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Abstract. The cortical actin gel of eukaryotic cells is 
postulated to control cell surface activity. One type of 
protrusion that may offer clues to this regulation are 
the spherical aneurysms of the surface membrane 
known as blebs. Blebs occur normally in cells during 
spreading and alternate with other protrusions, such as 
ruffles, suggesting similar protrusive machinery is in- 
volved. We recently reported that human melanoma 
cell lines deficient in the actin filament cross-linking 
protein, ABP-280, show prolonged blebbing, thus al- 
lowing close study of blebs and their dynamics. Blebs 
expand at different rates of volume increase that di- 
rectly predict the final size achieved by each bleb. 
These rates decrease as the F-actin concentration of the 
cells increases over time after plating on a surface, but 
do so at lower concentrations in ABP-280 expressing 

cells. Fluorescently labeled actin and phalloidin injec- 
tions of blebbing cells indicate that a polymerized actin 
structure is not present initially, but appears later and is 
responsible for stopping further bleb expansion. There- 
fore, it is postulated that blebs occur when the fluid- 
driven expansion of the cell membrane is sufficiently 
rapid to initially outpace the local rate of actin poly- 
merization. In this model, the rate of intracellular sol- 
vent flow driving this expansion decreases as cortical 
gelation is achieved, whether by factors such as ABP- 
280, or by concentrated actin polymers alone, thereby 
leading to decreased size and occurrence of blebs. Since 
the forces driving bleb extension would always be 
present in a cell, this process may influence other cell 
protrusions as well. 

ur, ARYOrIC cells can extend a variety of cytoplasmic 
extensions from their plasma membrane surfaces 
that interchange or succeed one another closely. 

This close temporal relationship argues that, although di- 
verse in form and size, the protrusions arise from some 
common etiology. Whether the different protrusions then 
represent different mechanisms of extension, or the same 
fundamental protrusive forces selectively expressed, is un- 
known. One protrusion in particular may be instructive. 
Blebs, as distinguished from the large, nonretracting blis- 
ters seen with cell injury by physical or chemical stresses 
(for review see 48), are spherical outpouchings of the 
plasma membrane that are common features at the pe- 
riphery of eukaryotic cells as they spread on a substrate (3, 
15, 24), or at the leading edge of moving cells (20, 30, 47). 
In both cases, blebs alternate with, and are ultimately re- 
placed by, wave-like flat ruffles or small lamellopodia (6, 
17, 18, 46). However, due to their spherical shape and 
smooth growth, blebs have long been thought to be driven 
by hydrodynamic forces (1, 12, 45, 46), while interpreta- 
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tions of what extends ruffles and lamellopodia emphasize 
actin polymerization (for reviews see 8, 10). 

Therefore, a close study of blebs, the conditions under 
which they occur, and their dynamics, may provide clues 
to at least part of the machinery for surface extension. 
Such studies have been difficult to perform due to blebs' 
transient nature and the rapidity with which they trans- 
form into other types of protrusions (18, 46). However, we 
recently described three human melanoma cell lines lack- 
ing expression of an actin filament cross-linker, actin-bind- 
ing protein (ABP, ABP-280) that are distinguished by 
markedly prolonged periods of extensive membrane bleb- 
bing in the presence of serum and physiologic tempera- 
ture. This prolonged blebbing is not a feature of sublines 
of the ABP-280 deficient ceils made to express normal 
ABP-280 concentrations by genetic transfection (11), ar- 
guing that changes in the cortical cytoskeleton affected by 
ABP-280 expression are important to blebbing. The avail- 
ability of cells from lines that differ only in this regard 
therefore provide an ideal system to study the mechanics 
of blebbing and its relationship to the peripheral actin 
network. 

This paper reports the results of such studies on mem- 
brane blebs, their characteristics, rates of expansion, and 
the circumstances under which they are supplanted by 
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other protrusions in both the ABP-280 deficient mela- 
noma cell lines and a variety of ABP-280 expressing cell 
lines. Although the duration of blebbing is markedly dif- 
ferent among cells depending on whether they express 
ABP-280, the dynamics and progression of this blebbing is 
similar in all the types of cells studied. The findings pre- 
sented here support the concept that it is the ability of a 
cell to efficiently form a peripheral actin gel that is a deter- 
mining factor in surface protrusion, specifically postulating 
that blebbing occurs when the flow of intracellular solvent 
allowed by the cortical actin gel temporarily exceeds the 
ability of local actin polymerization to maintain that gel. 
This balance is strongly biased towards gelation, and thus 
decreased solvent flow, by a protein such as ABP-280, and 
conversely, in the ABP-280 deficient cells the flow of in- 
tracellular solvent is relatively unimpeded, resulting in 
more extensive blebbing. However, even in these cells, 
blebbing can still ameliorate over time as the fraction of 
polymerized actin increases to achieve a sufficiently coher- 
ent peripheral gel. 

Materials and Methods 

Cell Culture 
All media and sera were from GIBCO-BRL (Gaithersburg, MD). The hu- 
man melanoma lines M1, M2, M3, M6, A1, A2, A3, A4, and A7 were 
grown at 37°C and 5% CO2 in MEM supplemented with 8% newborn calf 
serum and 2% FCS, as was COLO-800 (a kind gift of Dr. George Moore, 
Denver, CO). NIH3T3 cells (American Type Tissue Culture, Rockville, 
MD) were grown under the same conditions in DMEM supplemented 
with 10% calf serum. CHO cells were a kind gift of Dr. Robert Weiss 
(Brigham & Women's  Hospital, Boston, MA) and were grown in DMEM 
with 10% calf serum. 

