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Abstract: Several sterically protected, low-coordinate organophosphorus compounds with P=P, P=C,
and C≡P bond are described in this study. Molecules such as diphosphenes, phosphaalkenes, 1-
phosphaallenes, 1,3-diphosphaallenes, 3,4-diphosphinidenecyclobutenes, and phosphaalkynes are
stabilized with an extremely bulky 2,4,6-tri-t-butylphenyl (Mes*) group. The synthesis, structures,
physical, and chemical properties of these molecules are discussed, together with some successful
applications in catalytic organic reactions.
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1. Introduction

Low-coordinate organophosphorus compounds with coordination numbers of 1 or 2
were once believed to only exist as unstable species. However, by introducing a sterically
bulky group such as 2,4,6-tri-t-butylphenyl into a molecule, various kinds of unusual
phosphorus compounds have been isolated as kinetically stable species since 1981. In this
review, the characteristics of several compounds carrying P=P, P=C, and P≡C bonds—
including the preparation, structural, physical, theoretical and chemical aspects, as well as
some catalytic applications to organic reactions—are described.

2. Steric Protection and the First “Phosphobenzene”
2.1. Steric Protection for Stabilization of Unstable Compounds

As shown in Scheme 1, Okazaki and Inamoto [1] found that 2,4,6-tri-t-butylaniline (1)
is oxidized with 2 moles of perbenzoic acid in dichloromethane to yield the corresponding
nitrosobenzene (2), which is stable in air at room temperature and can be purified by
column chromatography with alumina. In contrast to normal nitroso compounds such
as unsubstituted nitrosobenzene, compound 2 is emerald green and does not dimerize
to 1,3,2,4-dioxadiazetidine (3) either in solution or the solid state due to the steric hin-
drance. In general, the steric protection technique seems promising for the stabilization of
unstable compounds.
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(1) is oxidized with 2 moles of perbenzoic acid in dichloromethane to yield the corre-
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Scheme 1. A sterically protected nitrosobenzene (2); Mes* = 2,4,6-t-Bu3C6H2.

In an attempt to introduce a phosphorus moiety to the phenyl ring, phosphorus
trichloride was allowed to react with 1,3,5-tri-t-butylbezene (4) in the presence of aluminum

Molecules 2022, 27, 1557. https://doi.org/10.3390/molecules27051557 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27051557
https://doi.org/10.3390/molecules27051557
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules27051557
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27051557?type=check_update&version=3


Molecules 2022, 27, 1557 2 of 21

chloride. As reported by Cook [2], in place of the expected 2,4,6-tri-t-butylphenylphosphinic
chloride (5), after partial hydrolysis, t-butyl-3,5-di-t-butylphenylphosphinic chloride (6)
was obtained, indicating that one of the t-butyl groups migrated from the aromatic ring to
the phosphorus atom under Friedel–Crafts reaction conditions, as shown in Scheme 2 [3].
It turned out that t-butyl is prone to move around on the ring to rearrange the original
positions under the strong acidic conditions, probably due to a labile t-butyl cation, e.g., 7
and 8. Therefore, another strategy was needed to introduce a phosphorus functional group
on a bulky benzene nucleus to utilize 2,4,6-tri-t-butylphenyl as a sterically demanding
group (hereafter abbreviated as Mes*).
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2.2. Preparation and Characterization of Diphosphenes

“Phosphobenzene (9)” was reported by Köhler and Michaelis [4] as the phosphorus
analogue of azobenzene. Later, however, it was revealed that the structure of this compound
9 comprised oligomers such as 10 [5,6], 11 [7,8], and 12 [9,10] according to the molecular
weight determination and X-ray analysis (Scheme 3). Since then, it has been believed that
such compounds with double bonds involving heavier main group elements never existed
as stable compounds.

Molecules 2022, 27, x FOR PEER REVIEW 2 of 21 
 

 

In an attempt to introduce a phosphorus moiety to the phenyl ring, phosphorus tri-
chloride was allowed to react with 1,3,5-tri-t-butylbezene (4) in the presence of aluminum 
chloride. As reported by Cook [2], in place of the expected 2,4,6-tri-t-bu-
tylphenylphosphinic chloride (5), after partial hydrolysis, t-butyl-3,5-di-t-bu-
tylphenylphosphinic chloride (6) was obtained, indicating that one of the t-butyl groups 
migrated from the aromatic ring to the phosphorus atom under Friedel–Crafts reaction 
conditions, as shown in Scheme 2 [3]. It turned out that t-butyl is prone to move around 
on the ring to rearrange the original positions under the strong acidic conditions, probably 
due to a labile t-butyl cation, e.g., 7 and 8. Therefore, another strategy was needed to in-
troduce a phosphorus functional group on a bulky benzene nucleus to utilize 2,4,6-tri-t-
butylphenyl as a sterically demanding group (hereafter abbreviated as Mes*). 

 
Scheme 2. Friedel–Crafts-type reaction of 2,4,6-tri-t-butylbenzene (4). 

2.2. Preparation and Characterization of Diphosphenes 
“Phosphobenzene (9)” was reported by Köhler and Michaelis [4] as the phosphorus 

analogue of azobenzene. Later, however, it was revealed that the structure of this com-
pound 9 comprised oligomers such as 10 [5,6], 11 [7,8], and 12 [9,10] according to the mo-
lecular weight determination and X-ray analysis (Scheme 3). Since then, it has been be-
lieved that such compounds with double bonds involving heavier main group elements 
never existed as stable compounds. 

 
Scheme 3. “Phosphobenzene”. 

As shown in Scheme 4, 1,3,5-tri-t-butylbezene (4) is brominated to yield 1-bromo-
2,4,6-tri-t-butylbenzene (13) and is converted to 2,4,6-tri-t-butylphenylphosphonous di-
chloride (15) after a halogen–metal exchange with butyllithium, thus yielding 14 followed 
by the addition of phosphorus trichloride. Dichloride 15 reacts with lithium aluminum 
hydride to yield 2,4,6-tri-t-butylphenylphosphane (16). It should be noted that both bulky 
phosphorus compounds 15 and 16 are stable, easy to handle in air at room temperature, 
and can serve as appropriate starting materials for the study of low-coordinate organo-
phosphorus compounds [11]. 

