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DNA N4-methylcytosine (4mC), an epigenetic modification found in prokaryotic and eukaryotic species,
is involved in numerous biological functions, including host defense, transcription regulation, gene
expression, and DNA replication. To identify 4mC sites, previous computational studies mostly focused
on finding hand-crafted features. This area of research, therefore, would benefit from the development
of a computational approach that relies on automatic feature selection to identify relevant sites. We here
report 4mC-w2vec, a computational method that learned automatic feature discrimination in the
Rosaceae genomes, especially in Rosa chinensis (R. chinensis) and Fragaria vesca (F. vesca), based on dis-
tributed feature representation and through the word embedding technique ‘word2vec’. While a few
bioinformatics tools are currently employed to identify 4mC sites in these genomes, their prediction per-
formance is inadequate. Our system processed 4mC and non-4mC sites through a word embedding pro-
cess, including sub-word information of its biological words through k-mer, which then served as
features that were fed into a double layer of convolutional neural network (CNN) to classify whether
the sample sequences contained 4mCs or non-4mCs sites. Our tool demonstrated performance superior
to current tools that use the same genomic datasets. Additionally, 4mC-w2vec is effective for balanced
and imbalanced class datasets alike, and the online web-server is currently available at: http://
nsclbio.jbnu.ac.kr/tools/4mC-w2vec/.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Epigenetics refers to the heritable changes in gene function that
are not related to modifications of the DNA sequence itself [1]. DNA
methylation is one of the most widely known epigenetic marks, as
it plays a vital role in various critical biological process, including
changes in chromatin structure, ensuring the stability of DNA,
gene-expression control, DNA conformation, X-chromosome inac-
tivation, gene regulation, cellular differentiation, and cancer pro-
gression [2–5]. One of the most widespread DNA methylation
modification is N4-methylcytosine (4mC), it was primarily
described in 1983 [6] which is methylated on the fourth position
of the cytosine pyrimidine ring of both eukaryotes and prokaryotes
(though 4mC is more commonly found and studied in the latter). In
prokaryotes, 4mC is part of a restriction-modification(R-M) system
that defends against activities of foreign DNA, including its repair,
expression, and replication [7–11]. 4mC also plays a supplemen-
tary role in, among other things, genome stabilization, recombina-
tion, and evolution [12–14]. The biological roles of 4mC in
eukaryotes is less understood, in part because the small size of
4mC in the eukaryote genome prevents its detection through any-
thing other than high sensitivity techniques.

To identify 4mC sites experimentally, Single Molecule of Real-
Time (SMRT), mass spectrometry, and methylation-precise PCR
have all been used [15–18]. These methods, however, are time con-
suming and labor-intensive. Analysis of the ‘big data’ associated
with the Rosaceae genome, with proper computational tools may
be a more efficient means of accurately identifying 4mC sites. Sev-
eral in silico methods have been proposed to identify 4mC sites for
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some species (e.g. E. coli, G. subterraneus, A. thaliana, D. melanoga-
ster, C. elegans, G. pickeringii, and mice) using the recently con-
structed database MethSMRT [19–32]. To the best of our
knowledge, only two computational methods are currently avail-
able to identify 4mC sites in the Rosaceae genome: i4mC-Rose
[33] and DNC4mC-Deep [34]. The i4mC-Rose tool is the result of
a random forest classifier with multiple encoding schemes, while
DNC4mC-Deep is the result of a deep learning approach with six
encoding techniques. Although these methods produced accept-
able results, there is still much room for improvement, especially
given that the adopted datasets may not have been of sufficient
quality to capture the 4mCmotifs, or the feature selection methods
employed may not have been suitable to distinguish between the
sequence information of positive and negative classes. Moreover,
previous methods relied on domain knowledge to hand-design
for the input features. Our method, in contrast, captures automat-
ically a high level of input features by word embedding, allowing
for a novel and highly accurate computational tool.