Reagents 
All reagents are from Sigma Chem. Co. (St. Louis, MO). TRITC-labeled 
phalloidin was diluted as a stock solution to 1 mM in DMSO and kept at 
-20°C. Cytochalasin D was kept as a l-raM stock in methanol at -20°C 
until needed. Paraformaldehyde was prepared as a 3.7% solution in PBS 
(140 mM NaC1, 9 mM NaEHPO4, i mM NaHzPO4) and filtered before use. 
Ethidium bromide was prepared as a 10-mg/ml stock in water and kept 
sheltered from light until used. 

Videomicroscopy 
Cells plated on a 25-mm glass coverslip were kept at 37°C and a 5% CO2 
atmosphere on the microscope stage by means of a TC102 temperature 
controller and incubation chamber (Medical Systems Corp., Greenvale, 
NY). Differential interference contrast (DIC) and phase contrast micros- 
copy were performed on a Zeiss Axiovert 405M inverted microscope 
(Carl Zeiss, Inc., Thornwood, NY) with variously a 40×, 0.9 numerical ap- 
erture (NA) Plan-neofluor, a 63x,  1.4 NA Planapochromatic, or a 100×, 
1.4 NA Planapochromatic lens. For time lapse recordings, images were 
transmitted to a Hamamatsu C2400 video camera (Photonics Microscopy 
Inc., Bridgewater, NJ) and recorded on a Panasonie 6750AG video re- 
corder (Panasonic, Secaucus, NJ). For bleb measurements a 4× collar was 
also placed between the microscope and camera. Recorded images from 
the videotape were digitized by either a QuickImage 24 frame grabber 
board (Mass Microsystems Inc., Sunnyvale, CA) in a Macintosh IIci com- 
puter or with the internal video acquisition capabilities of a Macintosh 840 
AV computer (Apple Computer, Cupertino, CA). 

Since the blebs are spherical, their volumes could then be calculated 
from measurements of their cross sectional area as found from a digitized 
bleb image with the measuring capabilities of Image 1.49 (Wayne Ras- 
band, NIH) on a Macintosh IIci. Each measurement was repeated at least 
five times and the average and standard error of the mean (SEM) calcu- 
lated. The accuracy of these measurements was confirmed by filming and 
measuring a series of latex beads of known diameter (PolySciences, Inc., 

Warrington, PA). If subsequent blebs arose from the initial bleb, as de- 
scribed in the Results section, each bleb was measured individually, even 
though the final structure appeared to be a single notched structure. 

For determinations of the percentage of cells blebbing, a dish of cells 
plated for the specified time was mounted in the incubator stage and 
brought to 37°C. Multiple random fields were recorded until at least 100 
cells had been examined in each dish and the number of cells displaying 
blebbing around at least 50% of the cell circumference counted. Data in 
the text is given as the mean number of cells blebbing _+SEM on at least 
500 cells at each time point. 

Microinjection 
Microinjection was performed on the inverted microscope equipped with 
a Narishige micromanipulator and pneumatic injector (Narishige USA, 
Greenvale, NY). Needles were pulled on a Narishige vertical needle 
puller and beveled as needed on a Narishige rotating grinder. All injec- 
tions were performed with the cells kept at 37°C and in a 5% CO 2 atmo- 
sphere. Injection volumes were estimated at less than 20% of total cell 
volume both by comparing cell images during injection and based on sub- 
sequent cell viability as previous studies suggest that cells do not survive 
with injection volumes greater than 15% of total cell volume (9). A series 
of control injections was performed with injection buffer alone in varying 
volumes for all experiments. TRITC-labeled phaUoidin was prepared for 
microinjeetion by dilution of a l-raM stock solution to a final concentra- 
tion of 20 IxM in 120 mM KC1, 10 mM Tris-C1, pH 7.2 (injection buffer). 
From estimated volumes of injection, fna l  concentration in the cell is 2-4 
IxM. Rhodamine-labeled actin was a generous gift of Dr. John Hartwig 
(Brigham & Women's  Hospital) and was dialyzed at 2 mg/ml against in- 
jection buffer for 12 h, and then spun briefly at 15,000 g before loading for 
injection. Final concentration in the cell after injection was estimated at 
less than 5 IxM. 

F-Actin Determination 
The average F-actin content of a population of cells was determined by 
two different methods. One, a modification of the method of Condeelis 
and Hall (7), was performed by incubating a dish of adherent cells in 
PHEM buffer with 0.5% Triton X-100 and 250 nM TRITC-labeled phal- 
loidin at room temperature for 30 min. The cells were then scraped and 
the buffer spun at 100,000 g for 15 rain to pellet all F-actin. After removal 
of the supernatant, 300 ~1 of methanol was added and allowed to incubate 
12-48 h at -20°C. The fluorescence of each sample was then determined 
in a fluorimeter (Perkin-Elmer Corp., Norwalk, Cq') with excitation at 540 
nm and emission at 565 nm. By constructing a standard curve with read- 
ings of known amounts of TRITC-labeled phalloidin, the amount of 
bound F-actin could be determined per sample. Determination of the 
number of cells in the measured dish was found by trypsinizing a duplicate 
dish of cells and counting in a hematocytometer. This allowed calculation 
of the average F-actin content per cell. 

