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Our initial lack of understanding of the 
pathogenesis of coronavirus disease 2019 
(COVID-19), a previously unknown viral 
disease, fueled a devastating pandemic. 
The development of tools to identify and 
dissect the immune response to its causa-
tive agent, severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), was 
the first step in contending with the worst 
humanitarian catastrophe since the 1918 
influenza pandemic.

Within months of its emergence, the 
novel coronavirus now known as SARS-
CoV-2 was identified and sequenced. 
This rapidly led to the development of a 
multitude of platforms to detect SARS-
CoV-2 nucleocapsid protein, spike pro-
teins, and spike protein receptor-binding 
domain (RBD) antibodies and assess 
antibody function with live virus and sur-
rogate neutralization assays. Deployment 
of these platforms led to a steady accumu-
lation of data on the SARS-CoV-2 anti-
body response. In aggregate, these data 
associate the magnitude of the antibody 

response with the severity of COVID-19; 
hospitalized patients exhibit higher re-
sponses than nonhospitalized patients, 
and severely ill hospitalized patients ex-
hibit higher responses than less critically 
ill patients [1–4].

A central question about any infectious 
disease is whether survivors are immune 
to subsequent infection, and if so, for how 
long. Population-based analyses of SARS-
CoV-2 infection show that previously 
infected individuals have a markedly re-
duced risk of infection (84% in 1 study 
[5]) compared with those without prior 
infection [5–9]. While the methods, time 
of sample collection, and documentation 
of infection in these studies may stimu-
late debate, they provide an important 
and biologically plausible link between 
prior SARS-CoV-2 infection and protec-
tion from subsequent infection.

As evidenced by the incontrovertible 
historical success of convalescent serum 
for pandemic influenza and meningitis 
[10] and vaccination to prevent smallpox, 
polio, measles, mumps, rubella, and vari-
cella, specific antibody has long been 
recognized as the central mediator of 
protection against viral infections. For 
COVID-19, the triumph of SARS-CoV-2 
vaccines in preventing severe disease and 
death [11–13], the ability of monoclonal 
antibodies to prevent disease progression 
in individuals with early disease [14, 15], 
and the promising signals of efficacy of 

high-titer convalescent plasma used early 
in disease [16, 17], provide indisputable 
evidence that specific antibody mediates 
protection against COVID-19.

The duration (durability) of protec-
tion conferred by newly introduced spike 
protein-based vaccines may depend on 
their ability to induce lasting T- and B-cell 
memory. Reassuringly, SARS-CoV-2 in-
fection induced durable spike protein 
antibody and B- and T-cell memory for 
≥8 months across a spectrum disease se-
verity [4]. The stunning success of SARS-
CoV-2 vaccines owes to the robust spike 
protein and neutralizing antibody re-
sponses they elicit. In providing an im-
mediate first line of defense, neutralizing 
antibodies are likely to induce rapid viral 
elimination. The extraordinary effective-
ness of SARS-CoV-2 vaccines provides 
proof of the concept that SARS-CoV-2 
antibodies mediate viral control. This is 
underscored by accumulating evidence 
that, compared with seronegative indi-
viduals, those who are SARS-CoV-2 im-
munoglobulin (Ig) G seropositive have 
substantially reduced rates of subsequent 
infection [9, 18], albeit for unknown 
duration.

It is estimated that >2 000 000 people in 
the United States were hospitalized with 
COVID-19 between August 2020 and 
April 2021 (https://covid.cdc.gov/covid-
data-tracker/#new-hospital-admissions), 
and new cases and hospitalizations 
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continue to surge in some areas despite 
increased vaccine availability and uptake. 
Patients with COVID-19 who require 
hospitalization are more likely to be eld-
erly, belong to racial and ethnic minor-
ities, and/or have comorbid conditions 
that increase the risk of disease progres-
sion and death [19, 20]. As such, their 
SARS-CoV-2 antibody responses may 
provide new insights into SARS-CoV-2 
pathogenesis that may in turn inform 
vaccine and treatment strategies.

Betton and colleagues investigated 
the durability of SARS-CoV-2 anti-
body responses of recovered patients 
who were hospitalized with COVID-
19 pneumonia [21]. The study cohort 
included 107 patients enrolled in the 
French Covid Cohort, in whom nucleo-
capsid protein (NP) IgG, spike protein 
RBD (S [RBD]) IgG, and SARS-CoV-2 
neutralization with the S-fuse platform 
[22] were measured 3 and 6  months 
after hospital discharge. The patients 
had a median age of 58 years; 51% had 
risk factors for severe COVID-19, 10% 
were immunosuppressed, 33% required 
intensive care unit (ICU) care, and 14% 
required mechanical ventilation. A sig-
nificantly higher proportion of patients 
requiring ICU care than those who did 
not received anti–interleukin 6 anti-
body (29% vs 10%) or corticosteroids 
(9% vs 3%). NP IgG, S (RBD) IgG, and 
SARS-CoV-2 neutralization were sig-
nificantly higher at 3 than at 6 months. 
Either NP or S (RBD) IgG was detect-
able in 104 of 107 patients at 6 months 
after discharge, and some degree of 
neutralization was present in all serum 
samples. However, NP IgG and neu-
tralization were significantly higher in 
patients who required mechanical ven-
tilation or ICU care than in those that 
did not require either.

