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Abstract: Glioblastoma multiforme (GBM) is the most malignant form of primary brain tumour with
extremely poor prognosis. The current standard of care for newly diagnosed GBM includes maximal
surgical resection followed by radiotherapy and adjuvant chemotherapy. The introduction of this
protocol has improved overall survival, however recurrence is essentially inevitable. The key reason
for that is that the surgical treatment fails to eradicate GBM cells completely, and adjacent parenchyma
remains infiltrated by scattered GBM cells which become the source of recurrence. This stimulates
interest to any supplementary methods which could help to destroy residual GBM cells and fight the
infiltration. Photodynamic therapy (PDT) relies on photo-toxic effects induced by specific molecules
(photosensitisers) upon absorption of photons from a light source. Such toxic effects are not specific
to a particular molecular fingerprint of GBM, but rather depend on selective accumulation of the
photosensitiser inside tumour cells or, perhaps their greater sensitivity to the effects, triggered by light.
This gives hope that it might be possible to preferentially damage infiltrating GBM cells within the
areas which cannot be surgically removed and further improve the chances of survival if an efficient
photosensitiser and hardware for light delivery into the brain tissue are developed. So far, clinical
trials with PDT were performed with one specific type of photosensitiser, protoporphyrin IX, which
tends to accumulate in the cytoplasm of the GBM cells. In this review we discuss the idea that other
types of molecules which build up in mitochondria could be explored as photosensitisers and used
for PDT of these aggressive brain tumours.
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1. Introduction

The term glioma encompasses all tumours arising from the glia-like cells in the brain and spinal
cord. High grade gliomas are the most common primary malignant brain tumours in adults and
account for almost 80% of such tumours. The cell-of-origin of gliomas is still an open question and
it is thought that they may develop from several types of progenitors, including neuronal stem cells
(NSC), oligodendrocyte progenitor cells (OPCs) and astrocytes [1]. As with other cancers, factors
leading to the tumour development are multiple and not easily defined, including age, genetic family
predispositions, possibly exposure to ionising radiation, magnetic fields, pesticides, and solvents [2,3].
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In 2016, the World Health Organization (WHO) classification of primary central nervous system
(CNS) tumours was thoroughly revised and corrected, now taking into account the molecular
characteristics of gliomas [4]. Regarding gliomas, they are graded based on histological features
(anaplasia, atypia, proliferation index, and neovascularisation) into low grade gliomas (LGG) and
high-grade gliomas (HGG). LGGs include grade 1 slowly proliferative gliomas and grade 2 infiltrative
LGG. HGGs include grade 3 and grade 4 anaplastic infiltrative gliomas which are also referred to as
glioblastoma multiforme (GBM) [5].

Molecular classification does not change grading, but rather helps in making decisions regarding
the best treatment approach and predicting prognosis. According to the mutation status of the isocitrate
dehydrogenase (IDH) gene, GBM can be either IDH wild-type or IDH-mutant. IDH mutation in GBM
is frequently associated with TP53 mutation and has a generally better prognosis than IDH-wildtype
glioblastoma [6]. O6-methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme
encoded by the gene MGMT located on chromosome 10q26. Methylation of the promoter of this gene is
found in 35%–45% of HGG and is associated with a better response to chemotherapy by alkylating agent
temozolomide (TMZ) and better overall survival [6]. About a third of paediatric GBM patients have
mutations in TP53 and ATRX (Alpha thalassemia/mental retardation syndrome X-linked) genes [7]. In
addition, mutations in the promoter of TERT, a gene that encodes the catalytic subunit of telomerase,
are observed in a significant subset of GBM [8]. Other common molecular genetic alterations associated
with GBM include: phosphatase and tensin homolog (PTEN) mutations, epidermal growth factor
receptor (EGFR) amplification, cyclin-dependent kinase 4 (CDK4) amplifications, and cyclin dependent
kinase inhibitor 2A (CDKN2-A) homozygous deletion [9]. Overall, GBM are highly heterogeneous in
terms of their molecular makeup and this, combined with high genomic instability and intra-tumour
variability, greatly reduces the chances of finding a “magic bullet” drug against this type of cancer.
Further analysis of molecular diversity of GBM is outside of the scope of this review, but clearly, it will
have implications for any potential therapy, be it pharmacological or alternative.

