey population, and the growth of predators based on the size
of the prey population. The unforced system exhibits a limit cycle behaviour, where the predator
lags the prey, and a critical point xcrit = (g/d a/b)T, where the population sizes of both species are
in balance. The control objective is to stabilize this fixed point. Here, the timestep �t= 0.1 of the
system and the model are equal, the weight matrices are Q= ( 1 0

0 1 ) and Ru =R�u = 0.5, and the
actuation input is limited to u ∈ [−20, 20]. The control and prediction horizons are mp =mc = 10
unless otherwise noted. We apply an additional constraint on u, so that x2 does not decrease below
10, to enforce a minimum population size required for recovery.

To assess the performance and capabilities of the SINDY-MPC architecture, SINDYc is
compared with two representative data-driven models: dynamic mode decomposition with
control (DMDc) and a multilayer NN, which can represent any continuous function under mild
conditions [63]. The results are displayed in figure 5. The first 100 time units are used to train
the models with a phase-shifted sum of sinusoids as input, a so-called Schroeder sweep [64],
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Figure 5. Prediction and control performance for the Lotka–Volterra system: (a) time series of states and input during training,
validation and control stage, (b) cumulative cost and (c) execution time of the MPC optimization procedure. (Online version
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after which the predictive capabilities of these models are validated using sinusoidal forcing with
u(t)= (2 sin(t) sin(t/10))2 on the next 100 time units. Different actuation inputs are used during
the training and validation stages to assess the models’ ability to generalize. Thereafter, MPC is
applied for 100 time units using a prediction and control horizon of mp =mc = 5. SINDYc shows
the best prediction and control performance, followed by DMDc and the NN (due to its steady-
state error). The NN has 1 hidden layer with 10 neurons, which is the best trade-off between model
complexity and accuracy; increasing the number of neurons or layers has little impact on the
prediction performance. Further, hyperbolic tangent sigmoid activation functions are employed.
It is first trained as a feed-forward network using the Levenberg–Marquardt algorithm and
then closed. If the data are corrupted by noise, a Bayesian regularization is employed, which
requires more training time but improves robustness. While the NN exhibits a similar control
performance, the execution time of SINDYc is 37 times faster, which is particularly critical in real-
time applications. For a fair comparison, all methods are compared using the same optimization
routine based on interior-point methods via Matlab’s fmincon. Thus, it would be possible to
reduce the time for the linear system further.

In practice, measurements are generally affected by noise. We examine the robustness of
these models for increasing noise corruption of the state measurements, i.e. y= x+ n where n ∈
N (0, σ 2) with standard deviation σ . Cross-validated prediction performance for different noise
magnitudes η= σ/ max(std(xi)) ∈ (0.01, 0.5), where std denotes standard deviation, is displayed
in figure 7a,b. As expected, the performance of all models decreases with increasing noise
magnitude. SINDYc generally outperforms DMDc and NN models, exhibiting a slower decline
in performance for low and moderate noise levels. Sparse regression is known to improve
robustness to noise and prevent overfitting. The large fluctuation in the NN performance are
due to its strong dependency on the initial network weights.

The amount of data required to train an accurate model is particularly crucial in real-time
applications, where abrupt changes or actuation may render the model invalid and rapid model
updates are necessary. Figure 6a–c shows the average relative prediction error on 100 time units
used for validation, and the training time for increasing lengths of training data. The effect of the
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training length on the control performance (evaluated over 20-time units) is shown in figure 6d,e.
For small amounts of data, the sparsity-promoting parameter λ in SINDYc is reduced by a factor
of 10 until a non-zero entry appears. In the low-data limit, a highly predictive SINDYc model
can be learned, discovering the true governing equations within machine precision. Significantly
larger amounts of data are required to train an accurate NN model, although with enough data
it outperforms DMDc. DMDc models may be useful in the extremely low-data limit, before
enough data is available to characterize a SINDYc model. The training times of SINDYc and
DMDc models increase slightly with the amount of data, but they require about two orders of
magnitude less time than NN models. SINDYc’s intrinsic robustness to overfitting renders all
models from mtrain = 14 on as having the best control performance compared with the overall best
performing DMDc and NN models. By contrast, DMDc shows a slight decrease in performance
due to overfitting and the NN’s dependency on the initial network weights detrimentally affects
its performance. It is interesting to note that the control performance is generally less sensitive
than the long-term prediction performance shown in figure 6b,c. Even a model with moderately
low predictive accuracy may perform well in MPC.

In figure 7c,d, we show the same analysis but with noise-corrupted training data. We assume
no noise corruption during the control stage. For each training length, the best model out of 50
noise realizations is tested for control. DMDc and SINDYc models both require slightly more data
to achieve a similar performance as without noise. Note that NN models perform significantly
worse when trained on noise-corrupted data.