Scheme 3. “Phosphobenzene”.

As shown in Scheme 4, 1,3,5-tri-t-butylbezene (4) is brominated to yield 1-bromo-2,4,6-
tri-t-butylbenzene (13) and is converted to 2,4,6-tri-t-butylphenylphosphonous dichloride
(15) after a halogen–metal exchange with butyllithium, thus yielding 14 followed by the
addition of phosphorus trichloride. Dichloride 15 reacts with lithium aluminum hydride to
yield 2,4,6-tri-t-butylphenylphosphane (16). It should be noted that both bulky phosphorus
compounds 15 and 16 are stable, easy to handle in air at room temperature, and can
serve as appropriate starting materials for the study of low-coordinate organophosphorus
compounds [11].

As shown in Scheme 5, dichloride 15 is allowed to react with magnesium in THF to yield a
stable diphosphene 17 as an orange red crystalline material with an mp of 175–176 ◦C [12]. Some
selected physical and X-ray data are listed in Table 1. It is noteworthy that (E)-bis(2,4,6-tri-t-
butylphenyl)diphosphene (17), which turned out to be a true “phosphobeneze,” has a short
P–P bond distance (2.034(2) Å) and shows a low 31P NMR chemical shift (δP 492.4 ppm).



Molecules 2022, 27, 1557 3 of 21Molecules 2022, 27, x FOR PEER REVIEW 3 of 21 
 

 

 
Scheme 4. Preparation of sterically bulky phosphonous dichloride 15 and phosphane 16. 

As shown in Scheme 5, dichloride 15 is allowed to react with magnesium in THF to 
yield a stable diphosphene 17 as an orange red crystalline material with an mp of 175–176 
°C [12]. Some selected physical and X-ray data are listed in Table 1. It is noteworthy that 
(E)-bis(2,4,6-tri-t-butylphenyl)diphosphene (17), which turned out to be a true “phos-
phobeneze,” has a short P–P bond distance (2.034(2) Å) and shows a low 31P NMR chem-
ical shift (δP 492.4 ppm). 

 
Scheme 5. Preparation of diphosphenes (17 and 18); DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene. 

Table 1. Some physical data of diphosphene 17. 

Item Detailed Description Ref. 
MS Found: 552.4012; Calcd: 552.4012 [12] 

Mol. Wt. (C6H6) 552.1 [12] 
UV (CH2Cl2) λmax (ε) 284 (15,660), 340 (7690), 460 (1360) nm [12] 

1H NMR (CCl4) δ 7.30 (s, 4H, arom.), 1.45 (s, 36H, o-t-Bu), 1.35 (18H, p-t-Bu)  [12] 
31P NMR (C6D6) δP 492.4 ppm [13] 

Raman ν(P=P) 610 cm–1 [14] 
X-ray P=P 2.034(2), P–C 1.862(2) Å; P–C–C 102.8(1), C–P–P–C 172.2(1)° [12] 

According to the crystallographic analysis, the bond distance between the two phos-
phorus atoms is about 10% shorter than the regular P–P single bond, and the dihedral 
angle ∠C–P–P–C reveals a planar molecular system with (E)-configuration. 

However, in our initial paper [12], we misreported the 31P NMR chemical shift of 17 
as δP –59.00 ppm and immediately corrected the value for 17 to 492.4 ppm (C6D6) because 
it is one of the most important physical characteristics [13]. In the meantime, Lappert [15] 
critcized our initially reported chemical shift but Cowley [16] argued our structure of di-
phosphene itself as diphosphane Mes*P(H)–P(H)Mes* (31P NMR δP of –64.4 ppm for dl and 
δP of –65.0 ppm for meso) [17], despite our unambiguously determined X-ray analysis [12]. 
On the other hand, it turned out that the coupling constant between two phosphorus nu-
clei, 1JPP, is large and has been confirmed by NMR measurement for unsymmetrical di-
phosphene 18 prepared from the dehydrochlorination reaction of the primary phosphane 
16 and RPCl2 with a base such as DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) [18] (Scheme 
5, second row). Some selected coupling constants and chemical shifts are listed in Table 2 
[19]. 

  

Mg

+ RPCl2
Mes*

P P
R

DBU

15

16

17

18

– MgCl2

– HCl

Mes*
P P

Mes*

Scheme 4. Preparation of sterically bulky phosphonous dichloride 15 and phosphane 16.

Molecules 2022, 27, x FOR PEER REVIEW 3 of 21 
 

 

 
Scheme 4. Preparation of sterically bulky phosphonous dichloride 15 and phosphane 16. 

As shown in Scheme 5, dichloride 15 is allowed to react with magnesium in THF to 
yield a stable diphosphene 17 as an orange red crystalline material with an mp of 175–176 
°C [12]. Some selected physical and X-ray data are listed in Table 1. It is noteworthy that 
(E)-bis(2,4,6-tri-t-butylphenyl)diphosphene (17), which turned out to be a true “phos-
phobeneze,” has a short P–P bond distance (2.034(2) Å) and shows a low 31P NMR chem-
ical shift (δP 492.4 ppm). 

 
Scheme 5. Preparation of diphosphenes (17 and 18); DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene. 

Table 1. Some physical data of diphosphene 17. 

Item Detailed Description Ref. 
MS Found: 552.4012; Calcd: 552.4012 [12] 

Mol. Wt. (C6H6) 552.1 [12] 
UV (CH2Cl2) λmax (ε) 284 (15,660), 340 (7690), 460 (1360) nm [12] 

1H NMR (CCl4) δ 7.30 (s, 4H, arom.), 1.45 (s, 36H, o-t-Bu), 1.35 (18H, p-t-Bu)  [12] 
31P NMR (C6D6) δP 492.4 ppm [13] 

Raman ν(P=P) 610 cm–1 [14] 
X-ray P=P 2.034(2), P–C 1.862(2) Å; P–C–C 102.8(1), C–P–P–C 172.2(1)° [12] 

According to the crystallographic analysis, the bond distance between the two phos-
phorus atoms is about 10% shorter than the regular P–P single bond, and the dihedral 
angle ∠C–P–P–C reveals a planar molecular system with (E)-configuration. 