As an alternative method, the cells were fixed, permeabilized, and 
stained with both TRITC-labeled phalloidin and ethidium bromide, which 
binds to nuclear DNA. As confirmed by staining dishes with known num- 
bers of cells, the fluorescence intensity of ethidium remaining after wash- 
ing is linearly related to cell density, if the cells are subconfiuent (Fig. 1 
A). Therefore, subconfluent 60-mm diameter plastic dishes of adherent 
cells were washed with PBS, then incubated with PBS with 3.7% 
paraformaldehyde, 0.5% Triton X-100, and 250 nM TRITC-labeled phal- 
loidin at 37°C for 30 rain. Ethidium bromide to a final concentration of 10 
mM was added to the dishes and left for 5 rain at room temperature. After 
three washings with PBS, the cells were scraped into 500 p,1 methanol and 
placed into glass cuvettes for fluorescence determination in a fluorimeter 
(Perkin-Elmer Corp.). The rhodamine was quantitated at an excitation at 
540 nm and emission at 565 nm, while the ethidium was measured at an 
excitation at 525 nm and emission at 605 nm. In our hands, there is some 
"bleedthrough" of the ethidium fluorescence into the rhodamine wave- 
lengths so all rhodamine measurements were corrected for this distortion. 
The ethidium measurements were only minimally effected by the rho- 
damine so no correction of these values was necessary. The average, rela- 
tive F-actin content of a dish of cells could then be quantified as the ratio 
of the fluorescence intensities of bound TRITC-labeled phalloidin to that 
of bound ethidium bromide (r/e ratio)) 

1. Abbreviations used in this paper. DIC, differential interference con- 
strast; r/e ratio, ratio, ratio of rhodamine fluorescence intensity to ethid- 
ium fluorescence intensity. 
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To determine the extent of nonspecific binding by the TRITC portion 
of the labeled phaUoidin in each of the above assays, the fluorescence in- 
tensity of cells from matched plates, one of which was preincubated with 
an excess of unlabeled phalloidin for 30 min before adding the TRITC- 
labeled phaUoidin buffer detailed above, was compared. Less than 10% of 
the TRITC-labeled phalloidin remained after washing in preincubated 
cells. 

We also employed a more direct method of comparing the F-actin con- 
tent of individual cells at different stages of spreading. Trypsinized cells 
were plated on a scored glass coverslip mounted on the microscope stage 
of a Zeiss IM405 equipped for epifluorescence as above. By adding ali- 
quots of suspended cells at various times, a population of cells on the cov- 
erslip at different stages of spreading could be viewed simultaneously. 
Cell count was determined by either counting a duplicate coverslip in a 
hematocytometer as described above, or more directly, by calculating the 
area viewed in one microscope field and counting the average number of 
cells per field for at least 20 consecutive fields. After a period of observa- 
tion under phase contrast or DIC optics to determine the blebbing charac- 
teristics of each cell within the scored area, the ceils were fixed and per- 
meabilized with PBS/3.7% paraformaldehyde/0.5% Triton X-I00/250 nM 
TRITC-labeled phalloidin. After 30 min incubation, the cells were washed 
with PBS and the fluorescence image of each cell at 540 nm excitation/565 
nm emission recorded on videotape using a Hamamatsu C2400 camera. 
The gain and offset controls on the camera were kept at a constant level so 
that differences in fluorescence intensity could be recorded. Single frames 
of the videotape were digitized via the internal video frame grabber of a 
Macintosh 840 AV computer and processed with Image 1.49. The back- 
ground pixel intensity (defined as the intensity of the field outside the cell 
images) was subtracted and the area and pixel intensity of each cell then 
measured. To demonstrate that these fluorescence intensities were lin- 
early related to intracellular F-actin content, we constructed a standard 
curve of average cell fluorescence values measured in a dish of cells all of 
which were plated simultaneously and so were at the same stage of 
spreading. By beginning at initially substoichiometric, then increasing, 
concentrations of TRITC-labeled phalloidin added to the permeabiliza- 
tion buffer, the resultant increase in average fluorescence intensity could 
be linearly related to the amount of added TRITC-labeled phalloidin until 
a plateau was reached (Fig. 1 B). Subsequent quantitations of cell fluores- 
cent intensities of the cells at different stages of spreading were then car- 
ried out with TRITC-labeled phalloidin concentrations above this saturat- 
ing value. We again found that nonspecific binding accounted for less than 
10% of the total cell fluorescence as described above. 

This technique then allowed comparison of the relative F-actin con- 
tents of the cells in the scored area of the coverslip whose blebbing dy- 
namics were known. To minimize differences in apparent actin content 
due to variability in this procedure, all calculated F-actin values were nor- 
malized to the average value found for at least 20 freshly plated cells, 
which have the least amount of F-actin, in a separate dish. This procedure 
was repeated with each new determination. 