4. Chaotic Lorenz system
In this section, we demonstrate the SINDY-MPC architecture on the chaotic Lorenz system,
a prototypical example of chaos in dynamical systems. The Lorenz system represents the
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Rayleigh–Bénard convection in fluid dynamics as proposed by Lorenz [65], but has also been
associated with lasers, dynamos and chemical reaction systems. The Lorenz dynamics are given
by

ẋ1 = σ (x2 − x1)+ u (4.1a)

ẋ2 = x1(ρ − x3)− x2 (4.1b)

and ẋ3 = x1x2 − βx3 (4.1c)

with system parameters σ = 10, β = 8/3, ρ = 28, and control input u affecting only the first
state. A typical trajectory oscillates alternately around the two weakly unstable fixed points
(±√72,±√72, 27)T. The chaotic motion of the system implies a strong sensitivity to initial
conditions, i.e. small uncertainties in the state will grow exponentially with time. This
represents a particularly challenging problem for model identification and subsequent control,
as measurement and model uncertainty both lead to long-time forecast error.

The control objective is to stabilize one of these fixed points. In general, the timestep of the
model is chosen to balance the control horizon, the length of the sequence of control inputs
to be optimized and prediction accuracy. Here, the system timestep is �tsys = 0.001 and the
model timestep is �tmodel = 0.01. The control input is determined every 10 system timesteps and
then held constant. The weight matrices are Q= I3, where In denotes a n× n identity matrix,
Ru =R�u = 0.001, and the actuation input is limited to u ∈ [−50, 50]. The control and prediction
horizon is mp =mc = 10 and the sparsity-promoting parameter in SINDYc is λ= 0.1, unless
otherwise noted. For all cases, we assume access to full-state information.
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We compare the prediction and control performance of the SINDYc model with DMDc and NN
models. DMDc is trained to model the deviation from the goal state by constructing the regression
model based on data from which the goal state has been subtracted. A less naive approach would
partition the trajectory into two bins, e.g. based on negative and positive values of x1, and estimate
two models for each goal state separately. The NN consists of 1 hidden layer with 10 neurons
and employs hyperbolic tangent sigmoid activation functions. Cross-validated prediction and
control performance for the Lorenz system are displayed in figure 8. The first 10 time units are
used to train with a Schroeder sweep, after which the models are validated on the next 10 time
units using a sinusoidally based high-frequency forcing, u(t)= (5 sin(30t))3. MPC is then applied
for the last 5 time units. SINDYc exhibits the best prediction and control performance. The NN
exhibits comparable control performance, although the prediction horizon is considerably shorter.
Surprisingly, DMDc is able to stabilize the fixed point, despite poor predictions based on a linear
model. As the predictive capability of DMDc is poor, we will not present DMDc results in the
following, but instead compare SINDYc and the NN. As in the previous example, while the NN
exhibits similar control performance, the control execution of SINDYc is 21 times faster.

Figure 9 examines the cross-validated prediction performance of SINDYc and NN models
based on measurements with increasing noise magnitude η= σ/ max(std(xi)) ∈ {0.01, 0.1, 0.25}.
The performance of both models decreases with increasing noise level, although SINDYc
generally outperforms the NN. Unlike the Lotka–Volterra model, the average relative error
is misleading in this case. With increasing noise magnitude the NN converges to a fixed
point, having no predictive power, while SINDYc still exhibits the correct statistics beyond the
prediction horizon; however, a phase drift leads to a larger average relative error. This is shown
in figure 9b with the median (thick line) and the 25–75 percentile region (shaded area) of the
prediction for three different noise levels. Thus, a better metric for prediction performance is
the prediction horizon itself (figure 9a). The prediction horizon is estimated as the time instant
when the error ball is larger than a radius of ε= 3, i.e. a model is considered predictive if
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√∑3
i=1(xi − x̂i)2 < ε. This corresponds to roughly 10% error per state variable, considering that

the order of magnitude of each state is approximately O(101); this error radius correlates well
with the visible divergence of the true and predicted state in figure 9b. For low and moderate
noise levels, SINDYc robustly predicts the state with high accuracy. Even for η= 0.25, the 1-period
prediction is sufficiently long for a successful stabilization with MPC as we consider a comparably
short prediction horizon of Tp = 0.1.

The effect of the amount of training data on the prediction and control performance is
examined in figure 10, respectively. In figure 10a–d, we show the average relative error evaluated
on the prediction over the next 10 time units, the prediction horizon, and the required training
time in seconds for increasing length of noise-free training data. For a relatively small amount
of data, SINDYc rapidly outperforms the NN model with a prediction horizon of 2.5 time units
and a significantly smaller error. For a sufficiently large amount of data, SINDYc and the NN
result in comparable predictions. However, SINDYc yields highly predictive models that can be
rapidly trained in low and moderate data regimes. Models trained on weakly noise-corrupted
measurements, η= 0.05, are tested in MPC. For each length of training data, 50 noise realizations
are performed and the most predictive model is selected for evaluation in MPC (figure 10e,f ).
Outside the shaded regions, models are generally not predictive or might even diverge. In the
noise-corrupted case, it is clear that SINDYc models generally have better control performance
than NN models. For a sufficiently large amount of training data, NNs can have comparable
performance to SINDYc models, although they show a sensitive dependence on the initial choice
of the network weights. The control results of the NN are significantly better here than for the
Lotka–Volterra model due to the intrinsic system properties. In chaotic systems, a long enough
trajectory will come arbitrarily close to every point on the attractor; thus, measurements of the
Lorenz system are in some sense richer than those of the Lotka–Volterra system. A surprising
result is that a nearly optimal SINDYc model can be trained on just eight noisy measurements
(compare figure 10e,f ).