However, in our initial paper [12], we misreported the 31P NMR chemical shift of 17 
as δP –59.00 ppm and immediately corrected the value for 17 to 492.4 ppm (C6D6) because 
it is one of the most important physical characteristics [13]. In the meantime, Lappert [15] 
critcized our initially reported chemical shift but Cowley [16] argued our structure of di-
phosphene itself as diphosphane Mes*P(H)–P(H)Mes* (31P NMR δP of –64.4 ppm for dl and 
δP of –65.0 ppm for meso) [17], despite our unambiguously determined X-ray analysis [12]. 
On the other hand, it turned out that the coupling constant between two phosphorus nu-
clei, 1JPP, is large and has been confirmed by NMR measurement for unsymmetrical di-
phosphene 18 prepared from the dehydrochlorination reaction of the primary phosphane 
16 and RPCl2 with a base such as DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) [18] (Scheme 
5, second row). Some selected coupling constants and chemical shifts are listed in Table 2 
[19]. 

  

Mg

+ RPCl2
Mes*

P P
R

DBU

15

16

17

18

– MgCl2

– HCl

Mes*
P P

Mes*

Scheme 5. Preparation of diphosphenes (17 and 18); DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.

Table 1. Some physical data of diphosphene 17.

Item Detailed Description Ref.

MS Found: 552.4012; Calcd: 552.4012 [12]
Mol. Wt. (C6H6) 552.1 [12]

UV (CH2Cl2) λmax (ε) 284 (15,660), 340 (7690), 460 (1360) nm [12]
1H NMR (CCl4) δ 7.30 (s, 4H, arom.), 1.45 (s, 36H, o-t-Bu), 1.35 (18H, p-t-Bu) [12]
31P NMR (C6D6) δP 492.4 ppm [13]

Raman ν(P=P) 610 cm–1 [14]
X-ray P=P 2.034(2), P–C 1.862(2) Å; P–C–C 102.8(1), C–P–P–C 172.2(1)◦ [12]

According to the crystallographic analysis, the bond distance between the two phos-
phorus atoms is about 10% shorter than the regular P–P single bond, and the dihedral angle
∠C–P–P–C reveals a planar molecular system with (E)-configuration.

However, in our initial paper [12], we misreported the 31P NMR chemical shift of
17 as δP −59.00 ppm and immediately corrected the value for 17 to 492.4 ppm (C6D6)
because it is one of the most important physical characteristics [13]. In the meantime,
Lappert [15] critcized our initially reported chemical shift but Cowley [16] argued our structure
of diphosphene itself as diphosphane Mes*P(H)–P(H)Mes* (31P NMR δP of −64.4 ppm
for dl and δP of −65.0 ppm for meso) [17], despite our unambiguously determined X-
ray analysis [12]. On the other hand, it turned out that the coupling constant between
two phosphorus nuclei, 1JPP, is large and has been confirmed by NMR measurement for
unsymmetrical diphosphene 18 prepared from the dehydrochlorination reaction of the
primary phosphane 16 and RPCl2 with a base such as DBU (1,8-diazabicyclo[5.4.0]undec-7-
ene) [18] (Scheme 5, second row). Some selected coupling constants and chemical shifts are
listed in Table 2 [19].
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Table 2. 31P NMR data for some diphosphenes.

Diphosphene E/Z Chemical Shift
δP

Coupling Constant
1JPP/Hz Ref.

Mes*–P=P–Mes* (17) E 492.4 —— [12,13]
Mes*–P=P–2,4-t-Bu2-6-MeC6H2 (18A) E 517.0; 480.1 583.5 [18]

Mes*–P=P–Mes (18B) E 540.4; 467.6 573.7 [18]
Mes*–P=P–Ph (18C) E 525.5; 455.5 548.7 [18]

Mes*–P=P–2,4,6-t-Pn3C6H2 (18D) E 491.2; 489.9 582.9 [20]
Mes*–P=P–2,4,6-i-Pr3C6H2 (18E) E 535; 470 572 [21]
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(22) Z 394 —— [28]

Mes = 2,4,6-Me3C6H2, Cp* = pentamethylcyclopentadienyl.

31P NMR data for (Z)-diphosphenes 21 (δP 368 ppm) and 22 (δP 394 ppm) show a
higher chemical shift than (E)-diphosphenes. As shown in Scheme 6, the formation of
(Z)-bis(2,4,6-tri-t-butylphenyl)diphosphene (21) is observed during the temperature- and
wavelength-depending photolysis of (E)-diphosphene 17. The irradiation of 17 with a
Hg lamp through a Pyrex filter at –40 ◦C [26], or argon-laser irradiation (514.5 nm) at
−78 ◦C [27] yields an E/Z equilibrium mixture that returns to E-form upon warming,
showing that (Z)-diphosphene 21 is thermally unstable due to the steric congestion caused
by the two adjacent Mes* groups. Caminade reported the first order rate constant of E/Z
isomerization reaction as ∆G 6=273 = 20.35 kcal/mol based on 31P-NMR studies. When
the photolysis is conducted without a Pyrex filter, regardless of the temperature between
−78 ◦C and 0 ◦C [26], intramolecular insertion to a neighboring methyl group occurs and
yields benzophosphaindane 24, most likely suggesting the generation of phosphinidene
intermediate 23 during the photolysis.
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Scheme 6. Temperature- and wavelength-dependent photolysis of diphosphene 17: (a) Hg lamp
irradiation through a Pyrex filter or Ar-laser irradiation at low temperature; (b) Hg lamp without a
Pyrex filter.