2. The Problem

Surgical removal, field radiotherapy (60 Gy) and subsequent systemic administration of
temozolomide (TMZ) is the current standard-of-care for GBM. Whilst the bulk of the tumour can often
be resected, GBM almost always re-occur due to the rapid proliferation of infiltrative residual tumour
cells. New growth typically originates from the walls of the surgical cavity or parenchyma within
<2 cm of the tumour margin [10]. This is due to small patches of GBM, the “scout” cells, which infiltrate
the area adjacent to the tumour. Essentially in all cases, residual growth within critical regions such as
critical white matter tracts or grey matter nuclei, cannot be surgically removed without a risk of severe
neurological damage. In order to prevent or impair tumour recurrence and improve patient survival
rates, it would be necessary to cleanse the cavity and the surrounding tissue. This could improve
survival for patients but calls for a different approach, such as photodynamic therapy (PDT), using
specific sensitising agents termed photosensitisers (PS).

3. Development of the Concept of PDT

Conceptually, PDT is the use of a chemical, which is able to absorb photons in order to trigger a
process, detrimental for the tumour cells. Why should development of PDT for GBM be considered?
The first obvious answer is that PDT, in principle, may be effective against some cancers, based on results
of experiments in-vitro, rodent models, and clinical studies. Examples of cancers, where encouraging
results with PDT have been obtained in-vitro include breast cancer [11], oesophageal cancer [12], liver
carcinoma [13], and colorectal cancer [14]. Further information on in-vivo application of PDT can be
found elsewhere [15]. Second, in spite of all the advancements in understanding of the molecular
nature of GBM, the standard of care today (surgery, chemotherapy, and radiotherapy, known as Stupp
protocol [16]) has not changed in the past 15–20 years and prognosis has not improved significantly
since then. This indicates a crucial need for alternative, novel strategies of treatment, especially after
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molecular targeted therapies have thus far failed to show sufficient efficacy in clinical studies [17]. The
third reason is that PDT does not (at least not directly) rely on a specific GBM marker or molecular
signature. GBM cells are known for their genetic instability and intra-tumour heterogeneity which is the
major reason for failure of targeted therapy in GBM. In contrast, preferential action of PDT on cancers
usually relies on common, ubiquitous features of tumour cells or the tumour microenvironment such as
immaturity of neovasculature, poor lymphatic drainage, and acidic pH [18]. Therefore, this therapeutic
approach warrants consideration as it may circumvent intra- and inter-tumour genetic heterogeneity.

Apparently, the first attempt to use PDT was conducted by Friedrich Meyer–Betz in 1913 with
photosensitiser hematoporphyrin [19]. Many later studies reported that injection of hematoporphyrin
results in fluorescence of tumour cells. In 1960, a group of scientists from Mayo clinic developed the
first PS, hematoporphyrin derivative (HpD), with a greater degree of tumour localisation [20]. At
that point it was mainly used to diagnose tumours of the bladder, bronchus, and oesophagus. Later
came the realisation that visualisation of the tumours is not the only possible application for the PS. In
1966, treatment of cancers using PS, now known as PDT, was first applied to breast cancer, using HpD.
Since then, many studies have reported attempts of PDT with HpD (or its more active commercial
form; photofrin II) in many types of cancers [20–23]. For brain tumours, PDT was first applied in 1972
when Diamond et al. [24] demonstrated phototoxicity of hematoporphyrin against gliomas in vivo
and in vitro. Porphyrin PDTerapy delayed the growth of gliomas that were implanted in rats. Tumour
growth was suppressed for 10–20 days, but eventually, viable areas from deeper regions of the tumours
began growing again [24]. A selection of further in-vivo studies that attempted to develop PDT are
listed in Table 1.
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Table 1. A selection of in-vivo studies which utilised photodynamic therapy (PDT) for glioblastoma multiforme (GBM) therapy.