5. Tracking for the F-8 crusader
In this section, we consider an automatic flight control system of the F-8 aircraft at an altitude of
30 000 ft (9000 m) and Mach= 0.85 [66–68]. The control objective is to track a specific trajectory of
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the angle of attack. The aircraft dynamics [66] are given by

ẋ1 =−0.877x1 + x3 − 0.088x1x3 + 0.47x2
1 − 0.019x2

2 − x2
1x3 + 3.846x3

1 − 0.215u

+ 0.28x2
1u+ 0.47x1u2 + 0.63u3 (5.1a)

ẋ2 = x3 (5.1b)

and ẋ3 =−4.208x1 − 0.396x3 − 0.47x2
1 − 3.564x3

1 − 20.967u+ 6.265x2
1u+ 46x1u2 + 61.1u3 (5.1c)

where x1 is the angle of attack (rad), x2 is the pitch angle (rad), x3 is the pitch rate (rad s−1) and
u is the control input representing the tail deflection angle (rad). The system is non-affine in the
states and the control input rendering it strongly nonlinear. The commanded angle of attack to be
tracked [68] is given by

r(t)= 0.4
(
− 0.5

1+ et̂−0.8
+ 1

1+ et̂−3
− 0.4

)
(5.2)

with t̂= t/0.1. We assume that the output, over which the performance is optimized, is y= x1.
The timestep of the system is �t= 0.001 and the timestep of the model is �tM = 0.01. The control
input is determined using SINDY-MPC every 10 system timesteps over which the applied control
is then kept constant. The weight matrices are Q= 25, Ru =R�u = 0.05, the actuation input rate
is limited to �u ∈ [−0.3, 0.5], and the constraint for the angle of attack is y ∈ [−0.2, 0.4]. The
control and prediction horizon is mp =mc = 13 and the sparsity-promoting parameter in SINDYc
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is λ= (10−4, 10−2, 10−2), where λi is used to identify the terms for xi. The NN has two hidden
layers each with 15 neurons. Access to full-state information is assumed for these models.

Results assessing prediction and control performance of SINDYc compared with DMDc and a
NN model are displayed in figure 11. Similar to the Lotka–Volterra system, the NN requires more
and richer training data, i.e. a better exploration of the system behaviour, to perform sufficiently
well. Thus, 250 short trajectories each consisting of 1000 snapshots (25× 104 instances in total)
with varying input signals are used to train the NN; a subset of 20 trajectories is displayed in
figure 11a(bottom). By contrast, SINDYc and DMDc perform similarly well if trained on much
less data (104 instances of a single trajectory). Moreover, SINDYc learns from few measurements
the true relationship between the variables, even though only limited system behaviour has been
observed, resulting in increased performance.

6. Optimal therapy for pathogenic attacks
Optimizing drug therapy is critical for inhibiting diseases such as cancer and viral infections.
Here, we consider treatment of infections with the human immunodeficiency virus (HIV), a
pathogen that infects T-helper CD4+ cells of the immune system and can cause acquired immune
deficiency syndrome (AIDS). Identifying the underlying infection mechanism, the response of the
immune system, and the interactions with drugs targeting different components in this system is
critical for developing and optimizing therapeutic strategies. Various models have been proposed
to study the interaction between HIV and CD4+ cells; we refer to a recent review [69].

Optimal treatment aims to decrease virus mutations, complications from administered drugs,
medical costs, and to strengthen the immune system. We consider a system [70] that incorporates
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infections with HIV, the cytotoxic lymphocyte (CTL) response of the immune system, and
therapeutic interventions via a highly active anti-retroviral therapy (HAART), i.e. a combination
of drugs that affect the replication rate of HIV and support the immune system. This is based on
a more general and complex system, that can be simplified under certain conditions [71]:

ẋ1 = λ− dx1 − β(1− ηu)x1x2 (6.1a)

ẋ2 = β(1− ηu)x1x2 − ax2 − p1x4x2 − p2x5x2 (6.1b)

ẋ3 = c2x1x2x3 − c2qx2x3 − b2x3 (6.1c)