In the course of the synthetic route from 15 to 17 (Scheme 5, first row), a “free” 23 does
not seem to be generated since Protasiewicz failed to obtain 17 under controlled reaction
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conditions such as when employing extremely dried THF with activated magnesium
metal [29], instead yielding 24.

Scheme 7 shows that (Z)-diphosphene 22 is prepared via photolytic ring closing
metathesis (RCM) on bis(E-diphosphene) 25 [28] with a Xe-lamp in benzene for 30 min at
room temperature, though the yield of 22 is not satisfactory.
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It should be noted that in the year of 1981, when a stable diphosphene 17 was isolated
for the first time, West reported the successful isolation of a stable disilene (Mes2Si = SiMes2;
Mes = 2,4,6-Me3C6H2) protected with four mesityl groups [30]. The molecular structures
of these two compounds are simple but unusual and uncommon based on the traditional
knowledge of organic, inorganic, and/or physical chemistry [31–37]. Since then, however,
various kinds of sterically protected stable low-coordinate phosphorus compounds have
been successfully prepared and characterized. Many sophisticated or simple protective
groups other than Mes* with stronger or weaker steric ability, with or without electronic
effect, or for special or common purposes have been developed, and some early examples
have already been reviewed [18,38,39].

2.3. Chemical Reactivity of Diphosphenes

Diphosphenes demonstrate a variety of chemical reactions including photolysis, oxida-
tion, reduction, hydrolysis, sulfurization, carbene-addition, and coordination to transition-
metals [31,32]. In this section, selected examples are described in more detail.

Diphosphene 17 is allowed to react with sulfur in triethylamine at room temperature
overnight to yield a stable diphosphene mono-sulfide 26, and the desulfurization to the
starting diphosphene 17 is carried out with hexamethylphosphorous triamide in benzene
at room temperature for 2 h. Sulfide 26 is converted to thiadiphosphirane 27 upon the
irradiation of light with a medium-pressure Hg lamp at 0 ◦C for 5 min or heating in toluene
for 30 min at 95 ◦C (Scheme 8) [40,41].
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Scheme 8. Reaction of diphosphene 17 with sulfur.

Unsymmetrical diphosphene 18B is allowed to react with (THF)Cr(CO)5 to yield an
end-on complex 28 as a result of coordination at the less hindered site. However, complex
28 is converted to isomer 29 upon the irradiation of light with a medium-pressure Hg lamp
in hexane at 0 ◦C for 5 min due to the E/Z isomerization around the P=P bond. The Z-ligand
on chromium in 29 is thermally stable, probably because the steric environment reduces the
enthalpy change between 28 and 29, in contrast to that of free ligand 18B (Scheme 9) [42].
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3. Stable Phosphaalkenes and Phosphaalkynes
3.1. Stable Phosphaalkenes and the Related Compounds

In 1966, Märkl reported the interesting preparation of a stable phosphorus-containing
heterocyclic compound from 2,4,6-triphenylpyrylium tetrafluoroborate (30) [43]. The ob-
tained triphenylphosphabenzene (or phosphinine) (31) contains a P=C bond in its canonical
form, but the stability is estimated to be due to delocalization or aromaticity (Scheme 10).
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Scheme 10. Preparation of phosphabenzene 31.

Later in 1978, Bickelhaupt reported a thermally stable phosphaalkene 32 with a lo-
calized P=C double bond that is sterically protected with mesityl group [44], as shown in
Scheme 11. This successful isolation of 32 triggered our interest in the field of sterically
protected, low-coordinate phosphorus compounds.

Molecules 2022, 27, x FOR PEER REVIEW 6 of 21 
 

 

 
Scheme 9. Reaction of diphosphene 18B with carbonylchromium(0); Mes = 2,4,6-Me3C6H2. 

3. Stable Phosphaalkenes and Phosphaalkynes 
3.1. Stable Phosphaalkenes and the Related Compounds 

In 1966, Märkl reported the interesting preparation of a stable phosphorus-contain-
ing heterocyclic compound from 2,4,6-triphenylpyrylium tetrafluoroborate (30) [43]. The 
obtained triphenylphosphabenzene (or phosphinine) (31) contains a P=C bond in its ca-
nonical form, but the stability is estimated to be due to delocalization or aromaticity 
(Scheme 10). 

 
Scheme 10. Preparation of phosphabenzene 31. 

Later in 1978, Bickelhaupt reported a thermally stable phosphaalkene 32 with a lo-
calized P=C double bond that is sterically protected with mesityl group [44], as shown in 
Scheme 11. This successful isolation of 32 triggered our interest in the field of sterically 
protected, low-coordinate phosphorus compounds. 

 
Scheme 11. Preparation of phosphaethene 32; Mes = 2,4,6-Me3C6H2; DBU = 1,8-diazabicy-
clo[5.4.0]undec-7-ene. 

Alternatively, more sterically protected phosphaethenes with Mes* around phospho-
rus can be prepared by another method such as the phospha-Peterson reaction starting 
from silylphosphide and carbonyl compounds, thus successively preparing (E)-2-phenyl-
1-(2,4,6-tri-t-butylphenyl)-1-phosphaethene (33), as shown in Scheme 12 [45]. 

 
Scheme 12. Preparation of phosphaalkene 33 and the Peterson reaction. 

Interestingly, phosphaethene 33 in the (E)-form is isomerized in benzene upon the 
irradiation of light with a 100 W medium pressure Hg lamp at 0 °C for 6 h to yield an 
equilibrium mixture (3:7) with the corresponding (Z)-phosphaethene 34 [45], as shown in 
Scheme 13. After separation with silica-gel column chromatography, both isomers were 

Scheme 11. Preparation of phosphaethene 32; Mes = 2,4,6-Me3C6H2; DBU = 1,8-diazabicyclo[5.4.0]
undec-7-ene.

Alternatively, more sterically protected phosphaethenes with Mes* around phosphorus
can be prepared by another method such as the phospha-Peterson reaction starting from
silylphosphide and carbonyl compounds, thus successively preparing (E)-2-phenyl-1-(2,4,6-
tri-t-butylphenyl)-1-phosphaethene (33), as shown in Scheme 12 [45].
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Scheme 12. Preparation of phosphaalkene 33 and the Peterson reaction.