Reference Number of Treated
Glioblastomas

Photosensitiser Light
Median Survival
Time (Months)Trade Name Agent Dose Localisation Wavelength

(nm)
Energy Density

(J/cm2)

Perria et al.
(1980) [25] Not defined Photofrin®

Hematoporphyrin
derivative (HpD) 5 mg/kg Cell membrane;

mitochondria 628 720–2400 6.9

Povovic et al.
(1995) [26]

Newly diagnosed,
38 Recurrent, 40 Photofrin®

Hematoporphyrin
derivative (HpD) 2–2.5 mg/kg Cell membrane;

mitochondria 628 70–260 Newly diagnosed, 24
Recurrent, 9

Rosenthal et al.
(2003) [27]

Newly diagnosed, 7
Recurrent, 9 BOPP Boronated

porphyrin 0.25–8 mg/kg Various, including
mitochondria 630 25–100 Newly diagnosed, 7

Recurrent, 11

Stylli et al.
(2005) [28]

Newly diagnosed,
31 Recurrent, 55 Photofrin®

Hematoporphyrin
derivative (HpD) 5 mg/kg Cell membrane;

mitochondria 628 70–240 14.3

Muller and Wilson,
(2006) [29]

Newly diagnosed,
12 Recurrent, 37 Photofrin®

Hematoporphyrin
derivative (HpD) 2 mg/kg Cell membrane;

mitochondria 630 Mean, 58 Maximum,
150 7.6

Kostron et al.
(2006) [30] Recurrent, 26 Foscan®

mTHPC
metatetrahydro
xyphenylchlorin

0.15 mg/kg
Golgi apparatus,

endoplasmic reticulum,
and mitochondria

630 20 Recurrent, 8.5

Stepp H. et al.
(2007) [31]

Newly diagnosed,
20 Levulan 5-ALA 20 mg/kg mitochondria 633 200 mW/cm2 Newly diagnosed,

15.2

Beck T.J. et al.,
(2007) [32] Recurrent GBM, 10 Levulan 5-ALA 20 mg/kg mitochondria 633 Total 4320–11,520 J

(200 mW/cm) 15

Eljamel (2008) [33] Newly diagnosed,
13 Photofrin®

Hematoporphyrin
derivative (HpD)

5-ALA
2 mg/kg Cell membrane;

mitochondria 630 100 × 5 sessions
Newly diagnosed,

Mean survival
52.8 weeks

Kaneko et al.,
(2008) [34] Total, 35 Photofrin®

Hematoporphyrin
derivative (HpD) 2 mg/m2 Cell membrane;

mitochondria 630 180 Total, 20.5

Akimoto et al.
(2012) [35]

Newly diagnosed, 4
Recurrent, 6 Laserphyrin® Talaporfin sodium 40 mg/m2 - 664 27 Newly diagnosed, 31

Reccurent, 9

Lyons M. et al.
(2012) [36]

Total, 73 Photofrin®
Hematoporphyrin
derivative (HpD) 2 mg/kg Cell membrane;

mitochondria
630 100 Mean survival

62.9 weeks
Levulan 5-ALA

Johansson et al.
(2013) [37] Total, 5 Levulan 5-ALA 20–30 mg/kg Cell membrane;

mitochondria 630 720 -

Muragaki et al.
(2013) [38]

Newly diagnosed,
13 Laserphyrin® Talaporfin sodium 40 mg/m2 - 664 27 Newly diagnosed,

24.8

5-ALA, 5-aminolevulinic acid.
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4. Principles of PDT

PDT requires a light source, a PS, and oxygen. The majority of PS reported in the literature are
tetrapyrroles consisting of four pyrrole or pyrrole-like rings [39]. They can be classified according
to their chemical structures into four major groups: porphyrin derivatives, chlorin derivatives,
bacteriochlorin derivatives, and phthalocyanine derivatives [39]. The PS localises to target cells and,
when subjected to light at a certain wavelength, absorbs the photon. This brings electrons into the
excited state and eventually triggers photochemical reactions of two types. In the first type of reactions,
interaction occurs directly with the molecules of the biological substrate, which ultimately leads to the
formation of free radicals. In the second type, an excited PS interacts with an oxygen molecule to form
singlet oxygen, which is cytotoxic to living cells since it is a powerful oxidising agent [40] (Figure 1).
However, singlet oxygen only exists for <4 µs and migrates for a maximum of 1 micrometer, therefore
not causing much harm to the adjacent healthy cells, or even organelles within the same cell [41].
Thus, the downstream consequences of PDT are directly associated with the pattern of intracellular
accumulation of the PS.