In this paper, a sequence-based DNA 4mC sites predictor was
developed. Our central idea was to transform the DNA sequences
into vectors by word embedding and then process these with a
double-layer one-dimensional CNN for the final classification.
Word embedding was invented to apply in by Google in 2013
[35] to assist with natural language processing (NLP), but it later
found success in number of biological applications [36–43], deep
learning of the sort employed in our second step has achieved
notable results in a number of areas, including speech recognition
[44], image recognition [45,46], NLP [47], and genome wide predic-
tion [48–53]. In our study, integrating the techniques of word
embedding and deep learning gave outstanding results for both
balanced and imbalanced class datasets, and we suggest that the
proposed method is promising for genome-wide prediction.
Table 1
Summary of training and independent test datasets for F. vesca and R. chinensis.

Genomes Positive/Negative Training datasets Independent datasets

F. vesca Positive 3457 864
Negative 3457 864, 4320, 12960

R. chinensis Positive 1938 483
Negative 1938 483, 2415, 7245
2. Materials and methods

2.1. Datasets construction

It was necessary to construct a reliable dataset to develop our
sequence-based identifier. We independently constructed a com-
plete set of training and independent datasets. 4mC containing
sequences (the positive sequences) were obtained from the MDR
database [54], http://mdr.xieslab.org/. According to previous
researches, the best prediction performances were obtained with
the length of 41-nt [22,29]. Therefore, the length of the DNA
sequences were set to 41-nt, containing ‘C’ at the center. Previous
researchers [33,34] applied a modification QV (modQV) score of
P20 to generate a positive dataset, but as W.Chen et al. have
pointed out, a modQV score of 30 or more is the default or the best
threshold for labelling the position of a cytosine as modified [21].
In the interest of developing a more reliable model, we applied
QV of P30 to construct our positive dataset and excluded the
sequences that share QV values <30. To remove sequence similar-
ity, CD-HIT [55] software with the cutoff threshold of 65.00% was
used. As a result of these procedures, we obtained 4321 in F. vesca
genome, and 2421 positive sequences in R. chinensis genome. From
these datasets, approximately 80% of the sequences (3457 (F. vesca)
and 1938 (R. chinensis)) were selected as training sets, with
remaining sequences (864 (F. vesca) and 483 (R. chinensis)), used
as independent datasets.

The negative sequences (non-4mC site containing sequences)
were obtained from the same genome file where the 4mC sites
(‘C’ at the center) was not detected by the SMRT sequencing tech-
nique. In this way, a large number of negative sequences in each
species were formed with ‘C’ at the center. For model training, pos-
itive and negative sequences were balanced out. To test the effi-
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ciency of our proposed model, we constructed the independent
datasets with different ratios of positive and negative samples.
For F. vesca these were: 1:1 [864 positive and 864 negative
sequences], 1:5 [864 positive and 4320 negative sequences], and
1:15 [864 positive and 12960 negative sequences]. For R. chinensis,
1:1 [483 positive and 483 negative sequences], 1:5 [483 positive
and 2415 negative sequences], and 1:15 [483 positive and 7245
negative sequences]. Due to limit number of the independent-
positive sequences the same positive sequences were accepted
for all ratio groups (i.e. 864 for F. vesca and 483 for R. chinensis).
The negative sequences did not overlap across ratio groups. These
training and independent datasets for both species is summarized
in Table 1.

We elected to construct such imbalanced class datasets prior to
testing as it is common to find real-world datasets that have such
strongly imbalanced distributions. Accordingly, we aimed that to
assist researchers with testing imbalanced datasets using a classi-
fier. To the best of our knowledge, we first to proposed an i4mC-
w2vec tool that deal with imbalanced class datasets in this area
(4mC sites prediction).