ẋ4 = c1x2x4 − b1x4 (6.1d)

and ẋ5 = c2qx2x3 − hx5 (6.1e)

with parameters λ= 1, d= 0.1, β = 1, a= 0.2, p1 = 1, p2 = 1, c1 = 0.03, c2 = 0.06, b1 = 0.1, b2 =
0.01, q= 0.5, h= 0.1 and η= 0.9799 (units typically in mm−3 d−1). Here, the states describe
concentrations of healthy CD4+ T-cells, x1, HIV-infected CD4+ T-cells, x2, CTL precursors
(memory CTL), x3, helper-independent CTL, x4 and helper-dependent CTL, x5. For a detailed
discussion of the system (6.1) we refer to [70,71]. The parameter η represents the effectiveness of
the HAART therapy applied via u. For the considered parameters and in the absence of control
(u≡ 0), the system exhibits two stable fixed points: a progressive infection leading to AIDS, xA,
and the recovery from a successful immune response, xB. The later steady state is given by

xB
1 =

λ

d+ βxB
2

, xB
2 =

c2(λ− dq)− b2β −
√

[c2(λ− dq)− b2β]2 − 4βc2qdb2

2βc2q
(6.2a)

and

xB
3 =

hxB
5

c2qxB
2

, xB
4 = 0, xB

5 =
xB

2 c2(βq− a)+ b2β

c2p2xB
2

, (6.2b)

and exists if [c2(λ− dq)− b2β]2 − 4βc2qdb2 ≥ 0. The region of attraction (ROA) to this fixed
point is limited and only established if the infectivity of the virus is small such that β <

c1[c2b2(λ− qd)− b2c1d]/b1(c2b1q+ b2c1), which can be achieved by applying a HAART therapy
(u= 1) with high efficacy (η≈ 1). This state moves as a function of βeff = β(1− ηu) when u > 0 and
its ROA changes and does not necessarily overlap with the ROA in the absence of drug treatment
(u= 0), i.e. dependent on the initial condition and the applied control the system will converge to
a different steady state. A non-trivial control strategy is required that switches between treatment
and no treatment to establish a successful immune response, and hence to approach xB. By
contrast, when treatment is applied continuously for a sufficiently long amount of time such that
the fixed points are approached and then terminated, the system will converge to a progressive
infection, xA, even if a successful immune response had been established.

The cost functional to be optimized is given by

J=
∫T

0
(x1(t)− x̂1)+ (x3(t)− x̂3)+ |u(t)|dt, (6.3)

where x̂1 = xB
1 and x̂3 = xB

3 [70] taking into account the healthy cells, the immune system, and
the cost of treatment. The control input u is bounded by 0≤ u≤ 1 with efficacy of η= 0.9799. An
additional constraint is added to the control that renders all cell concentrations non-negative, i.e.
xi ≥ 0 ∀ i. The time step is �tM = 2 h for the model and is �t= 1/24 day= 1 h for the simulated
system. The control performance is evaluated over 50 weeks. The prediction and control horizon
for the MPC optimization are both mp =mc = 24, i.e. over 2 days (from mp�tM). We assume a
more realistic situation, where the state is measured once a week, and the treatment is then kept
constant over the following week. The training data consists of samples collected over 200 days
(≈ 30 weeks) with a discrete control input, as was applied for the validation data in figure 12
(bottom). By contrast, the training data for the NN consists of ensemble data of 32 different
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trajectories. In both cases, the control is a random sequence of values that are kept constant over
random durations of time �T ∈ [5 h, 10 days].

We consider a SINDYc model with (1) full-state information (SINDYc) and (2) partial
information based on a subset of the variables (PI-SINDYc). The latter case demonstrates the
situation when only a few states can be measured, which is generally more realistic. For the
identification of the SINDYc models, it is important to normalize first the features in the library,
as the coefficients of the active terms spread over several orders of magnitude. In both cases,
a polynomial order of three is used for the library. The results are compared with various linear
models: (1) DMDc on the full state (DMDc), (2) DMDc on delay coordinates of the full state (Delay-
DMDc) and (3) DMDc on a set of nonlinear observables (extended DMD with control, eDMDc).
In addition, a NN model on the full state (NN) is trained. An overview of these models and
their parameters is provided in table 1. The identified parameters of the SINDYc and PI-SINDYc
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Table 1. Model parameters for the HIV system.

model state settings # unknowns

SINDYc y= x polynomial basis (order r= 3),
λ= (10, 3.1, 3, 0.1, 0.5)

84× 5= 420

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PI-SINDYc y= (x1, x2, x3) polynomial basis (order r= 3),λ= (10, 30, 3) 35× 3= 105
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DMDc y= x− xB deviation from reference state 52 = 25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Delay-DMDc y= (x(t)− xB, x(t − τ )−
xB, . . . , x(t − 9τ )− xB)

deviation from reference state, 10 time delay
coordinates of the full-state and of the control
input

(10× 5)2 = 2500

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

eDMDc y=Θ (x, r) order r= 3 of polynomial basis (without
constant term)

832 = 6889

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NN y= x 1 hidden layer with 5 neurons and linear
activation functions, data is log-transformed
and mapped to [−1, 1] to compensate for
skewness and different range

43

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

models are displayed below (6.4) are:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9995 0 0 0 0
-0.0999 0 0 0 0

0 -0.1991 0 0 0
0 0 -0.0100 0 0
0 0 0 -0.1000 0
0 0 0 0 -0.1000

-0.9990 0.9981 0 0 0
0 0 -0.0299 0 0.0300
0 -0.9982 0 0.0300 0
0 -0.9990 0 0 0
0 0 0.0600 0 0
0 0 0 0 0
0 0 0 0 0