Figure 1. Basic mechanisms of photodynamic therapy (PDT) and its potential targets in mitochondria.
MMP—Mitochondrial membrane potential, MPTP—mitochondrial transition pore.

Three main mechanisms are responsible for the PDT detrimental effect on tumours. Firstly,
generation of reactive oxygen species (ROS) either in the cytoplasm or mitochondria directly damages
proteins, lipds, DNA, and other molecules, resulting in cancer cell death mainly due to the activation of
apoptosis. Second, some agents used for PDT can induce coagulation and thrombosis of microvessels,
resulting in ischemia, necrosis and tumour infractions, this was noted in all studies with 5-aminolevulinic
acid (5-ALA). Finally, PDT may activate immune cells and/or stimulate cytokines to elicit an immune
response against tumour cells [19,42].

Photons absorbed by the PS transiently move electrons into higher energy orbits, changing their
state from ground (SO) to excited (SE). Relaxation into the SO can lead to fluorescence but also to the
transfer of energy to molecular oxygen, which normally exists in so-called triplet state (3O2) where the
two nuclei are sharing a pair of electrons. This leads to formation of highly reactive singlet oxygen
(1O2) with a very short life span. The other family of products are reactive oxygen species (ROS) which
are also highly reactive. In case of mitochondria, the key consequences are loss of mitochondrial
membrane potential (MMP), opening of the mitochondrial transition pore (MPTP), leading to release
of cytochrome C, activation of caspases and damage to the mitochondrial DNA. As the mitochondrial
genome has very limited capacity for reparation, this eventually leads to the demise of the mitochondria
and depletes the cell of energy. The mechanisms of PS activation depicted here are illustrated also in
Akimoto [41], however mitochondria is somewhat special in that if a PS builds up there, mitochondrial
DNA and proteins appear extremely close to the site of ROS and singlet oxygen production. We believe
that, by targeting PDT to mitochondria, one can achieve a powerful PDT effect.
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5. PDT of GBM with Porphyrins

To date, the vast majority of clinical approvals for PDT are for “superficial” or “luminal”
pathologies, disorders of skin (e.g., actinic keratosis) and retina (e.g., age-related macular degeneration),
and early bronchial or oesophageal cancer [43–45]. This is due to the simple fact that the physical
principle of PDT is more applicable to cells located on the surface rather that deeper ones. In addition,
local application of PS to the surface helps to avoid systemic toxicity. Several clinical trials are currently
ongoing to evaluate PDT efficacy and safety in different types of cancers, including breast, prostate,
lung, bile duct, and also GBM [46]. Photofrin, talaporfin, and 5-ALA have been used both in research
and clinical trials [47]. Fluorescence induced by 5-ALA was used to detect infiltrative tumour during
surgery by Stummer W (1998) [48]. Its use in florescence guided surgery is associated with greater rates
of complete excision of tumour tissue and with significantly prolonged progression free survival and
currently 5-ALA, under the trade name Gliolan©, is approved by the FDA and widely used for imaging
tumour tissue including GBM [47]. Levels of florescence detected from an area via intra-operative
imaging were strongly correlated with the histological presence of tumour tissue [47]. 5-ALA is an
endogenous non-proteinogenic amino acid, which serves as a precursor of the fluorescent and mildly
phototoxic protoporphyrin IX (PpIX) in the heme biosynthesis pathway. The conversion takes place in
the mitochondria but PpIX is not retained there. PpIX appears to selectively accumulate in tumour
tissue and emits red fluorescence when illuminated by deep blue light, while normal brain tissue is not
fluorescent [48–50].