2.2. Methodology

We present a novel method (4mC-w2vec) for identifying 4mC
sites in the Rosaceae genome. Our consists of two major steps.
The first step is the discriminative feature generation or represen-
tation stage in which each DNA sequence is described into words
using 3-mer, after which a word-embedding method is applied to
map each word to its corresponding feature representation. For
the second step, a deep learning model is used to classify 4mCs
and non-4mCs based on the generated features of the first stage.
A detailed explanation is presented in the following sections, and
the general architecture is illustrated in Fig. 1.

2.2.1. Distributed feature representation
These days many real-world biological data applications involve

datasets that are strongly imbalanced distributive, complex, and
noisy. We decided to apply a word embedding technique com-
monly known as ‘word2vec’ [35]. This technique generates an opti-
mal set of feature vectors based on distributional hypothesis [56].
Word2vec is a two-layer neural network that processes text by
vectorizing words as depicted in Fig. 1 (a). It receives input as a text
corpus and its output is feature vectors that represent words in
that corpus. This technique decreases computational complexity
and reduce the noise, ultimately leading to improved performance
in the resultant computational model. Additionally, many biologi-
cal codes (such as genetic code) can be represented as a language
[57–59], with the resulting insights can being applied towards
solving a variety of biological problems [58,60,61]. Accordingly,
we adopted the word2vec method to find interpretable representa-
tions for each 4mC sites.

Corpus construction discovers the semantic relations between
words large files. For our research, we generated the corpus by pro-
cessing the genomes of F. vesca (wild strawberry (NC_020491.1))
and R. chinensis (Chinese rose (NC_037093.1)) using NCBI genomic
data, available at https://www.ncbi.nlm.nih.gov. The first step of
training word2vec is building a corpus vocabulary. The word2vec
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Fig. 1. A general architecture of the proposed model: (a) word embedding process and (b) one-dimensional CNN model.
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model can be applied based on either Continuous Bag-Of-Words
(CBOW) or Skip-gram methods. In the Skip-gram model, the cur-
rent word (w(t)) or input is used to predict the surrounding win-
dow of context word. In contrast, the CBOW method attempts to
guess the target word based on its neighboring (context) words.
As inputs into a CBOW model, a window size of five was formu-
lated as follows Eqn 1:
X2
k¼�2;k–0

wðt þ kÞ ð1Þ

The CBOW and Skip-gram perform similarly, although Skip-
gram is more useful and gives a better outcome for infrequent
words [62]. In our study, we are concerned with frequent words,
and therefore adopted CBOW for word2vec training. To process
the CBOW, genome assemblies were divided into sentences with
lengths of 200-nt. Next, each sentence was divided into overlap-
ping 3-mer to formwords (such as AAT, CCT, GCN, and CCC). At this
point, each 4mC contains a chain of continuous nucleotides. Those
words were fed into a two layer of word2vec model as depicted in
Fig. 1 (a). As a result, each word had its own 100-dimension (D)
vector representation, with each sequence of length Lrepresented
by an array of shape ðL� 2Þ � 100. For example, the word ‘AAT’
was represented as a 100-(D) vector of
½0:111;0:222;0:333; . . . . . . ::;0:12100�and ‘CCT’ was represented as a
100-D vector of ½0:221;0:112;0:313; . . . ::;0:23100�. The parameters
that were used to train word2vec are listed in Table 2. Most of
the parameters were left as default. According to the previous
researches the best performance was obtained by the creation of
Table 2
Word2vec training parameters.

Parameters word2vec model

Training Method CBOW
Vector Size 100
Corpus Genomes of F. vesca and R. chinensis
Minimum Count 1
Context Words 3-mer
Negative Sampling 5
Window Size 5
Number of Epochs 20
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100-D [36,43,50]. Therefore, the parameter for dimension of the
word vectors was set to 100-D. We included all words with fre-
quency greater than 1. For context words we have tested different
overlapping k-mers such as k = 1 (A), k = 2 (AT), k = 4 (ATCG), k = 5
(ATCGA), and k = 6 (ATCGAT). Negative sampling was set to 5 to
draw ‘noise words’. Window size was set to 5 for maximum dis-
tance between the current and predicted word within a sentence.
Number of epochs (iterations) over the corpus was set to 20. The
word2vec was trained independently for both species using the
python library genism [63].
2.2.2. CNN model
As shown in Fig. 1 (b), we used a CNN model (a deep feed-