0.9763 -0.9757 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ΞSINDYc

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9995 0 0
-0.0999 0 0

0 -0.8985 0
0 0 -0.0100
0 0 0
0 0 0

-0.9990 0.9424 0
0 -0.0573 -0.0299
0 0 0
0 0 0
0 0.0069 0.0600
0 0 0
0 0 0

0.9763 -0.7507 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ΞPI−SINDYc

1
x1
x2
x3
x4
x5

x1x2
x2x3
x2x4
x2x5

x1x2x3
x1x2x4
x1x2x5
x1x2u

(6.4)

Only the non-zero parameters are shown, and their error is O(10−3)−O(10−6) for SINDYc.
The error in the parameters decreases with increased time resolution. Here, a coarse time step
is chosen to reduce the computational cost of MPC for the chosen prediction horizon. In PI-
SINDYc, the parameters for x1 and x3 are estimated well as these only depend on x1, x2 and x3. By
contrast, x2 has a larger error in the estimated parameters and consists of erroneous parameters to
compensate for the missing information. Different selections of variables have been tested, which
generally resulted in poor models, except for the selected combination. The resulting models are
generally not sparse, except where a direct relationship exists between variables. This suggests
that SINDY indicates direct causal relationships, which can be measured in terms of the sparsity.

Prediction accuracy based on data differing from the training set, but with a similar type of
actuation signal, and control results are displayed in figure 12. Both start from an early infection
given by x0 = (λ/d, 0.1, 0.1, 0.1, 0.1)T. While a SINDYc model can be identified with near-perfect
prediction accuracy, all other models display an error several orders of magnitude larger (see
figure 12a). In particular, linear DMDc-based models diverge significantly from the true trajectory
for some variables, while capturing the right trend in other variables. The NN and the PI-SINDYc
model based on partial state information generally stay closer to, and even temporarily match,
the true trajectory. Interestingly, while MPC using PI-SINDYc successfully drives the system to
the desired steady-state behaviour, with a slightly larger cost than SINDYc, the NN controller is
unable to establish the successful immune response by applying constant treatment (figure 12b).
Note that the actuation depends strongly on the prediction and control horizon chosen for the
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Table 2. Capabilities and challenges of DMDc, SINDYc and NNmodels. Themodelwith the strongest performance is underlined.

property DMDc SINDYc NN

training with limited data strong strong weak
very few samples are
sufficient

well suited for low and
medium amount of data

requires long time series to
learn predictive models

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

high-dimensionality strong fair strong
can handle high-dim. data
in combination with
SVD

limited by the library size

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nonlinearities weak/fair strong strong
linear and weakly
nonlinear, however
with performance loss

suitable for strongly nonlinear
systems

suitable for strongly
nonlinear systems

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

prediction performance fair strong strong
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Control performance fair strong strong
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

noise robustness weak strong fair
high sensitivity w.r.t. noise intrinsic robustness due to

sparse regression
can handle low noise levels

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

parameter robustness strong strong weak
high sensitivity w.r.t. initial
weights of the network

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

training time strong strong weak
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

execution time strong strong weak
fast optimization routines
exist for linear systems

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

optimization; further analysis has shown that a smaller horizon for the NN controller yields a
time-varying, however still unsuccessful, treatment. We varied the number of hidden layers (up
to 3), the number of neurons (up to 100), the type of activation function, the number of delays (up
to 100) in the state and input variables and the amount of training data (≈ 600 different initial
conditions). However, these did not significantly change the performance of the model. The type
of data (not just the amount) is particularly critical for training a NN. Designing experiments,
i.e. a good forcing signal that explores the system behaviour and yields dynamically rich training
data, is a challenge of its own. The linear DMDc and eDMDc models fail too. While the eDMDc
model starts with the correct frequency, detrimental treatment is administered thereafter close
to the desired state, which gives rise to new growth of infected cells, x2. Interestingly, augmenting
the state vector with delay coordinates results in a successful treatment (with performance close to
the SINDYc models), in contrast to the strategy to augment the state with nonlinear measurements
of the state as in eDMDc.

All models but the NN, which has been trained on a significantly larger amount of data, have
been trained on the same amount of data, a single trajectory starting from an initial condition
which is relatively far from the desired behaviour. Thus, these models are required to generalize
well, i.e. perform well far from the region in which they have been initially trained. Using
more data would certainly help to improve the prediction accuracy of some of these models,
in particular, if these require a large number of parameters to be estimated. However, this would
pose additional challenges in real-time applications with abrupt system changes, as this requires
robust model formation and adaptation from few measurements.
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7. Discussion and conclusion
In conclusion, we have demonstrated the effective integration of data-driven sparse model
discovery for MPC in the low-data limit. The sparse identification of nonlinear dynamics (SINDY)
algorithm has been extended to discover nonlinear models with actuation and control, resulting
in interpretable and parsimonious models. Moreover, because SINDY only identifies the few
active terms in the dynamics, it requires less data than many other leading machine learning
techniques, such as NNs, and prevents overfitting. When integrated with MPC, SINDY provides
computationally tractable and accurate models that can be trained on very little data. The
resulting SINDY-MPC framework is capable of controlling strongly nonlinear systems, purely
from measurement data, and the model identification is fast enough to discover models in real-
time, even in response to abrupt changes to the model. The SINDY-MPC approach is compared
with MPC based on data-driven linear models and NN models on four nonlinear dynamical
systems of different complexities and challenges: the weakly nonlinear Lotka–Volterra system, the
chaotic Lorenz system, the non-affine F8 crusador model, and the HIV/immune response system,
which variables are of different order of magnitudes and where only partial state information is
available.