Work by two groups needs particular attention in the context of using 5-ALA and PpIX for PDT of
GBM. German scientists [32,37,47,51] have explored this modality in experimental and clinical settings
and combined it with the stereotaxic placement of light delivery fibres into the brain. Moreover, they
even used the same fibre optics to measure fluorescence from the brain tissue. In their work they
chose to activate PpIX by red light (635 nm) delivered from a laser source. The choice of such long
wavelength was motivated by the better penetration of red light in the brain tissue but clearly the
efficiency of excitation was reduced since the absorption peak of PpIX is 402 nm, which is at the
lower limit of visible light, while its peak of emission is 631 nm [52,53] although Mahmoudi et al. [47]
have also identified a minor peak at 635 nm. In these studies, substantial destruction of tumour
tissue was observed in conjunction with signs of vascular damage and necrosis. This could reflect
a rather large amount of energy dissipated in the brain tissue. For example, in the Beck et al. 2007
study [32], some patients received over 11,500 J of light energy. In fact, laser application alone caused
the same degree of tissue destruction in the rat model, with and without loading with 5-ALA [51].
The other group from Japan [53,54], also actively looked into the use of porphyrins in GBM. Overall,
their approaches are similar to what was explored in studies mentioned above [31,37,47,51]. Possible
therapeutic benefits were noticed in some patients but overall, no convincing conclusions have been
reached and the attention more recently shifted to further perfecting the use of 5-ALA and porphyrins
for intra-operative GBM diagnostics [53]. It is also not entirely clear whether the tumour destruction
noted in some of these studies was due to the genuine PD effect (e.g., generation of ROS or singlet
oxygen) or rather due to a less specific effects of heat which caused thrombosis and destruction of blood
vessels. In 2017 a clinical trial was initiated to evaluate the use of 5-ALA as a PDT agent (INDYGO,
NT number: NCT03048240) where illumination of 5-ALA-stained tissue is added to the conventional
standard of care protocol. The results have not yet been posted and evidence for added value of this
approach is currently still lacking [55]. Another trial with 5-ALA, which is currently registered at
ClinicalTrials.gov (NCT03897491) by Photonamic GmbH&Co.KG, “PD L 506 for Stereotactic Interstitial
Photodynamic Therapy of Newly Diagnosed Supratentorial IDH Wild-type Glioblastoma”, is not
yet recruiting.

GBM is not the only possible application for 5-ALA. For example, it has tested for treatment
of tumours of the gastrointestinal tract by J Regula et al. [56]. PDT resulted in superficial necrosis
of the mucosa in the areas exposed to light [56]. In vitro study in malignant paediatric tumour cell
lines including medulloblastoma (DAOY, UW228), pNET (PFSK-1) and rhabdoid tumour (BT16) lines,
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demonstrated that PDT with 5-ALA (50 µg/mL) resulted in death of tumour cells, but not of control
cells (in absence of 5-ALA or laser irradiation) [57].

6. Technical Aspects of Light Delivery into the Brain

Hardware for PDT in the brain has been reviewed elsewhere [58]. Briefly, light sources could
be of non-coherent (various lamps and light emitting diodes) and coherent (laser) type. From the
practical point of view, beams from a lamp cannot be sent down a fine optical fibre (less than a few
mm2) while lasers allow exactly that and light emitting diodes being somewhere in the middle. For
this reason, light from the bulbs, such as used for intraoperative visualisation of 5-ALA staining is
typically delivered via liquid light guides with the cross section of >1 cm2. Obviously, such thick
objects cannot be inserted into brain tissue without causing damage.

Control of light intensity and availability of pulsatile mode are also limited when using lamps
and require additional optical elements, while solid state lasers often can be controlled directly using
TTL-pulses or regular PC-compatible interfaces, such as USB ports. The spectrum of the light source is
also important, specifically, longer wavelengths (infra-red part of the spectrum) are a direct source of
heat and this may be very damaging to healthy brain parenchyma.