Interestingly, phosphaethene 33 in the (E)-form is isomerized in benzene upon the
irradiation of light with a 100 W medium pressure Hg lamp at 0 ◦C for 6 h to yield an
equilibrium mixture (3:7) with the corresponding (Z)-phosphaethene 34 [45], as shown in
Scheme 13. After separation with silica-gel column chromatography, both isomers were
analyzed by X-ray crystallography [46], and it was found that separated (Z)-phosphaethene
34 is thermally stable and does not isomerize to 33 even it is heated at 100 ◦C in toluene for
24 h.
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Table 3 shows 31P-NMR chemical shifts for some selected phosphaalkenes. Aromatic
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3.2. Some Reactions of Phosphaalkenes

The Peterson method can be applied to prepare 3-phenyl-1-(2,4,6-tri-t-butylphenyl)-1-
phosphaallene (36), as shown in Scheme 15 [47], indicating that the extended P=C system
(phosphacumulenes) is also stable once sterically protected.
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Scheme 15. Preparation of phosphaallene 36 via the Peterson reaction.

On the other hand, when a silylphosphide is allowed to react with half of an equivalent
of carbon dioxide, 1,3-bis(2,4,6-tri-t-butylphenyl)-1,3-diphosphaallene (37) is formed [48,58]
via the phospha-Peterson reaction, as shown in Scheme 16 [47].
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Scheme 16. Preparation of diphosphaallene 37 with the phospha-Peterson reaction.

It is interesting to note that diphosphaallene 37 can be alternatively prepared from
diphosphene 17 and dichlorocarbene followed by methyllithium with the Doering–Moore–
Skattebøl-type reaction (Scheme 17) [20,59], probably via a bracketed carbenoid interme-
diate. Carbene can be generated in aqueous medium with the Makosza method [60], in
the presence of benzyltriethylammonium chloride in a mixture of aqueous 50% NaOH,
trichloromethane, and hexane.
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This one-carbon homologation method [61] can also be applied to prepare phosphaal-
lene (36), as shown in Scheme 18 with a combination of 33 and dichlorocarbene [59].
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Phosphacumulenes 36 and 37 have axial dissymmetry according to their X-ray struc-
tures [62–64], so, under achiral circumstances, the reaction products are expected to be a
1:1 mixture of enantiomers, though in Schemes 15–18 for 36 and 37, only the (S)-isomers
were displayed. Actually both are mixtures of enantiomers and could be separated with
high-performance liquid chromatography (HPLC). Each separated enantiomer is racemized
on exposure to light due to the rotation around the axis of the molecules [47,65], but they
were found to be thermally stable in the dark at room temperature, even at 50 ◦C for 15 h
for 36.

As shown in Scheme 19 (third and fourth rows), the Doering–Moore–Skattebøl method
can be applied to the P=C=C and P=C=P systems (41 and 37) to yield 1-phospha-1,2,3-
butatriene 38 [49] and 1,4-diphospha-1,2,3-butatrienes (39 and 40, ca 4:1) [51], respectively,
which implies that two carbon atoms are inserted into P=C and P=P in a stepwise manner.
Additionally, Märkl described the preparation of extended cumulenes (38–40) from 2,4,6-tri-
t-butylphenylphosphonous dichloride (15) and allenyllithium compounds as nucleophiles
(Scheme 19, first and second rows) [50,52].
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Table 3 also lists P=C-containing compounds such as 42 [53] and 43 [54], whose
chemical shifts have higher values, which could be rationalized if their canonical forms are
considered as depicted in Scheme 20, where the anion is located on the phosphorus atom.
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3.3. Stable Phosphaalkynes

Phosphaalkynes have the lowest coordination number of 1, and once sterically protected,
this type of compound can be isolated. Using tris(trimethylsilyl)phosphane (44) and acid
chlorides, Becker [55] reported the t-butyl derivative 45 in 1981, as shown in Scheme 21. With a
similar method, Märkl [56] described the 2,4,6-tri-t-butylphenyl derivative 46 in 1986.
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Alternatively, phosphaethyne (46) can be prepared by an interesting rearrangement
reaction, a phosphorus version of the Fritsch–Buttenberg–Wiechell rearrangement, as
shown in Scheme 22 [66–68]. (E)-2-Chloro-1-(2,4,6-tri-t-butylphenyl)phosphaethene (47)
is metalated to 48 with t-butyllithium at −78 ◦C, and the metalation is confirmed by
methylation with iodomethane at that temperature to yield (E)-2-chloro-1-(2,4,6-tri-t-
butylphenyl)-1-phosphapropene (49). However, after metalation, when 48 is allowed
to warm up to room temperature, phosphaethyne 46 is obtained, indicating that the Mes*
group migrates from phosphorus to carbon. On the other hand, if (Z)-2-chloro-1-(2,4,6-
tri-t-butylphenyl)phosphaethene (50) is allowed to react with t-butyllithium, the obtained
lithium compound (51) does not lead to phosphaethyne 46, while the formed alkylation
product, (Z)-2-chloro-1-(2,4,6-tri-t-butylphenyl)-1-phosphapropene (52), indicates that the
configuration is retained [67]. Based on a kinetic study of the Fritsch–Buttenberg–Wiechell
rearrangement shown at the bottom of Scheme 22, Köbrich [69] suggested that phenyl
group PhA migrates from one carbon to another, thus eliminating trans-halogen atom as
halide to form acetylene [70].
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Scheme 22. Preparation of phosphaalkyne 46 and the Fritsch–Buttenberg–Wiechell reaction;
RT = room temperature.