The relative strengths and weaknesses of each method are summarized in table 2. By nearly
every metric, linear DMDc models and nonlinear SINDYc models outperform NN models. In
fact, DMDc may be seen as the limit of SINDYc when the library of candidate terms is restricted
to linear terms. SINDY-MPC provides the highest performance control and requires significantly
less training data and execution time compared with NN. However, for very low amounts of
training data, DMDc provides a useful model until the SINDYc algorithm has enough data
to characterize the dynamics. Thus, we advocate the SINDY-MPC framework for effective and
efficient nonlinear control, with DMDc as a stopgap after abrupt changes until a new SINDYc
model can be identified. Note that a crucial step in SINDY is the choice of library functions, which
is often informed by expert knowledge about what category of nonlinearities to include. A poor
choice of the library will generally yield a non-sparse model. Without any prior knowledge about
the system type, a sweep through different classes of candidate functions is required. However,
once a model is learned from a sufficiently rich library, the model is often able to generalize
beyond the training data. If the model structure is not fixed, but varies heterogeneously in state
space, NNs may provide a more flexible and generalizable architecture to represent the dynamics.
A heterogeneous model structure can potentially be incorporated into SINDy by additionally
learning a library of models [72,73].

This work motivates a number of future extensions and investigations. Although the
preliminary application of SINDYc for MPC is encouraging, this study does not leverage many
of the powerful new techniques in sparse model identification. Figure 3 provides a schematic
of the modularity and demonstrated extensions that are possible within the SINDy framework.
In realistic applications, the system may be extremely high-dimensional, and the SINDy library
does not scale well with the size of the data. Fortunately, many high-dimensional systems evolve
on a low-dimensional attractor, and it is often possible to identify a model on this attractor,
for example by identifying a SINDy model on low-dimensional coordinates obtained through
a singular value decomposition [2] or manifold learning [74]. In other applications, full-state
measurements are unavailable, and the system must be characterized by limited measurements.
It has recently been shown that delay coordinates provide a useful embedding to identify simple
models of chaotic systems [53], building on the celebrated Takens embedding theorem [75]. Delay
coordinates also define intrinsic coordinates for the Koopman operator [53], which provides a
simple linear embedding of nonlinear systems [76,77]. Koopman models have recently been used
for MPC [24,25] and have been identified using SINDy regression [78] and subsequently used
for optimal control [78]. Recently, SINDY has been extended to modify an existing model based
on new incoming measurements to enable rapid model recovery from abrupt changes to the
system [30]. Learning quickly from limited measurements is an important task, which may be
viewed in terms of design of experiments; specifically, optimizing the actuation input to collect



22

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180335

...................................................

the most informative measurements to learn a more predictive model faster. This would require
the formulation of a different cost function, which measures the predictive power of the model,
to determine future actuation inputs. Rapid learning is also related to the question of quantity
versus quality of data and identifiability [48,49]; more data is usually better, although it is possible
to work with less data if it is representative of the system. Further, similar methods could be
used to optimize sensors and exploit partial measurements within the SINDY-MPC framework.
All of these innovations suggest a shift from the perspective of big data to the control-oriented
perspective of smart data.

Figure 3 also demonstrates innovations to the SINDy regression to include physical
constraints, known model structure, and model selection, which may all benefit the goal of real-
time identification and control. Known symmetries, conservation laws, and constraints may be
readily included in both the SINDYc and DMDc modelling frameworks [31], as they are both
based on least-squares regression, possibly with sequential thresholding. It is thus possible to use
a constrained least-squares algorithm, for example, to enforce energy conserving constraints in a
fluid system, which manifest as anti-symmetric quadratic terms [31]. Enforcing constraints has the
potential to further reduce the amount of data required to identify models, as there are less free
parameters to estimate, and the resulting systems have been shown to have improved stability
in some cases. It is also possible to extend the SINDy algorithm to identify models in libraries
that encode richer dynamics, such as rational function nonlinearities [79]. Finally, incorporating
information criteria provides an objective metric for model selection among various candidate
SINDy models with a range of complexity.