Given the association between NP 
IgG, COVID-19 severity, and mor-
tality rates [23], NP IgG in the cohort 
studied by Betton et  al may be a proxy 
for viral load and nucleocapsid expres-
sion. Early in the pandemic, NP IgG 
was shown to be correlated with disease 

severity, nasopharyngeal viral load, and 
prolonged SARS-CoV-2 shedding from 
multiple tissues [2]. The latter suggests 
that the marked fall in NP IgG 6 months 
after discharge reported by Betton et al, 
especially in previously mechanically 
ventilated patients, may reflect clear-
ance of persistent virus or viral antigens. 
Although coronaviruses are not known 
to exhibit classic latency [24], COVID-
19 is too new a disease for us to know 
whether tissue persistence of SARS-
CoV-2 and/or its antigens contrib-
utes to serological or B-cell memory. 
Nonetheless, it is interesting to speculate 
that antigen persistence in the lungs or 
gastrointestinal tract may stimulate resi-
dent memory B cells to provide a first 
line of defense against SARS-CoV-2 
[25, 26]. Notably, several investigator 
groups, including a group that identified 
SARS-CoV-2 in gastrointestinal tissue 
[27], have reported continued evolu-
tion of the SARS-CoV-2 memory B-cell 
response for months after infection, as 
evidenced by ongoing somatic mutation, 
increased neutralization potency, and 
breadth [27, 28].

Serum S (RBD) IgG from the co-
hort reported by Betton et  al exhibited 
less change than NP IgG between 3 and 
6  months and did not differ as a func-
tion of clinical status. Although spike 
protein is less abundant than nucleo-
capsid, S IgG was stable up to 8 months 
after COVID-19 in a cohort of hospital-
ized and nonhospitalized patients, with 
levels paralleling disease severity [4]. 
In an elegant systems serology model, 
COVID-19 survival was linked to a sig-
nature of S IgG functions, including 
antibody-dependent phagocytosis and 
cellular cytotoxicity [23]. Thus, in con-
cert with neutralization, S IgG may 
enhance viral clearance and dampen 
inflammation [29]. Antibody-mediated 
immune modulation may be beneficial. 
A  study that linked survival of hospi-
talized patients to a higher ratio of neu-
tralizing to total RBD IgG [3] found 
that levels of RBD IgG were lower in 
patients who received tocilizumab or 

corticosteroids, and neutralization was 
reduced in those who received cortico-
steroids [30]. This raises the concern that 
immunosuppressants may compound 
COVID-19 immunosuppression and im-
pair SARS-CoV-2 antibody affinity mat-
uration and the development of durable 
B-cell memory.

The results of Betton et  al extend ex-
isting data associating SARS-CoV-2 
antibody levels with disease severity to 
hospitalized patients with COVID-19 
pneumonia 6  months after discharge. 
Reassuringly, they also showed that neu-
tralization of the B1.1.7 and P0.1 variants 
of concern was comparable to that of the 
D614G variant, while, as expected, neu-
tralization of B0.1.351 was significantly 
less. This underscores the fact that the 
natural polyclonal SARS-CoV-2 antibody 
response consists of a diverse collection 
of antibodies recognizing a multitude of 
SARS-CoV-2 determinants, serving as a 
reminder that individuals who recover 
from infection with SARS-CoV-2 variants 
have antibodies specific to these strains in 
their serum [31]. Given that seropositive 
SARS-CoV-2 antibody status is associated 
with a reduced risk of SARS-CoV-2 in-
fection, it is comforting that S (RBD) IgG 
and neutralization are durable in serum 
samples from previously hospitalized pa-
tients. However, it must be noted that, at 
present, we know neither the amount nor 
the exact function or epitope specificity 
of SARS-CoV-2 antibodies that mediate 
protection against SARS-CoV-2 acquisi-
tion (infection) or disease. Given animal 
models showing SARS-CoV-2 antibody 
protection against pneumonia, but not 
the nasopharynx [32–34], it should be 
noted that protection may be tissue spe-
cific and certain types of antibodies may 
mediate protection in one tissue but not 
another.

It has been more than a year since the 
emergence and global spread of pan-
demic SARS-CoV-2, which devastated 
humanity and overwhelmed healthcare 
systems worldwide. The staggering 
amount of new knowledge gained since 
the onset of the pandemic is a celebration 
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of humanity and science. We have learned 
that antibody plays a critical, if not indis-
pensable, role in early viral elimination, 
and while the magnitude and durability 
of the response are greatest in those who 
were the sickest, even mild COVID-19 
elicits durable SARS-CoV-2 memory B 
and T cells, though serum antibody may 
wane [4, 27, 35]. We now have highly 
effective vaccines that elicit robust anti-
body responses and prevent severe dis-
ease and death, but treatment options 
for patients hospitalized with COVID-
19 remain extremely limited. While 
neutralizing monoclonal and vaccine-
elicited neutralizing antibodies prevent 
progression of early COVID-19, anti-
body functions that induce clearance of 
viral antigens and dampen inflammation 
may be needed for efficacy against estab-
lished disease [29]. Given the continued 
dearth of treatment options for hospi-
talized patients with COVID-19 and 
the diverse functions of SARS-CoV-2 
antibodies [23], further analysis of the 
effect of SARS-CoV-2 antibodies on 
SARS-CoV-2 pathogenesis and biology 
are warranted.
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