In this rearrangement process from 47 to 46, a similar transition state such as 53 might
be involved (Scheme 23). Appel [71] reported the formation of 46 from 2,2-dibromo-1-(2,4,6-
tri-t-butylphenyl)phosphaethene (54), though it is not certain if phosphanylidenecarbenes
such as 56 or 57 (Scheme 24) are involved in this formation of phosphaalkyne, whereas the
carbene, if freely generated, is experimentally [72] and theoretically [73] known to yield an
intramolecular insertion product such as 55.
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Concerning the energy difference between phosphanylidenecarbene (linear 56 or bent
57) and phosphaethyne 46, we calculated total energy with an ab initio method and found
that 46 has total energy of 87.3 kcal/mol less than that of 56 or 57 [70]. Additionally, in
1986, Nguyen theoretically computed 83.9 kcal/mol as the difference between 58 and 60
in a model system [74], and Lehmann [75] calculated the difference between 59 and 60 as
84.1 kcal/mol in 1985. Each computed result indicates that phosphaalkynes are far more
stable than the corresponding phosphanylidenecarbene isomers (Scheme 24).

3.4. Singlet Biradicals from Phosphaalkyne

An interesting reactivity of phosphaalkyne 46 (with the lowest coordination number of 1)
is dimerization promoted by half of an equivalent of t-butyllithium to a singlet biradical species
such as 1-t-butyl-3-methyl-2,4-bis(2,4,6-tri-t-butylphenyl)-1,3-diphosphacyclobutane-2,4-diyl
(62) after quenching 61 with iodomethane (Scheme 25) [76,77]. In 1995, Niecke reported 2,4-
dichloro-1,3-bis(2,4,6-tri-t-butylphenyl)-1,3-diphosphacyclobutane-2,4-diyl (64) [78] as a re-
ductive coupling reaction product of 2,2-dichloro-1-(2,4,6-tri-t-butylphenyl)phosphaethene
(63) at −100 ◦C. The radicals are on the carbon atoms in both cases, but the Mes* groups
are contrarily located. An attempt to combine these two different singlet biradicals was
described for a novel radical system [79].
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Cyclic phosphide anion 61 serves as a good nucleophile to yield various kinds of
biradical species in addition to methyl derivative 62. Anion 61 reacts with several arynes or
benzynes to yield phenyl-substituted biradicals [80]. In place of the t-butyllithium shown
in Scheme 25, a series of carbon nucleophiles (including t-butyl iodide and even nitrogen
nucleophiles such as LDA (lithium diisopropylamide)) can be used [77]. It should be
noted that nucleophiles initially attack the phosphorus atom to form 61, in contrast to the
corresponding nitriles.

Compound 62 is a deep blue solid with an mp of 158–160 ◦C and thermally stable even
in a solution in air. The 31P NMR spectrum shows an ABq at δP 55.9 (t-BuP) and−11.3 (MeP)
ppm with 2JPP 362.8 Hz, and the 13C NMR spectrum of the ring C shows a dd at δC 111.3
(ring C) with 1JCP 10.7 and 3.3 Hz. An X-ray study indicated no apparently direct bonding
between either P–P (2.43 Å) or C–C (2.50 Å) in the ring with two almost perfectly planar
carbon atoms. No signal was observed in EPR measurements, indicating that the compound
is a singlet biradical species. The chemical reactivity of singlet biradicals is of high interest,
including hydrolysis with water [77], oxidation with molecular oxygen [77], TEMPO (2,2,6,6-
tetramethyl-1-piperidinoxy) [77], and ammoniumyl antimonate [81] yielding a radical
cation (66), sulfurization with elemental sulfur [82], reduction with hydride (67) [83,84],
muonium addition [85], respectively. Oligomeric poly-biradical species 68 [86] can be
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prepared and pyrimidine derivatives such as 69 are promising for HF-capture reagents [87].
The formation of neutral radical 65, which is obtained via the partial oxidation of cyclic
phosphide anion 61 with iodine, is also noteworthy. The radical is stable in air, and X-ray
analyses, theoretical calculations, and EPR spectroscopic studies have indicated that 65 is a
carbon-centered radical [88] (Scheme 26).
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4. Diphosphinidenecyclobutenes
4.1. Preparation of Diphosphinidenecyclobutenes

Diphosphinidenecyclobutenes, abbreviated as DPCBs, are prepared as depicted in
Scheme 27. From 2,4,6-tri-t-butylphenylphosphane (16) or 2,4,6-tri-t-butylphenylphosphonous
dichloride (15), (2-phenylethynyl)(2,4,6-tri-t-butylphenyl)phosphane (70) is prepared via
chloro(2,4,6-tri-t-butylphenyl)phosphane. After metalation followed by oxidative cou-
pling with 1,2-dibromoethane (DBE) at low temperature, the corresponding diphosphane
71 is formed, thus leading to 1,6-diphospha-1,2,4,5-hexatetraene 72 at room temperature
through a Cope rearrangement. Upon heating, tetraene 72 rearranges to (E,E)-1,2-diphenyl-
3,4-bis(2,4,6-tri-t-butylphenylphosphinidene)cyclobutene (73) [89,90]. Compound 73 was
described by Appel in 1987 [91], and the corresponding 3,4-bis(trimethylsilyl) derivative
(78 in Scheme 28) was prepared by ourselves with this phospha-Cope method [92]. Phos-
phinidenecyclobutene 73 can be prepared in other routes, e.g., as shown in the middle
row of Scheme 27, from (2-phenylethynyl)(2,4,6-tri-t-butylphenyl)phosphinous chloride
(74) followed by reductive coupling reaction that forms 71, whereas 74 is prepared from
2-phenylethynylphosphonous dichloride (75) and 2,4,6-tri-t-butylphenyllithium (14); as
shown at the bottom of Scheme 27, from (1-phosphaallen-3-yl)lithium 76 followed by
oxidative coupling reaction with DBE forms 72 [89,90]; and Scheme 15 suggests that, 1-
phosphaallene 36, as a precursor of 76, can be prepared with the Peterson reaction of
2,2-dibromo-1-(2,4,6-tri-t-butylphenyl)phosphaethene (77) with benzaldehyde.
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As shown in Scheme 13 for phosphaethene 33, (E,E)-3,4-bis(2,4,6-tri-t-butylphenylphosphi
nidene)-1,2-bis(trimethylsilyl)cyclobutene (78) can undergo E/Z photoisomerization and
yield (E,Z)-isomer 79 (Scheme 28). A simple DPCB 80, which is derived from 78 and
tetrabutylammonium fluoride (TBAF), also shows a similar photoisomerization for 81. It
should be noted that in both cases, even after a longer irradiation time, the (Z,Z)-isomer is
not formed, probably due to the severe congestion around the adjacent Mes* groups [93].