R e s u l t s  

Blebbing in ABP-280 Positive and Negative Cell Lines 

Line M2 is one of three human melanoma cell lines de- 
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ficient in ABP-280 protein and mRNA. A7 is a clonal 
subline of M2 that has restored ABP-280 expression by 
transfection to a level comparable to wild-type ABP-280- 
containing melanoma cells (11). Therefore, except for the 
effects of ABP-280, the cell lines are comparable in all 
other respects. We began by looking at differences in 
blebbing between these two cell lines, and most of the data 
will be presented as a comparison between them. How- 
ever, studies were also performed in a variety of other cell 
lines, including the other ABP-280 deficient lines, M1 and 
M3, as well as other melanoma lines that express ABP- 
280, either natively (lines M6, M5, and COLO-800), or by 
transfection (lines A1, A2, and A3). In addition, some 
studies were repeated in blebs arising in CHO cells and 
NIH3T3 cells as indicated. 

Occurrence of Blebbing 
Cells from both M2 and A7 lines detached by either tryp- 
sinization or scraping reattach quickly within 2 h of plating 
on either a tissue culture-treated plastic or glass substrate. 
At attachment, cells from both lines are rounded in mor- 
phology and nearly 100% of cells display blebbing of the 
plasma membrane, dependent upon the presence of serum 
and physiologic (37°C) temperature (Fig. 3). As the cells 
begin to spread, the number displaying extensive blebbing 
(defined as blebbing over more than 50% of the cell cir- 
cumference) decreases. However, the time required for 
blebbing to cease differs markedly between the two lines 
(Fig. 2 A). 4 h after plating, 43% (+7.5) of the A7 cells 
have stopped blebbing and have begun to display periph- 
eral ruffles; by 8 h, less than 10% (__2) of the cells are still 
blebbing. In contrast, the percentage of M2 cells display- 
ing extensive blebbing remains over 90% (___3) for over 
24 h, only beginning to decrease between 36 and 48 h from 
plating. After 72 h, 17% (___5) of M2 cells still display ex- 
tensive blebbing; however, those that have ceased 
blebbing become asymmetrical in shape and develop pe- 
ripheral areas of relative organelle-exclusion with ruffling 
edges, although these ruffles are smaller than those seen in 
the A7 cells (Fig. 3) and, by videomicroscopy, the cells are 
still not motile. 

F-Actin Determination 

The intracellular F-actin content of the cells was quanti- 
tated at timed intervals after plating by fixation and per- 
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Figure 2. (A) Plot of the decrease in blebbing with time from plat- 
ing for cells from the ABP-280 deficient line M2 and the ABP- 
280 expressing line A7. (B) Plot of average F-actin contents of 
M2 and A7 cells at the same times after plating as seen in A, ex- 
pressed as ratios of fluorescence intensities of bound rhodamine 
phalloidin to that of bound ethidium bromide (r/e ratio). 

meabilization in the presence of TRITC-labeled phalloidin, 
which binds F-actin stoichiometrically. The total F-actin 
content of a population of cells can then be determined by 
quantitating the fluorescence remaining in the cells after 
extensive washing to remove unbound phalloidin. How- 
ever, since this value varies with cell density, it was cor- 
rected for differences in cell numbers at each time point by 
either counting the number of cells in a duplicate dish 
plated at the same time as the measured dish, or by incu- 
bating the cells in 10 mM ethidium bromide, which binds 
to nuclear DNA. As the fluorescence of the ethidium re- 
maining after washing correlates with cell number (Fig. 1 
A), the average F-actin content of a population of cells can 
be expressed as a ratio of the fluorescence intensities of 
bound rhodamine and ethidium, respectively (r/e ratio). 
Since this method is simple and reproducible, and the data 
consistent with that obtained by cell counting, all measure- 
ments of F-actin content are presented in this form. 

At the time of attachment, cells from both lines have a 
similar average F-actin content (r/e ratio of 0.09--0.12) but, 
as they begin to spread on the substrate, this ratio in- 
creases. Quantitation of the polypeptide comigrating with 
purified muscle actin in Coomassie blue-stained polyacryl- 
amide gels by quantitative densitometry indicates that the 
amount of total actin in the cells does not change during 
this period (data not shown). Total cell volume, as esti- 
mated in digitized images, also does not change over time 
(data not shown). Therefore, the increase in F-actin con- 
tent during spreading represents a percentage change in 
the fraction of polymerized actin rather than an increase in 
total actin. The increase is particularly rapid over the first 
6-12 h after attachment, but continues over the subse- 
quent 48 h period as well. However, after the initial rapid 
rise in F-actin content, further increases are not as marked 
in cells from the A7 line, so that at each subsequent time, 
M2 cells have a higher r/e ratio, indicating a greater aver- 
age intracellular F-actin content, than do A7 cells (Fig. 2 
B). The "half-time" represents the time at which 50% of 
the cells have stopped blebbing and developed ruffling 
edges. Since this occurs at 3-6 h after plating for A7 cells, 
but not until between 30-48 h for M2 cells, the average 
F-actin content at this point is markedly different for the 
two lines (0.18 r/e for A7 vs 0.39 for M2). 

These correlated processes of spreading, cessation of 
blebbing, development of ruffling, and increasing F-actin 
content can be greatly accelerated with the addition of the 
phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA). 
TPA induces spreading and a rapid increase in F-actin in 
some cell types (34, 38, 40) and when added at 10 ng/ml to 
M2 cells plated 2 h previously causes an increase in their 
average F-actin r/e ratio from 0.10-0.41 within 30 min. 
Concurrent with this increase, blebbing decreases to less 
than 10% of cells and those cells subsequently become 
well spread with ruffling edges. TPA has no effect on 
ABP-280 mRNA or protein expression in these cells (data 
not shown). 