The SINDY-MPC framework has significant potential for the real-time control of strongly
nonlinear systems. Moreover, the rapid training and execution times indicate that SINDy models
may be useful for rapid model identification in response to abrupt model changes, and this
warrants further investigation. The ability to identify accurate and efficient models with small
amounts of training data may be a key enabler of recovery in time-critical scenarios, such as model
changes that lead to instability. In addition, for broad applicability and adoption, the SINDy
modelling framework must be further investigated to characterize the effect of noise, derive error
estimates, and provide conditions and guarantees of convergence. These future theoretical and
analytical extensions are necessary to certify the model-based control performance.
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24. Korda M, Mezić I. 2016 Linear predictors for nonlinear dynamical systems: Koopman operator
meets model predictive control. (http://arxiv.org/abs/1611.03537)

25. Peitz S, Schäfer K, Ober-Blöbaum S, Eckstein J, Köhler U, Dellnitz M. 2016 A multiobjective
MPC approach for autonomously driven electric vehicles. (http://arxiv.org/abs/1610.08777)

26. Peng H, Wu J, Inoussa G, Deng Q, Nakano K. 2009 Nonlinear system modeling and predictive
control using the RBF nets-based quasi-linear ARX model. Control Eng. Pract. 17, 59–66.
(doi:10.1016/j.conengprac.2008.05.005)

27. Zhang T, Kahn G, Levine S, Abbeel P. 2016 Learning deep control policies for autonomous
aerial vehicles with MPC-guided policy search. In IEEE International Conference on Robotics and
Automation, Stockholm, Sweden, 16–21 May, pp. 528–535. Piscataway, NJ: IEEE.

28. Bongard J, Lipson H. 2007 Automated reverse engineering of nonlinear dynamical systems.
Proc. Natl Acad. Sci. USA 104, 9943–9948. (doi:10.1073/pnas.0609476104)

29. Schmidt M, Lipson H. 2009 Distilling free-form natural laws from experimental data. Science
324, 81–85. (doi:10.1126/science.1165893)

http://dx.doi.org/doi:10.1016/0005-1098(89)90002-2
http://dx.doi.org/doi:10.1016/S0098-1354(98)00301-9
http://dx.doi.org/doi:10.1007/s12555-011-0300-6
http://dx.doi.org/doi:10.1016/j.automatica.2014.10.128
http://dx.doi.org/doi:10.2514/1.G002507
http://dx.doi.org/doi:10.1115/1.4031175
http://dx.doi.org/doi:10.2514/3.20031
http://dx.doi.org/doi:10.1016/0005-1098(76)90080-7
http://dx.doi.org/doi:10.1093/imamci/1.3.243
http://dx.doi.org/doi:10.1007/BF02532251
http://dx.doi.org/doi:10.1109/MASSP.1987.1165593
http://dx.doi.org/doi:10.1109/37.466261
http://dx.doi.org/doi:10.1109/TNNLS.2015.2411671
http://dx.doi.org/doi:10.1016/j.compchemeng.2007.05.002
http://dx.doi.org/doi:10.1007/s00332-015-9258-5
http://arxiv.org/abs/1611.03537
http://arxiv.org/abs/1610.08777
http://dx.doi.org/doi:10.1016/j.conengprac.2008.05.005
http://dx.doi.org/doi:10.1073/pnas.0609476104
http://dx.doi.org/doi:10.1126/science.1165893


24

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180335

...................................................

30. Quade M, Abel M, Kutz JN, Brunton SL. 2018 Sparse identification of nonlinear dynamics for
rapid model recovery. Chaos 28, 063116. (doi:10.1063/1.5027470)

31. Loiseau JC, Brunton SL. 2018 Constrained sparse Galerkin regression. J. Fluid Mech. 838, 42–67.
(doi:10.1017/jfm.2017.823)

32. Proctor JL, Brunton SL, Kutz JN. 2016 Dynamic mode decomposition with control. SIAM J.
Appl. Dyn. Syst. 15, 142–161. (doi:10.1137/15M1013857)

33. Li K, Peng JX, Irwin GW. 2005 A fast nonlinear model identification method. IEEE Trans.
Autom. Control 50, 1211–1216. (doi:10.1109/TAC.2005.852557)

34. Chen T, Andersen MS, Ljung L, Chiuso A, Pillonetto G. 2014 System identification via sparse
multiple kernel-based regularization using sequential convex optimization techniques. IEEE
Trans. Autom. Control 59, 2933–2945. (doi:10.1109/TAC.2014.2351851)

35. Xu W, Bai EW, Cho M. 2014 System identification in the presence of outliers and random
noises: a compressed sensing approach. Automatica 50, 2905–2911. (doi:10.1016/j.automatica.
2014.10.017)

36. Pan W, Yuan Y, Gonçalves J, Stan GB. 2012 Reconstruction of arbitrary biochemical reaction
networks: a compressive sensing approach. In 2012 IEEE 51st Annual Conference on Decision
and Control (CDC), Maui, HI, 10–13 December, pp. 2334–2339. Piscataway, NJ: IEEE.

37. Calafiore GC, El Ghaoui LM, Novara C. 2015 Sparse identification of posynomial models.
Automatica 59, 27–34. (doi:10.1016/j.automatica.2015.06.003)

38. Pan W, Yuan Y, Gonçalves J, Stan GB. 2016 A sparse Bayesian approach to the
identification of nonlinear state-space systems. IEEE Trans. Autom. Control 61, 182–187.
(doi:10.1109/TAC.2015.2426291)

39. Nelles O. 2013 Nonlinear system identification: from classical approaches to neural networks and
fuzzy models. Berlin, Germany: Springer Science & Business Media.