It is noteworthy that iodine initiates E/Z isomerization, as shown in Scheme 29. (E,E)-
DPCB 82 was found to be isomerized to the corresponding (E,Z)-isomer 83 in the presence
of iodine in THF at room temperature for 1 h [94]. Facile rotation between phosphorus and
carbon in cyclobutenylium iodide 84 could operate as an intermediate during the process
of isomerization.
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Scheme 29. Isomerization from 82 to 83 induced by iodine; R = Ph, Tms, H.

Bulky groups such as Mes* on phosphorus atoms appear to suffer from free rotation
around the P–C bond and thus hinder the rotation that distinguishes syn- and anti-rotamers
for DPCB 85, which is protected with two unsymmetrical substituents such as 2,4-di-t-
butyl-6-methylphenyl (Scheme 30). Two types of the tetracarbonyltungsten complexes of
85 were separated by column chromatography, and the syn-isomer could be analyzed by
X-ray crystallography. The anti-isomer was further analyzed with a chiral HPLC column,
and it was revealed that the isomer consists of two enantiomers, which was confirmed with
the CD spectra [95].
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As an interesting derivative related to DPCB, 1,2-diphospha[4]radialene 89 is pre-
pared as shown in Scheme 31 from 1,2-dibenzyl-DPCB 87. (3-Phenylprop-1-yn-1-yl)(2,4,6-
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tri-t-butylphenyl)phosphane (86) is lithiated with phenyllithium, followed by oxidative
coupling with 1,2-dibromoethane (DBE) to yield 1,2-dibenzyl DPCB 87, which is bromi-
nated with N-bromosuccinimide (NBS) to yield bis(α-bromobenzyl) derivative 88; finally,
a reaction with butyllithium at −78 ◦C yields (E,E,E,E)-1,2-dibenzylidene-3,4-bis[(2,4,6-
tri-t-butylphenyl)phosphinidene]cyclobutane (89). The configuration was confirmed with
X-ray analysis; 89 appears to suffer from steric crowding between the two phenyl groups
by taking the E-configuration, though they tilt about by 30◦ from the radialene plane in the
same direction, while the Mes* groups are almost perpendicular to the plane so they avoid
congestion within the molecule at least in the solid state [96].
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Scheme 31. Preparation of diphospha[4}radialene 89; DBE = 1,2-dibromoethane, NBS = N-
bromosuccinimide.

4.2. Transition Metal Complexes of Diphosphinidenecyclobutenes

As expected, DPCB 82 is a good bidentate ligand for transition metals such as
chromium, molybdenum, tungsten, iron, gold, palladium, platinum, rhodium. Scheme 32
shows several typical examples (90–94) that have been analyzed in X-ray studies [97–103].
It is noteworthy that the molecular structure of 94 shows that the π-allyl system is perpen-
dicular to the DPCB plane, which controls the stereochemistry in the catalytic reactions.
The details of this phenomenon are described later in this section.

Molecules 2022, 27, x FOR PEER REVIEW 14 of 21 
 

 

As an interesting derivative related to DPCB, 1,2-diphospha[4]radialene 89 is pre-
pared as shown in Scheme 31 from 1,2-dibenzyl-DPCB 87. (3-Phenylprop-1-yn-1-yl)(2,4,6-
tri-t-butylphenyl)phosphane (86) is lithiated with phenyllithium, followed by oxidative 
coupling with 1,2-dibromoethane (DBE) to yield 1,2-dibenzyl DPCB 87, which is bromin-
ated with N-bromosuccinimide (NBS) to yield bis(α-bromobenzyl) derivative 88; finally, 
a reaction with butyllithium at −78 °C yields (E,E,E,E)-1,2-dibenzylidene-3,4-bis[(2,4,6-tri-
t-butylphenyl)phosphinidene]cyclobutane (89). The configuration was confirmed with X-
ray analysis; 89 appears to suffer from steric crowding between the two phenyl groups by 
taking the E-configuration, though they tilt about by 30° from the radialene plane in the 
same direction, while the Mes* groups are almost perpendicular to the plane so they avoid 
congestion within the molecule at least in the solid state [96]. 

 
Scheme 31. Preparation of diphospha[4}radialene 89; DBE = 1,2-dibromoethane, NBS = N-bromo-
succinimide. 

4.2. Transition Metal Complexes of Diphosphinidenecyclobutenes 
As expected, DPCB 82 is a good bidentate ligand for transition metals such as chro-

mium, molybdenum, tungsten, iron, gold, palladium, platinum, rhodium. Scheme 32 
shows several typical examples (90–94) that have been analyzed in X-ray studies [97–103]. 
It is noteworthy that the molecular structure of 94 shows that the π-allyl system is per-
pendicular to the DPCB plane, which controls the stereochemistry in the catalytic reac-
tions. The details of this phenomenon are described later in this section. 

 
Scheme 32. Some DPCB–metal complexes; Tf = CF3SO2. 

The reaction of 1,2-diphenyl-3,4-bis(2,4,6-triisopropylphenylphosphinidene)cyclo-
butene (95) with pentacarbonyltungsten leads to an interesting result, as depicted in 
Scheme 33: it not only serves as a bidentate ligand to yield 97 but also it yields 96 as a 
monodentate ligand. More interestingly, the ligand serves as a side-on ligand to yield 98 
[104]. 