Morphology and Expansion of Blebs 

Although many blebs on a cell appear egg-shaped or el•n- 
gated, high magnification vide•microscopy shows this shape 
to be the result of separate, individually spherical, mem- 
brane expansions. The development of a single bleb begins 
with an initial protrusion that is hemispheric in shape but 
rapidly becomes spherical as the height, the distance from 
the cell surface to the furthermost portion of the bleb wall 
increases (Fig. 4, inset). Expansion is smooth and without 
pause, and the base, the linear segment where the bleb 
joins the cell surface, usually remains constant during ex- 
pansion, so that most of the bleb expansion occurs as an 
enlargement of the spherical shape. A bleb typically re- 
quires 4-7 s to reach full size and, after expansion ceases, a 
subsequent bleb often appears immediately, either from 
the surface of the first or at its base (Fig. 4). The expansion 
of the second bleb again occurs as an enlargement of a 
sphere from the surface of the first bleb, but the direction 
of bleb extension of the second bleb deviates from the axis 
of the first bleb (Fig. 4 b). A third bleb expansion at the 
base of the second is also possible~ The result of these se- 
quential expansions is an elongated, notched structure. 
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Figure 3. DIC photomicro- 
graphs of representative M2 
(left) and A7 (right) cells at 
increasing times after plating. 
Numbers refer to hours after 
plating. Bar, 5 ~m. 

After reaching its full volume, each bleb remains ex- 
tended for 10--20 s, then slowly retracts over 40--60 s. Dur- 
ing retraction, the bleb surface crinkles and folds as it 
shrinks, in contrast to the smooth shape of expansion, and 
is not immediately completely resorbed into the cell 
surface. During retraction, some blebs, particularly those 
arising at the edge of spread cells, may travel centripetally 
on the cell surface. With the subsequent appearance of 
ruffles at the edge of these cells, these protrusions also 
move centripetally at a similar rate of speed as the previ- 
ous blebs did. 

Localization o f  G-Actin and F-Actin 

Small amounts of rhodamine-labeled G-actin microin- 
jected into blebbing M2 cells do not measurably affect the 
dynamics or sizes of subsequent blebs after recovery from 
microinjection. In the injected cells, labeled actin fluores- 
cence appears in expanding blebs during the entire period 

of expansion (Fig. 5), as well as in stable and retracting 
blebs. In contrast, when M2 cells are microinjected with 
TRITC-labeled phalloidin (final concentration 2-4 IxM), 
further extension and retraction of blebs cease quickly. In 
this instance, blebs extending at the time of the injection 
show no phalloidin staining, whereas blebs that are al- 
ready fully extended at the time of injection stain brightly. 
The difference in labeling is particularly noticeable in in- 
stances where a second bleb is expanding from the surface 
of a stable bleb. Phalloidin staining appears in the stable 
bleb, but not in the expanding bleb (Fig. 6). There are also 
differences in staining in fixed, permeabilized cells, be- 
cause those blebs that are expanding at the time of intro- 
duction of Triton X-100 (final concentration of 0.5%) in 
the fixation buffer collapse and no visible, remaining struc- 
ture is seen with subsequent phalloidin staining; in con- 
trast, stable, fully extended blebs do not collapse with per- 
meabilization and so are consequently stained by the 
phalloidin. 
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Figure 4. Cartoon illustrating 
the geometry of bleb expan- 
sion. A single bleb expands 
spherically (a) and then sta- 
bilizes. Frequently, a subse- 
quent bleb appears either 
from the surface of the first 
bleb (b), or at its base (c). 
Dotted line is the axis per- 
pendicular to the bleb base. 

Dynamics of  Bleb Expansion 

Although all the bleb volumes of an individual cell remain 
within a twofold variation in size with each other at any 
one time, these volumes can vary by as much as 25-fold be- 
tween different cells, or even in one cell over time. In all 
lines, the largest blebs are seen immediately after plating. 
However, after attachment to the substrate, the average 
volume of blebs seen in the cells begins to decrease as the 
cell spreads (Fig. 7). This happens after a few hours in the 
A7 cells, but is much more delayed in the M2 ceils. Irre- 
spective of size however, the expansion dynamics of an in- 

dividual bleb remain the same. After a bleb begins, it ex- 
pands at a constant rate of volume increase (Fig. 8 A) until 
stopping suddenly at the point of final volume, which can 
range between 5-125 cubic microns (Fig. 8 B). The rate at 
which each bleb expands shows similar variability and, as 
the cells spread and the average volume of their blebs be- 
comes smaller, the rates of expansion of each of the blebs 
becomes smaller as well (Fig. 8 C). There is a striking di- 
rect proportionality between the rate of bleb expansion 
and the final size it attains that holds constant over the en- 
tire 25-fold range of bleb volumes seen in these two lines. 
Indeed, this proportionality also holds for blebs arising in 
all other cell lines examined, whether ABP-280 deficient 
(lines M1 and M3) or ABP-280 expressing, either natively 
(human melanoma lines M6, M5, and COLO-800), or after 
transfection of the cDNA for ABP-280 into the ABP-280- 
deficient line M2 (lines A1, A2, and A3) (Fig. 9 A). Fur- 
ther, this same relationship also describes blebs appearing 
in cells from other mammalian lines such as CHO and 
NIH3T3. In all cases, the largest blebs appear in freshly 
plated cells but, with spreading, blebbing not only de- 
creases in frequency but the rates of expansion and final 
volumes achieved also decrease. 