forward neural network) to learn the features generated from
word2vec. In a CNN, hyper-parameters determine layer architec-
ture in the training step, and this affects model accuracy and learn-
ing time. Therefore, grid search strategy was used for hyper-
parameters optimization, including the number of filters, the ker-
nel sizes (size of filters), the dropout rates, the number of convolu-
tional layers, and the activation functions. After applying the grid
search technique, the proposed CNN model yielded two one
dimensional convolution layers with 64 filters of 9 units and one
stride unit. In each convolution layer, a rectified linear activation
unit (ReLU) was used as an activation function. To fix the over-
fitting problem, the first layer convolution was followed by a drop-
out layer with a rate of 0.7. For final classification, a fully connected
layer with one node followed by sigmoid function was used. The
configuration of the CNN model is presented in Table 3. To train
the CNN model on the training datasets, the learning rate was set
Table 3
The proposed CNN’s architecture.

Layers Output shape

Input ½39;100�
Conv1D (64,9,1) ½39;64�
Conv1D (64,9,1) ½39;64�
Dropout (0.5) ½1248�
Dense ½1�
Sigmoid ½1�
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to 0.0007, and the batch size was set to 128 with an early stopping
strategy based on the validation loss. RMSprop was used as an
optimizer [64] and binary cross-entropy was used as a loss func-
tion [65]. The Keras framework, a python open source library, (
https://keras.io/), was used to build the 4mC-w2vec. The trained
models will be able to learn an imbalanced class datatsets by set-
ting the ‘class weight’ during the CNN training phase. Therefore, we
used the ‘class weight’ programmatically using the Scikit-learn
[66].

2.3. Evaluation parameters

Various statistical metrics, including sensitivity (Sn), specificity
(Sp), accuracy (ACC), and Matthew correlation coefficient (MCC)
were used to evaluate the performance of the models [67–69].

Sn ¼ 1�Mþ
�

Mþ ; 0 6 Sn 6 1 ð2Þ

Sp ¼ 1�M�
þ

M� ; 0 6 Sp 6 1 ð3Þ

ACC ¼ 1�Mþ
� þM�

þ
Mþ þM� ; 0 6 ACC 6 1 ð4Þ

MCC ¼ 1� Mþ
�þM�

þ
MþþM�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ M�
þ�Mþ

�
Mþ Þð1þ Mþ

��M�
þ

M� Þ
q ; �1 6 MCC 6 1 ð5Þ

The symbols in Eqs. (2)–(5) are:

M�
þ ¼ FP

Mþ
� ¼ FN

Mþ ¼ TP þMþ
�

M� ¼ TN þM�
þ

8>>><
>>>:

where, TP, FP, TN, FN are either true positive, false positive, true
negative, and false negative values. We also included the Receiver
Fig. 2. Demonstration of nucleotide composition preferences between positives (4mC co
R. chinensis datasets.
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operating Characteristic (ROC) curves to evaluate the proposed
method. Overall performance quality was represented by the area
under the ROC curve (auROC) [70]. When evaluating binary classi-
fiers on imbalanced class datasets, the precision-recall curve is
more helpful than the ROC curve (as pointed out by [71]).
3. Result and discussion