A very interesting approach is the interstitial PDT (iPDT) implemented in Beck et al. [32] and
Johansson [37], studies where light is delivered inside the brain tissue rather than applied to the surface.
Clearly, simply increasing the power dissipated directly from the tip of a fibre is not the way forward
because firstly, a narrow beam does not allow to saturate the volume of tissue with light. Secondly,
any wavelength which can realistically excite fluorescence (e.g., <650 nm) gets absorbed within the
first few mm [47] where the energy is dissipated as heat. Hence the PDT may easily become a heat
shock to the brain, which is bound to cause necrosis, oedema and perhaps vascular thrombosis with
potentially risky consequences. It is therefore very interesting that Beck et al. [32] have used cylindrical
light diffusers, which allowed to illuminate a substantial volume of brain tissue from an array of such
optical elements [37]. These assemblies were stereotactically placed under X-ray control into the brain
of patients which was possible due to the presence of special X-ray markers on them. Overall, this type
of hardware seems to offer advantages. These studies also prove that placement of several fine optical
fibres into the tissue of the brain is possible and is well tolerated.

The wavelength of light is of principle importance. For instance, tissue penetration of 630 nm
is 3–4 times greater than of 400 nm and, in general, the longer the wavelength of light, the better it
spreads. On the other hand, shorter wavelength photons carry much more energy and are more potent
as exciters. For example, a blue photon at 402 nm carries 4.94 × 10−19 joules while a red photon at
623 nm - 3.14 × 10−19. In other words, a 402 nm photon carries ~1.6 times more energy. This has direct
implications for the type of reactions such photons can initiate in the molecules which absorb them.

Interestingly, according to the mathematical model, singlet oxygen yield is the highest at 510 nm, it
is similar at 532 nm and 488 nm, but very low at 578 nm and 630 nm. This factor could counterbalance the
less efficient penetration of light of <600 nm [58], potentially indicating that the optimum wavelength
lies somewhere within the range of 510–550 nm, which is yellow-green light. This consideration
is supported by the known ability of many endogenous molecules (for example, flavonoids and
porphyrins) to absorb blue light (<500 nm), which inevitably limits penetration and leads to greater
off-target effects [59]. In other words, the optimum wavelength should, first, allow reasonable light
penetration (>500 nm) and, second, potently generate singlet oxygen (490–550 nm). Finally, infra-red
light (>700 nm) when absorbed, only generates heat and can easily cause thermal damage.

7. Challenges for Development of PDT for GBM

Laboratory research on application of light for therapy of GBM has not yet produced conclusive
results but this does not mean that this strategy is not viable. Most, if not all, PDT experiments
on gliomas used commercially available glioma cell lines [60–67]. As is the case with many cancer
cell lines, there is always uncertainty about the origin of these cells, about possible contamination
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with other cell lines (e.g., HeLa cervical cancer cells, a common contaminating cell), and the effect of
culturing which may lead to the accumulation of mutations with every cell division [68]. For example,
in a recent study, commonly used glioma cell lines were tested for DNA fingerprints. Among the
39 lines tested, 3 lines were found to be misidentified as glioma lines and two more lines were found to
be cross-contaminated [69]. In addition, short tandem repeat profiling of two U87 cell lines purchased
from two different companies revealed non-identical origin of these cells and only one of them had
a genotypic profile identical to the U87 profile published in Cell Lines Service [70]. All this casts a
shadow of doubt on the pathophysiological relevance and accuracy of representation of many of the
in vitro cell models. As a consequence, the relevance of the reported effects of PDT may be questioned.
Therefore, it is much preferable to utilise only primary, patient-derived and validated GBM cell lines,
especially those isolated from the invasive margin of GBM [71].