This linear relationship is broken, however, if actively 
blebbing M2 cells are treated with 0.5-1.0 micromolar cy- 
tochalasin D, which predominantly inhibits barbed end ac- 
tin filament elongation. In this case, the cells continue to 
extend blebs for a time, but then become unable to retract 

Figure 5. Sequential photomicrographs of (left panel) DIC and 
(right panel) fluorescence image of an M2 cell injected with 
rhodamine-labeled G-actin to follow actin distribution during 
blebbing. G-actin fluorescence is seen in a bleb (arrow) from the 
beginning of its expansion. Numbers refer to seconds after start 
of bleb expansion. Bar, 5 txm. 

Figure 6. Photomicrographs of (A) DIC and (B) fluorescence im- 
age of an M2 cellthat has just been injected with rhodamine phal- 
loidin. Arrows mark sites where blebs were expanding just after 
injection. Bar, 5 I~m. 
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Figure Z Plot of average bleb volume at each 24-h interval for the 
M2 cell pictured in Fig. 3. Bar represents the range of volumes for 
15 blebs each for the 24- and 48-h time points and 8 blebs for the 
72-h time. 

the extended blebs, and cell surface activity ceases. Those 
blebs that do expand after the addition of CD grow be- 
yond the volume predicted by their rate of expansion, i.e., 
these blebs no longer follow the linear correlation be- 
tween rate of expansion and final volume described above 
(Fig. 9 B). The expanded blebs display a different mor- 
phology from the usual bleb, forming a translucent sphere 
that either detaches from the cell, or remains tethered to 
the surface by a slender process, and collapse with perme- 
abilization by membrane detergents such as Triton X-100 
(data not shown). Similarly, if M2 cells that are not bleb- 
bing in serum-free media are exposed to CD and then se- 
rum added after several minutes, 3-5 blebs per cell ex- 
pand, but the resultant bleb volumes do not correlate with 
the initial rate of bleb expansion, again reaching a larger 
than predicted final volume. 

Correlation of  Individual Cell F-Actin Contents 
and Blebbing 

Since the decrease in blebbing frequency and slower aver- 
age rates of bleb expansion occurs concurrently with the 
increase in the average F-actin concentration as the cells 
spread, differences in relative F-actin content among indi- 
vidual M2 or A7 cells were also examined. To do this, ali- 
quots of cells were plated at various times in one dish so 
that at a single time point there were populations of cells 
at various stages of blebbing and spreading. After record- 
ing the expansion rates and prevalence of blebs on individ- 
ual cells in a marked area, the cells were then fixed and 
permeabilized for staining with TRITC-labeled phalloidin. 
Determination of individual fluorescence intensities of the 
fixed cells then gave a relative measure of F-actin content 
as described in the Materials and Methods section. There 
is a direct correlation between the relative intracellular 
F-actin concentration of a cell and the average rate of ex- 
pansion, and therefore the final size, of blebs arising on 
that cell so that as F-actin concentration increases, the av- 
erage bleb size decreases. However, this decrease occurs 
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Figure 8. (A) Plot of volume vs time for blebs from different M2 
ceils showing the variability in expansion rates and final volumes 
achieved. Volumes in cubic microns (p)) are shown beginning at 
0.66-1 s after the start of expansion, which is the first time point 
for which accurate measurements can be made. All values repre- 
sent the mean of at least five measurements of the bleb and the 
range among the different measurements was always less than 
10% of the volume. (B) Plot of the rate of expansion (dV/dt) vs 
the final volume (Vf) achieved for each of the blebs in (A). 

much sooner, and at a lower F-actin concentration, in the 
ABP-280 expressing A7 cells (Fig. 10). 

Discussion 

Blebs were originally described in association with cell in- 
jury (for review see 48), but can also occur in noninjured 
cells during spreading (3, 15, 24), mitosis (4, 39), or at the 
leading edge of moving cells (20, 30, 47). These noninjured 
cell blebs are transient and frequently lead to other types 
of protrusions. For instance, in the deep cells of the Fun- 
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Figure 9. (A) Plot of dV/dt vs. Vf for blebs from both ABP-280 
deficient and expressing cells showing that the correlation be- 
tween the rate of expansion of a bleb and its final size holds over 
a wide range of expansion rates and volumes. This includes mea- 
surements of blebs in a wide array of human melanoma lines, as 
well as NIH3T3 and CHO cells. (B) Plot of dV/dt vs Vf overlaid 
with measurements from M2 cell blebs after incubation with cy- 
tochalasin D. 

dulus blastocyst elongated blebs form "lobopodia" that 
can alternate with, and transform into, lamellopodia (46). 
Ruffling replaces blebbing at the spreading cell edge (18). 
Such observations suggest that blebs are a constitutive fea- 
ture of a certain cell state(s) (31, 42) rather than develop- 
ing in response to particular signals at the cell surface (13, 
19), but the precise mechanism is unclear. 