 
Scheme 33. Tungsten carbonyl complexes of 95; Tip = 2,4,6-i-Pr3C6H2. 
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The reaction of 1,2-diphenyl-3,4-bis(2,4,6-triisopropylphenylphosphinidene)cyclobutene
(95) with pentacarbonyltungsten leads to an interesting result, as depicted in Scheme 33:
it not only serves as a bidentate ligand to yield 97 but also it yields 96 as a monodentate
ligand. More interestingly, the ligand serves as a side-on ligand to yield 98 [104].
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4.3. Synthetic Application to Catalytic Reactions of DPCB–Transition Metal Complexes

DPCB complexes are effective catalysts for organic reactions [36,103,105–107]. Scheme 34
demonstrates some of the cross-coupling reactions—such as the Sonogashira [99] (A),
Suzuki–Miyaura (B) [105], and Migita–Kosugi–Stille (C) [108] reactions catalyzed by DPCB–
transition metal complexes—with representative examples.
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reaction, (B) Suzuki–Miyaura reaction, (C) Migita–Kosugi–Stille reaction.

Scheme 35 shows some other examples. The Ullmann-type amination reactions (A)
can be executed with a DPCB catalyst without a solvent at room temperature [109,110]. Hy-
droamination to 1,3-dienes (B) can be induced at room temperature without a solvent [103].
An enyne metathesis reaction (C) proceeds via a DPCB–gold complex 93 [101]. Cyanation
reactions (D) are widely applied to convert halobenzenes to cyanobenzenes catalyzed by
94 [111]. Ethylene polymerization (E) is catalyzed by thermally stable palladium and a
platinum DPCB-ligated catalyst such as 91 and 92 [97,100].

Molecules 2022, 27, x FOR PEER REVIEW 15 of 21 
 

 

4.3. Synthetic Application to Catalytic Reactions of DPCB–Transition Metal Complexes 
DPCB complexes are effective catalysts for organic reactions [36,103,105–107]. 

Scheme 34 demonstrates some of the cross-coupling reactions—such as the Sonogashira 
[99] (A), Suzuki–Miyaura (B) [105], and Migita–Kosugi–Stille (C) [108] reactions catalyzed 
by DPCB–transition metal complexes—with representative examples. 

 
Scheme 34. Some cross-coupling reactions catalyzed by DPCB–metal complexes. (A) Sonogashira 
reaction, (B) Suzuki–Miyaura reaction, (C) Migita–Kosugi–Stille reaction. 

Scheme 35 shows some other examples. The Ullmann-type amination reactions (A) 
can be executed with a DPCB catalyst without a solvent at room temperature [109,110]. 
Hydroamination to 1,3-dienes (B) can be induced at room temperature without a solvent 
[103]. An enyne metathesis reaction (C) proceeds via a DPCB–gold complex 93 [101]. Cy-
anation reactions (D) are widely applied to convert halobenzenes to cyanobenzenes cata-
lyzed by 94 [111]. Ethylene polymerization (E) is catalyzed by thermally stable palladium 
and a platinum DPCB-ligated catalyst such as 91 and 92 [97,100]. 

 
Scheme 35. Ullmann-type amination (A), hydroamination to 1,3-diene (B), enyne metathesis (C), 
cyanation (D), and ethylene polymerization (E) catalyzed by DPCB–metal complexes. Mes = 2,4,6-
Me3C6H2. 

Scheme 35. Ullmann-type amination (A), hydroamination to 1,3-diene (B), enyne metathesis (C), cyana-
tion (D), and ethylene polymerization (E) catalyzed by DPCB–metal complexes. Mes = 2,4,6-Me3C6H2.

A stable (π-allyl)palladium complex such as 94 (shown in Scheme 32) [103] has shown
a wide range of catalytic reactivity including in the Tsuji–Trost-type reaction that enables
allylic alcohols to yield amines via the elimination of water [36,105,106] under mild condi-
tions such as room temperature for 1 h with a 0.1 mol% DPCB–palladium catalyst.

Scheme 36 [112] shows that, starting from either from primary or secondary C4-
allylic alcohol (99 or 100), products 101 and 102 are regioselectively obtained in the same



Molecules 2022, 27, 1557 16 of 21

ratio (86:14) and the same yield (95%), indicating that (π-allyl)palladium complex 103 is a
common intermediate.
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Direct alkylation can be regioselectively achieved using carbanions from active methy-
lene compounds such as ethyl acetylacetate (105) as a nucleophile in order to formally
substitute the OH group of allylic alcohol 104 with an alkylation product (106) in a high
yield, as shown in Scheme 37 [112], where an intermediate 107 is supposed to be functional.
It is not necessary to convert alcohol 104 to a more reactive derivative (such as an ester or
halide) as an allylic starting material in advance of conventional Tsuji–Trost reactions.
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Furthermore, the reaction from a chiral alcohol 108 of 98.5 %ee yields corresponding
amine 109 of the same chirality in a 92% yield, which indicates that a double inversion
process is involved and surrounds intermediate 110 during the reaction course to control
the stereochemistry (Scheme 38) [112].
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These results indicate that DPCB ligands have a high coordination ability due to
their σ-donation/π-back donation interactions, strong π-acceptor property due to their
low-lying LUMO (π*), and unique coordination structure with planarity. In addition, the
catalysts are highly stable toward air and reusable after reactions in most cases. The above
characteristics are superior to catalysts with ligands having sp3 phosphorus or sp2 nitrogen
atoms for catalytic organic reactions.

Recently, Ozawa reported using pincer ligands such as 111–113 (Scheme 39) to activate
CO bonds in carbon dioxide, taking advantage of the frustrated lone pair (FLP) within the
ligand [113,114]. Further fundamental and applied investigation are expected to lead to
progress in research of this type of low-coordinate phosphorus ligand for ideally efficient
catalytic reactions.
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Forty years have passed since a true “phosphobenzene” was prepared for the first
time in 1981 via the steric protection methodology with an extremely bulky 2,4,6-tri-t-
butylphenyl group (Mes*). It was believed, even theoretically, that molecules such as those
with heavier main-group elements never existed as stable compounds, but various kinds of
“unusual” phosphorus compounds have been isolated and characterized by utilizing the
Mes* group. Interest in basic research on this class of compounds and synthetic applications
for organic synthesis is high. This review article was based on a plenary lecture delivered
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