There is also an important constraint imposed by the involvement of oxygen in photodynamic
reactions. Hypoxia is an acknowledged feature of the GBM microenvironment. In vitro studies usually
neglect this fact and are hardly ever performed under conditions of limited oxygen levels to mimic
the GBM microenvironment. This will result in over-estimation of PDT effectiveness and inability to
accurately predict its efficacy in patients. Even though, in real life, PDT for GBM could be applied
directly to the exposed tumour bed after resection, the previous state of chronic hypoxia and the
resultant overexpression of hypoxia inducible factor 1 (HIF-1) and downstream effectors in GBM may
alter the tumour cells’ response to oxygen-dependent killing mechanisms. To aid saturation of tissue
with oxygen, Beck et al. 2007 [32] ventilated patients with 100% O2. However, some researchers argue
that type 1 photodynamic reactions (unlike type 2) are not oxygen-dependent and would still allow
PDT effect to develop in case of hypoxic conditions [72].

PDT in published clinical studies on GBM typically consisted of surgery with or without PDT (test
arm vs. control arm). These early phase studies suggested a survival advantage for test arms compared
to controls. However, side effects after PDT were severe and included deep venous thrombosis,
neurological deficits, and multi-organ failure [33,35,53,73]. Although PDT was perhaps effective, it
is very difficult to distinguish whether reported side effects are caused by the surgery or the PDT,
or simply complications of the disease itself. The small sample size in these clinical studies further
complicates the interpretation of results. Brain oedema could be controlled by decreasing the light
dose or by applying the emerging concept of metronomic PDT, in which PS and light are given in
continuous, low-dose fashion over extended periods of time. This was found to decrease collateral
damage, coagulation, necrosis and/or oedema of the surrounding tissue [74], possibly due to the lower
chances of an irreversible thermal damage.

From the available literature, it appears that so far, the efficacy of porphyrins as exciters for PDT
remains uncertain, although they greatly aid the detection of tumour margins. In fact, it is hard to
distinguish whether the damage to the tumour caused in the animal or human experiments was due
to the porphyrins at all. For example, in previously mentioned Olzowy et al. experiments [51], red
(633 nm) light caused the same degree of damage irrespective of the loading with 5-ALA. It seems that
a different combination of the photosensitiser and wavelength could produce better results, possibly
via not focusing only on selective biotransformation of 5ALA in the GBM but exploiting some other PS
and features of the tumour cells.

The other area of important development is the hardware for light delivery. The important
key steps have already been made by introduction of the interstitial PDT. This method seems to
be the only feasible strategy to deliver light to the GBM cells underneath the surface of the cavity
left after the debulking. Stereotaxic placement of the arrays of special light diffusers may help to
illuminate the required volume of the parenchyma without causing dangerous mechanical damage to
the surrounding tissue.
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8. Mitochondria as a Target for PDT

Although the idea to target mitochondria for cancer therapy is not new, it has not been yet
convincingly demonstrated in the context of PDT. Nevertheless, some studies suggest that this may be
a feasible strategy.

The best known group of mitochondrially targeted PS are the “delocalised lipophilic cations” such
as rhodamine-123 (Rhod-123), known for its ability to accumulate in mitochondria. Its absorbance
peaks at 530 nm (green light). Castro D.J. et al. used human carcinoma cells loaded with Rhod-123
(1 µg/mL for 1 h) and demonstrated that PDT affected cell division but not cell viability [75]. The
authors argued that the effect was achieved by the photodynamic effect and not temperature increase.
Energy density was <950 J/cm2 and temperature was kept below 40 ◦C. Powers et al. used cultured
glioma line U-251MG. Cells were incubated for 30 min with Rhod-123 (10 µg/mL) and then irradiated
using variable power densities (10 to 300 mW/cm2) and variable energy densities (0 to 200 Joules/cm2)
of blue-green light between 488 and 514 nm, using a continuous-wave argon laser [76]. A cytotoxic
effect was observed when power densities of light were 100 mW/cm2. However, with an increase in
exposure time, a logarithmic decrease in cell survival occurred, indicating that the photochemical effect
depended on the concentration of Rhod-123 and the duration of exposure to light much more than the
intensity of light [76]. There is some evidence that carcinoma cells have an increased rhodamine-123
uptake [77] but it is not clear why this is or whether this is the case for other tumours, such as GBM. It
should be noted that although Rhod-123 can accumulate in mitochondria, it is certainly not specifically
localised there, and sulforhodamine 101, commonly used to stain astrocytes in-vivo, gives strong
cytoplasmatic fluorescence [78].