3.1. Analysis of nucleotide composition preference

To demonstrate the nucleotide composition preferences
between positives (4mC containing sequences) and negatives
(non-4mC containing sequences), the Two Sample Logo tool was
used [72]. The height of bases was formed as maintained by their
statistical significance (p � 0:05by t-test). As seen in Fig. 2, the ‘C’
nucleobase was located in the center of the sequences with length
41. In case of F. vesca, both the C and G bases were enriched (over-
represented), while both ‘A’ and ‘T’ bases were depleted (under-
representated). Specifically, ‘C’ was over-represented at positions
1–3, 7–12, 14–20, 23, 24, 27, 30, and 33–41 and under-
represented at position at 6, while ‘G’ base was enriched at posi-
tions 1, 4–7, 10, 11, 13–20, 22–26, 29, 32, 34, 35, 37, and 41 and
depleted at position 28. The ‘A’ base was depleted at positions 1–
3, 7–19, 22–24, 27, 30, and 34–39 and enriched at positions 25,
26, 28, and 29, while ‘T’ was depleted at positions 1, 3, 4, 7–11,
13–20, 22–27, 29, 32, 33, 35, 37, 38, 40, and 41, and was not
enriched at any position. Some nucleotide base pairs became visi-
ble along the DNA sequences. For example, in the 4mC containing
sequences two consecutive ‘C’ and ‘G’ bases were spotted at posi-
tions 1–3, 7, 11, 14, 14–20, 23, 24 34, 35, and 37–41.

In case of R. chinensis, ‘A’ was enriched at positions 4, 25, 26, 28,
29, and 33 and depleted at positions 20, 22, and 23. The successive
‘C’ was enriched at positions 7, 12–20, 23, 27, 30, 38, and 39 and
depleted at positions 5, 6, 25, and 26. ‘G’ was enriched at positions
5, 6, 20, 22–24, 26, and 35 and depleted at position 4, 12, 15, 16, 19,
and 28–30, while ‘T’ was enriched in only a few positions, includ-
ntaining sequences) and negatives (non-4mC containing sequences) for F. vesca and

https://keras.io/
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ing 28, and 31 and depleted at positions 7, 14, 17, 18, 20, 22–24, 26,
27, 29, 32, 33, and 35. To put it succinctly, in both species, there
was significant variation between over-represented and under-
represented nucleotides between the 4mC and non-4mC contain-
ing sequences.

All results shown in Fig. 2 demonstrate that the four nucleotides
distribution around 4mC sites has statistically significant position-
specific difference between 4mC containing and non-4mC contain-
ing samples. Therefore, it is possible to design a computational
model to identify 4mC sites only based on sequence information.
3.2. Effect of using different encoding methods

Based on overlapping k-mer values (such as 1-mer, 2-mer, 3-
mer, 4-mer, 5-mer, and 6-mer) six-feature vectors models were
obtained by the word embedding process. All these vector
representation model were fed into the CNN for independent
identification of 4mC sites. We observed that the 3-mer was more
informative for predicting 4mC sites for both species. In this study,
the word2vec representation based on 3-mer and classified by CNN
was considered the final model, or the ‘i4mC-w2vec’. In cross-
validation test, the proposed predictor obtained 0.7407 MCC,
0.8697 accuracy, and 0.9400 AUC for the F. vesca, and 0.7093
MCC, 0.8541 accuracy, and 0.9370 AUC the predictor obtained for
R. chinensis.
Fig. 3. Performance comparisons of word2vec-based model and one-hot encoding-based
R. chinensis (b).

Table 4
Performance of the CNN using different word2vec models (based on k-mers) and one-hot

Species Methods Sn Sp

F. vesca k = 1 0.7963 0.7
k = 2 0.7984 0.8
k = 3 0.8976 0.8
k = 4 0.8141 0.8
k = 5 0.7931 0.7
k = 6 0.7984 0.7
onehot 0.8507 0.8

R. chinensis k = 1 0.8711 0.6
k = 2 0.8144 0.8
k = 3 0.8219 0.8
k = 4 0.8664 0.7
k = 5 0.8220 0.7
k = 6 0.7722 0.8
onehot 0.7958 0.8