One clue comes from the finding that the occurrence of 
blebbing during spreading is markedly prolonged in cells 
lacking expression of the actin gelation protein, ABP-280. 
This prolonged blebbing can be clearly ascribed to the 
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the average rate of bleb expansions in that cell measured immedi- 
ately before fixation. 

effects of ABP-280 on the cell since such blebbing is 
diminished when ABP-280 is restored to these same cells 
by either transfection (lines A1, A2, A3, and A7) (11) or by 
microinjection (unpublished results). However, as de- 
scribed above, similar changes can also occur in the ABP- 
280 deficient cells over several days; after 2-3 d, the cells 
decrease or cease blebbing. This process parallels the es- 
tablishment of a small cortical clear zone, a morphologic 
marker of peripheral network formation (33), and implies 
that the dynamics of blebbing are controlled by the physi- 
cal state of the cortical gel. 

Gels, defined as liquids immobilized by a coherent sol- 
ute (2), are formed in the cell by actin polymers (32, 43). 
These filaments of actin can be modeled as semi-flexible 
rods and can reach many microns in length in vitro (29). 
However, in vivo, most direct measurements (22) and cal- 
culated lengths (5, 44) of actin filaments have been much 
shorter, less than a micron in length, although longer fila- 
ments have been measured in some cells (41). Therefore, 
although it is possible to achieve gel-like viscoelastic prop- 
erties in the cortical cytoplasm with sufficiently concen- 
trated long filaments from interpenetration alone (14, 27), 
gelation of the shorter or more dilute filaments often 
found in the cell requires that they be tied together by an 
added cross-linking molecule (16). This critical degree of 
impaired polymer diffusion for gelation, called the "gel 
point," can occur at the lowest concentrations and lengths 
of polymers if the linking factors that tie them together do 
so by orienting the actin filaments at near right angles (2, 
16), as ABP-280 does (22, 23). Based on the morphological 
characteristics of the ABP-280 deficient cells, ABP-280 is 
the major actin gelation protein in these cells. However, 
the eventual development of manifestations of cortical ge- 
lation, i.e., peripheral organelle exclusion, in the same cells 
over time implies that the observed increase in intracellu- 
lar concentration of F-actin is enough for gelation to fi- 
nally occur due to the less efficient cross-linking provided 
by other filament-binding proteins that are present in 
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these cells (11), or from the entanglement of the concen- 
trated filaments themselves. 

How does this change in gelation affect blebbing and 
other protrusions? Blebs are usually posited to be fluid- 
based protrusions, rather than driven by the turnover of 
actin filaments. The findings presented above strongly 
support this mechanism as the driving force for bleb pro- 
trusion in that: (1) bleb extension is not prevented by cy- 
tochalasin D, which inhibits actin polymerization; (2) the 
bleb expansions are rapid, up to 30 Ix3/sec, so that for lin- 
ear polymerization of actin in a radial progression to be re- 
sponsible for extension, it requires actin assembly rates in 
the initial stages of bleb expansion that are much faster 
than have been measured in vivo (37); (3) injected fluores- 
cently labeled monomeric actin is detectable at all stages 
of development of a bleb, while phalloidin, which binds to 
actin filaments, was seen only when the blebs stabilized 
and retracted. Although substoichiometric injections of 
phalloidin may be bound before reaching actin filaments 
distant from the site of injection (49), the fact that stable 
blebs which did stain were adjacent to the expanding blebs 
argues that the lack of staining is due to little structure in 
the expanding bleb. Further, actively expanding blebs col- 
lapse when permeabilized, again arguing that no signifi- 
cant structure exists initially. 

But actin does eventually polymerize in a bleb as it ma- 
tures and apparently controls bleb expansion, since inhibi- 
tion of actin polymerization by cytochalasin leads to a 
larger bleb size. This finding then provides a model for 
bleb expansion which gives clues to the control exerted by 
the peripheral actin gel. Since each bleb expands at a con- 
stant rate of volume increase, the speed at which the bleb 
wall moves away from the cell surface decreases over time. 
Thus, if bleb expansion is stopped by polymerizing actin, 
originating either from the bleb wall or the cell body, fi- 
nally bridging and stabilizing the spherical protrusion, 
then the final size of the bleb would be determined by the 
balance between the rate of volume expansion of an indi- 
vidual bleb, due to the rate of solvent flow driving that 
bleb's expansion, and the rate of local actin polymeriza- 
tion stopping expansion. As this balance shifts, blebs 
would expand more quickly or slowly, and achieve varying 
sizes, or possibly not even expand at all. 

The cortical actin gel can affect this balance. Studies 
documenting that the total cell volume of blebbing ceils or 
cell fragments does not increase with the expansion of a 
bleb (1, 15) suggest that the driving fluid flow must be 
from internal redistribution of solvent, rather than exter- 
nal uptake and, consequently, must percolate through the 
cortical actin network. The rate of solvent flow through 
the gel would then be determined by the amount of pres- 
sure, due either to gel contraction or osmotic pressure, act- 
ing against the impedance offered by the gel. Both gel con- 
traction and osmotic pressure depend upon the state of 
cortical gelation; Taylor et al. provided evidence that the 
myosin-based contraction of an actin gel requires partial 
solation, as long as the gel retains sufficient network prop- 
erties to permit contraction of a coherent structure (28), 
and similarly, the osmotic swelling pressure of a cytogel in- 
creases with partial solation of the gel (35). Of possibly 
more significance, however, is that Ito et al. found that the 
osmotically driven flow of solvent through a mixture of ac- 