The other group of PS that could affect the mitochondria are porphyrin derivatives, including first
generation PS HpD and photofrin. The first clinical application was demonstrated by Perria et al. in
1980 with HpD [25]. HpD act on mitochondria to reduce cytochrome C activity [79] and affect
mitochondrial respiration, oxidative phosphorylation, and concentration of Ca2+ [80]. Second
generation photosensitisers include Temoporfin (trade name Foscan). In myeloid leukaemia cells,
temoporfin was reported to be present in mitochondria and light activation with constant light (band
of approximately 500–800 nm) caused mitochondrial damage and the release of cytochrome C [81].
At the same time, Temoporfin clearly accumulated in a wide range of cellular structures and vesicles
and therefore cannot be seen as a mitochondria-selective PS. Whether any of these PS can be selective
to GBM cells compared to healthy tissue is not clear. The cellular effects caused by photoactivation
of 5-ALA mentioned above are not well studied and might or might not be related to mitochondrial
damage. Moreover, 5-ALA can induce Ca2+-dependent swelling of the mitochondria even without
photoactivation [82].

9. Conclusions

The success of PDT will depend on the ability to selectively damage GBM cells compared to
normal constituents of the brain such as astrocytes and neurones. How can this be achieved? We
believe that the mitochondrial membrane potential (MMP) could be used to preferentially build up
PS in GBM mitochondria. MMP is generated by proton pumps (complexes I, III, IV) which create an
electrochemical gradient between cytoplasmic and inner sides of the membrane. This transmembrane
electrical gradient together with proton gradient form the transmembrane potential of hydrogen ions
which is essential for oxidative phosphorylation reactions and synthesis of ATP in the cell [83]. It
is known that the mitochondrial potential of healthy cells ranges from −108 and −159 mV, with a
mean value of −139 mV while mitochondria in cancer cells are much more hyperpolarised and have a
potential value around −210 mV [84]. Importantly, hyperpolarisation of mitochondria seems to be a
generic landmark feature of tumour cells, including GBM. Therefore, there is a possibility that cationic
PS, which are driven into the mitochondria by their membrane potential could open a therapeutic
window by preferentially damage GBM cells over brain glia or neurones.
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It is also important to deliver sufficient light energy into the tissue while avoiding use of the
blue/deep-blue-UV spectrum or using light sources which significantly heat up tissue such as the
infra-red part of the spectrum. Critically, the light needs to be delivered into the parenchyma because
even the most generous estimates of light penetration into brain tissue are in the range of single
millimetres while, in order to cleanse the tumour infiltration from the wall of the surgical cavity, light
needs to reach PS in cells at depths of up to 2 cm. As mentioned above, this idea has already been
implemented by W. Stummer’s and F.W. Kreith’s groups [32] and also by K. Shimizu and colleagues [53].
Moreover, light can be delivered via multiple optical fibers with cylindrical diffusers, so that the
collective array effectively excites a significant volume of tissue [32]. Mathematical models and further
hardware development will help to further improve this critical aspect of PDT [85].

10. Perspectives

GBM remains one of the deadliest cancers known and there is an acute need for new methods
of therapy. Primary tumours often localise relatively superficially in the brain and can be removed.
Therefore, it is almost surprising that such surgical treatment combined with radio therapy and
temozolomide, which is the current standard of care, is so unsuccessful. The key reason for the low
survival rates of patients with GBM is local recurrence, which happens in the vast majority of cases
and is caused by the infiltrating GBM cells. Although surgical techniques such as fluorescence-guided
surgery has allowed intra-operative real-time visualisation of tumour cells, infiltrating GBM cells
cannot be mechanically removed, in most cases, because they spread into areas which are too risky
to surgically destroy, for example critical white matter tracts. Therefore, the task for the future is to
develop effective strategies to cleanse the infiltrating GBM cells from the parenchyma immediately
adjacent to the surgical wound. It is here PDT could find its niche.
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