Note: The best performance value for each metric across different methods is highlighte
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According to prior research, biological sequences encoded with
one-hot method in conjunction with deep learning model per-
formed well in 4mC prediction task [20]. We accordingly used
one-hot encoding scheme to encode the DNA sequences, in which
nucleotides A, C, G, and T were coded as (1 0 0 0), (0 1 0 0), (0 0 1 0),
and (0 0 0 1), respectively. To determine the best parameters for
CNN using one-hot encoding, the grid search algorithm was used.
The results showed that the word2vec (based on 3-mer and 4-
mer) method outperformed the one-hot method. The performance
of the six word embedding model based on different k-mers and
one-hot encoding when classified by CNN is presented in Table 4.
More generally, the auROC of the F. vesca was 0.8920 using one-
hot encoding but 0.9400 using word2vec (3-mer) encoding
(Fig. 3) (a). Similarly, auROC of the R. chinensis was 0.9110 using
one-hot encoding while it is 0.9370 using word2vec (3-mer)
(Fig. 3) (b).

3.3. Performance comparison with existing methods on the
independent test datasets

To test whether the 4mC-w2vec could identify 4mC sites on
balanced and imbalanced blind datasets, we ran the model on
the independent test datasets with different ratios of positive
and negative samples (see Section 2.1). For imbalanced classifica-
tion with a few sequences of minority (positive) class, auROC can
be misleading, a large change in a ROC curve or auROC score
model when classified by CNN using a 5-fold cross-validation test on F. vesca (a) and

encoding on the training dataset for both species by a 5-fold cross-validation test.

ACC MCC AUC

700 0.7832 0.5666 0.8520
295 0.8141 0.6283 0.8141
417 0.8697 0.7407 0.9400
600 0.8374 0.6751 0.9155
582 0.7754 0.5516 0.8505
302 0.7638 0.5296 0.8435
244 0.8374 0.6752 0.8920
873 0.7793 0.5682 0.8781
199 0.8541 0.6335 0.8934
854 0.8541 0.7093 0.9370
633 0.8141 0.6326 0.8891
519 0.7870 0.5755 0.8755
066 0.7896 0.5793 0.8604
371 0.8167 0.6337 0.9110

d in bold.
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may occur with even a small number of correct or incorrect predic-
tions made by a model [71,73]. For this reason, numerous surveys
have suggested that a precision-recall curve (PR curve) is a supe-
rior alternative [74]. A PR curve is a plot of the precision (y-axis)
and recall (x-axis) of different probability thresholds. Precision
and recall are concerned on minority class (positive), but not
majority (negative) class [75]. A precision-recall AUC (PRauc) score
of 1 represents a perfect model.

To demonstrate the superiority of i4mC-w2vec method, a com-
parison with existing methods was performed, including i4mC-
Fuse [30], and DNC4mC-Deep [31]. These two web-servers were
recently constructed, and both focus on the genomes of F. vesca
Table 5
The performance of the i4mC-Fuse, DNC4mC-Deep, and i4mC-w2vec on the independent

Species Method Sn

F. vesca i4mC-Fuse
ratio of [1:1] 0.8376
ratio of [1:5] 0.8530
ratio of [1:15] 0.8569
DNC4mC-Deep
ratio of [1:1] 0.8582
ratio of [1:5] 0.8560
ratio of [1:15] 0.8556
i4mC-w2vec
ratio of [1:1] 0.8994
ratio of [1:5] 0.8814
ratio of [1:15] 0.8762

R. chinensis i4mC-Fuse
ratio of [1:1] 0.8505
ratio of [1:5] 0.8411
ratio of [1:15] 0.8072
DNC4mC-Deep
ratio of [1:1] 0.8637
ratio of [1:5] 0.8537
ratio of [1:15] 0.8391
i4mC-w2vec
ratio of [1:1] 0.8737
ratio of [1:5] 0.884
ratio of [1:15] 0.8940

Fig. 4. comparison of PRC generated by our method and two existing methods on the dif
The PRauc scores and PR curves show that the 4mC-w2vec outperforms the existing me
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and R. chinensis to identify 4mC cites. For our comparison, we
directly submitted the same positive/negative ratios of the inde-
pendent datasets to these two web-servers. The performance of
the 4mC-w2vec, DNC4mC-Deep, and i4mC-Fuse based on different
evaluation indexes is presented in Table 5, with corresponding
precision-recall curves presented in Fig. 4. As shown in Table 5,
between these three methods, 4mC-w2vec achieved the best per-
formance, as measured across all evaluation indexes for all the dif-
ferent ratios of the both species.