40. Pillonetto G, Dinuzzo F, Chen T, De Nicolao G, Ljung L. 2014 Kernel methods in system
identification, machine learning and function estimation: a survey. Automatica 50, 657–682.
(doi:10.1016/j.automatica.2014.01.001)

41. Rudin LI, Osher S, Fatemi E. 1992 Nonlinear total variation based noise removal algorithms.
Physica D 60, 259–268. (doi:10.1016/0167-2789(92)90242-F)

42. Chartrand R. 2011 Numerical differentiation of noisy, nonsmooth data. ISRN Appl. Math. 2011,
1–11. (doi:10.5402/2011/164564)

43. Tibshirani R. 1996 Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58,
267–288.

44. Tropp JA. 2006 Just relax: Convex programming methods for identifying sparse signals in
noise. IEEE Trans. Inf. Theory 52, 1030–1051. (doi:10.1109/TIT.2005.864420)

45. Su W, Bogdan M, Candès EJ. 2016 False discoveries occur early on the Lasso path.
(http://arxiv.org/abs/1511.01957)

46. Zhang L, Schaeffer H. 2018 On the convergence of the SINDy algorithm. (http://arxiv.org/
abs/1805.06445)

47. Zheng P, Askham T, Brunton SL, Kutz JN, Aravkin AY. 2018 A unified framework for sparse
relaxed regularized regression: SR3. (http://arxiv.org/abs/1807.05411)

48. Gevers M, Bazanella AS, Coutinho DF, Dasgupta S. 2013 Identifiability and excitation of
polynomial systems. In 52nd IEEE Conference Decision and Control (CDC), Florence, Italy, 10–13
December, pp. 4278–4283. IEEE.

49. Alkhoury Z, Petreczky M, Mercère G. 2017 Identifiability of affine linear parameter-varying
models. Automatica 80, 62–74. (doi:10.1016/j.automatica.2017.01.029)

50. Mangan NM, Kutz JN, Brunton SL, Proctor JL. 2017 Model selection for dynamical systems
via sparse regression and information criteria. Proc. R. Soc. A 473, 1–16. (doi:10.1098/
rspa.2017.0009)

51. Rudy SH, Brunton SL, Proctor JL, Kutz JN. 2017 Data-driven discovery of partial differential
equations. Sci. Adv. 3, e1602614. (doi:10.1126/sciadv.1602614)

52. Schaeffer H. 2017 Learning partial differential equations via data discovery and sparse
optimization. Proc. R. Soc. A 473, 20160446. (doi:10.1098/rspa.2016.0446)

53. Brunton SL, Brunton BW, Proctor JL, Kaiser E, Kutz JN. 2017 Chaos as an intermittently forced
linear system. Nat. Commun. 8, 1–9. (doi:10.1038/s41467-017-00030-8)

54. Tran G, Ward R. 2016 Exact recovery of chaotic systems from highly corrupted data.
(http://arxiv.org/abs/1607.01067)

55. Schaeffer H, McCalla SG. 2017 Sparse model selection via integral terms. Phys. Rev. E 96,
023302. (doi:10.1103/PhysRevE.96.023302)

http://dx.doi.org/doi:10.1063/1.5027470
http://dx.doi.org/doi:10.1017/jfm.2017.823
http://dx.doi.org/doi:10.1137/15M1013857
http://dx.doi.org/doi:10.1109/TAC.2005.852557
http://dx.doi.org/doi:10.1109/TAC.2014.2351851
http://dx.doi.org/doi:10.1016/j.automatica.2014.10.017
http://dx.doi.org/doi:10.1016/j.automatica.2014.10.017
http://dx.doi.org/doi:10.1016/j.automatica.2015.06.003
http://dx.doi.org/doi:10.1109/TAC.2015.2426291
http://dx.doi.org/doi:10.1016/j.automatica.2014.01.001
http://dx.doi.org/doi:10.1016/0167-2789(92)90242-F
http://dx.doi.org/doi:10.5402/2011/164564
http://dx.doi.org/doi:10.1109/TIT.2005.864420
http://arxiv.org/abs/1511.01957
http://arxiv.org/abs/1805.06445
http://arxiv.org/abs/1805.06445
http://arxiv.org/abs/1807.05411
http://dx.doi.org/doi:10.1016/j.automatica.2017.01.029
http://dx.doi.org/doi:10.1098/rspa.2017.0009
http://dx.doi.org/doi:10.1098/rspa.2017.0009
http://dx.doi.org/doi:10.1126/sciadv.1602614
http://dx.doi.org/doi:10.1098/rspa.2016.0446
http://dx.doi.org/doi:10.1038/s41467-017-00030-8
http://arxiv.org/abs/1607.01067
http://dx.doi.org/doi:10.1103/PhysRevE.96.023302


25

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180335

...................................................
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