tin flaments slows with increasing concentrations of fila- 
ments (25) and ceases altogether at the viscometrically 
measured gel point (26). Thus, the establishment of a cor- 
tical actin gel could decrease the driving force for internal 
solvent flow, but should certainly increase the impedance 
offered to that flow, resulting in slower movement of fluid 
into a potential bleb. Any changes in the physical state of 
this cortical gel can then influence the rate of intracellular 
fluid movement, and thus the occurrence and size of the 
blebs extended by a cell during this time. Since there are 
differences in the ability of cells with and without ABP- 
280 to efficiently establish a cortical gel, these differences 
should be reflected in the occurrence and dynamics of 
membrane blebbing between the two types of cells. The 
above results support this hypothesis. There is a direct cor- 
relation between the amount of polymerized actin in the 
cell periphery and the occurrence and rate of expansion of 
membrane blebs in both ABP-280-expressing and ABP- 
280-deficient cells, but cessation of blebbing occurs at a 
much lower F-actin content when ABP-280 is present, sug- 
gesting that it is the lowered 'gel point' provided by ABP- 
280 that is responsible for this difference. 

Interestingly, the observations above also indicate that 
the rate of actin polymerization should be variable among 
different cells, or even within the same cell at different 
times. There is a direct proportionality between the final 
bleb size and the volume expansion rate, whereas if the 
rate of actin polymerization was constant in cells under all 
conditions, the above model predicts a nonproportional 
relationship. Therefore, in this model, aetin polymeriza- 
tion rates must also be affected by the structure of the pe- 
ripheral actin network and change in tandem with the fac- 
tors controlling the rate of bleb expansion. Although this 
hypothesis is speculative, if the total intracellular concen- 
tration of actin remains stable, changes in the F-actin con- 
tent would reflect changes in its percentage of the total, 
with a corresponding inverse change in the amount of mo- 
nomeric actin available for further polymerization. A cell 
with a decreased concentration of peripheral F-actin, and 
thus a decreased cortical actin gelation, would have in- 
creased local actin polymerization rates, due to an in- 
creased availability of monomer, and vice versa. These ef- 
fects would be somewhat counterbalancing and could 
result in the observed linear relationship. 

Further, in cases where polymerization reactions are im- 
paired or completely inhibited, such as by treatment by cy- 
tochalasin D, the balance between solvent flow and poly- 
merization rates would shift to allow a larger bleb size for 
that particular rate of expansion, and the rate of expansion 
would no longer have the same correlation with the final 
size of the resulting protrusion. This is again supported by 
the observations above. In this case, an expanding bleb 
would continue to grow until stopped by either diminution 
of the expanding force or increasing resistance to further 
expansion from the bleb wall and the expansion would 
lack any coherent internal structure. Such impairment of 
actin polymerization in the setting of decreased cortical 
gelation may then be a factor in the formation of the vesi- 
cles or blisters seen in a variety of cell injuries. These blis- 
ters would be distinguished from the dynamic blebs in 
both their expansion dynamics and lack of internal struc- 
ture. 
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Finally, the machinery uncovered by this study of blebs 
may influence other types of cell protrusions. Cells with 
extensive, circumferential membrane blebbing do not ex- 
tend veils or ruffles, but do so as blebbing decreases. After 
extension, blebs resemble protrusions such as ruffles in 
many respects. Retraction of the blebs is dependent upon 
the establishment of an actin network and is inhibited by 
N-ethylmaleimide (data not shown), implying that active 
contraction of the actin structure is involved. In spread 
cells, blebs can exhibit the same retrograde migration as 
subsequent ruffles and filopodia, again arguing that once 
blebs are fully formed, they are as much a part of the same 
cytoskeletal machinery as the other protrusions. There- 
fore, only the manner and form of extension is different 
between blebs and other protrusions and implies that sig- 
naling of the cell by chemotactic factors could lead to a va- 
riety of cell surface protrusions, depending not only upon 
the specific signal, but also on the state of cortical gelation 
of the cell at the time that signal was received. In this 
model, blebbing would occur in response to those signals 
causing partial, local solation of a portion of the cytoskele- 
ton in the setting of overall decreased cortical gelation 
such that the resultant internal solvent flow rate is suffi- 
cient to outpace the local actin polymerization rate. This 
would occasionally occur even in cells that express ABP- 
280. Actin filament length directly affects the gelation of 
actin filaments by cross-linking proteins (21, 50), so tran- 
sient changes in filament length mediated by cellular pro- 
teins that regulate actin polymerization in response to ex- 
ternal signals could reversibly affect actin gelation in vivo, 
even in the presence of normal concentrations of ABP- 
280, and temporarily produce localized blebbing. 

In cases where the flow rate of solvent is insufficient to 
outpace local actin polymerization, whether due to in- 
creased impedance from cortical gelation, or from an in- 
crease in the local actin polymerization rate, other forces 
such as osmotic gel swelling (36) might predominate, to 
form a lamella or other protrusion. However, even in 
these cases, where the flow rate of internal solvent is 
slowed, the hydrodynamic forces generated might still 
contribute to the advancement of the leading edge by forc- 
ing a rapid cycle of small extensions quickly stabilized by 
polymerizing actin. Thus, factors controlling both the 
physical characteristics of the peripheral actin network 
and/or the rate of actin polymerization would have effects 
on protrusive activity, and consequently on cell motility, 
by this mechanism. 
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