It is clear that our model performed better than the existing
ones for every ration group. Specifically, PR AUCs of the 4mC-
w2vec were 3–6% higher than those of the two existing methods,
datasets with different ratios.

Sp ACC MCC PRauc

0.7209 0.7793 0.5624 0.8482
0.7105 0.7819 0.5695 0.8606
0.6434 0.7703 0.5586 0.8517

0.7390 0.7987 0.6016 0.8438
0.6950 0.7858 0.5810 0.8694
0.7183 0.7870 0.5795 0.8723

0.8268 0.8632 0.7283 0.9176
0.8449 0.8632 0.7269 0.9188
0.8062 0.8412 0.6842 0.9021

0.7312 0.7909 0.5860 0.8646
0.6718 0.7716 0.5541 0.8526
0.6149 0.7612 0.5461 0.8507

0.7131 0.7935 0.5946 0.8700
0.7235 0.7987 0.6000 0.8641
0.6511 0.7703 0.5564 0.8594

0.8242 0.8490 0.6988 0.9099
0.7957 0.8400 0.6825 0.8966
0.8113 0.8477 0.6972 0.9136

ferent ratios of the balanced/imbalanced independent test datasets for both species.
thods in the F. vesca (a–c) and R. chinensis (d–e) datasets.
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showing that our model is the most appropriate for 4mC site pre-
diction on both imbalanced (ratio groups 1:5,1:15) and balanced
(ratio group 1:1) datasets. Moreover, our results demonstrate that
our model is stable against the increasing ratios of the imbalanced
class datasets, while the performance of other methods decreased
as the positive-to-negative ratio within the datasets increased.

The leading reasons for superior performance obtained from our
model are as follows. Previous methods required encoding the fea-
tures manually based on the domain-knowledge experience. On
the other hand, the proposed model does not require any
domain-knowledge. Instead, it learns the features automatically
using word2vec model from the complete genome instead of using
the small set of sequences. Furthermore, The input sequence of the
CNN model should be encoded in a way that preserves its informa-
tion. Therefore, encoding each input sequence based on the infor-
mation learned from the whole genome using word2vec helped
in better representation of the input sequence compared to other
simple techniques such as one hot encoding as shown in Table 4.

4. Web-server

A freely accessible web application was established at http://
nsclbio.jbnu.ac.kr/tools/4mC-w2vec/. The general steps to use this
are: (1) upload or copy/paste the exact 41nt DNA sequence in
FASTA format (sequences start with >symbol); (2) select a thresh-
old value between 0–1 [0.5 is recommended]; (3) select a species
from the list box; (4) click the ‘Submit sequences’ button to obtain
a prediction.

The complete datasets used in this study and trained word2vec
models (total 12 models, six for each species using k = 1–6) of the
genomes of F. vesca and R. chinensis are available in the dataset sec-
tion of the webserver http://nsclbio.jbnu.ac.kr/tools/4mC-w2vec/.

5. Conclusion

Accurately identifying 4mC sites is an important step towards
understanding many biological functions. We developed a compu-
tational model using word embedding method in conjunction with
a deep neural network to identify such sites. The chief advantage of
the proposed model over its predecessors is the automatic creation
of high dimension word-vectors for the whole genomes of F. vesca
and R. chinensis, resulting in superior feature representation of 4mC
sites. Put differently, the CNN can effectively capture feature gen-
erated by the word embedding process. Ultimately, our proposed
method achieved better outcomes in identifying 4mC sites in both
balanced and imbalanced class labels than the state-of-the-art pre-
dictors.The study presented in the paper could helpful for more
widespread bioinformatics applications.
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