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Simple Summary: Glioblastoma tumours are the most malignant and common type of central
nervous system tumours. Despite aggressive treatment measures, disease recurrence in patients with
glioblastoma is inevitable and survival rates remain low. Glioblastoma cells, like other cancer cells,
can leverage metabolic pathways to increase their rate of proliferation, maintain self-renewal, and
develop treatment resistance. Furthermore, many of the metabolic strategies employed by cancer
cells are similar to those employed by stem cells in order to maintain self-renewal and proliferation.
One-carbon metabolism and de novo purine synthesis are metabolic pathways that are essential
for biosynthesis of macromolecules and have been found to be essential for tumourigenesis. In
this review, we summarize the evidence showing the significance of 1-C-mediated de novo purine
synthesis in glioblastoma cell proliferation and tumourigenesis, as well as evidence suggesting the
effectiveness of targeting this metabolic pathway as a therapeutic modality.

Abstract: Altered cell metabolism is a hallmark of cancer cell biology, and the adaptive metabolic
strategies of cancer cells have been of recent interest to many groups. Metabolic reprogramming has
been identified as a critical step in glial cell transformation, and the use of antimetabolites against
glioblastoma has been investigated. One-carbon (1-C) metabolism and its associated biosynthetic
pathways, particularly purine nucleotide synthesis, are critical for rapid proliferation and are altered
in many cancers. Purine metabolism has also been identified as essential for glioma tumourigenesis.
Additionally, alterations of 1-C-mediated purine synthesis have been identified as commonly present
in brain tumour initiating cells (BTICs) and could serve as a phenotypic marker of cells responsible for
tumour recurrence. Further research is required to elucidate mechanisms through which metabolic
vulnerabilities may arise in BTICs and potential ways to therapeutically target these metabolic
processes. This review aims to summarize the role of 1-C metabolism-associated vulnerabilities in
glioblastoma tumourigenesis and progression and investigate the therapeutic potential of targeting
this pathway in conjunction with other treatment strategies.

Keywords: glioblastoma; glioma; one-carbon metabolism; de novo purine synthesis; metabolic
reprogramming; metabolic treatment

1. Introduction

Altered cell metabolism is a hallmark of cancer cell biology [1]. Many groups have
identified ways in which cancer cells use adaptive metabolic strategies to facilitate the
process of tumourigenesis. Folate-mediated one-carbon (1-C) metabolism is a metabolic
process in which 1-C unit carriers are produced for use in biosynthetic pathways [2]. Re-
cently, there has been great interest in the role of 1-C metabolism in cancer cell proliferation
with many genomic and metabolomic studies showing upregulation of this metabolic
process in various cancers, including glioblastoma [2,3].
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Glioblastoma is the most common primary brain tumour in adults [4]. Despite ag-
gressive treatment, including resective surgery followed by concomitant radiotherapy
and chemotherapy, treatment failure and disease recurrence remain universal [4,5]. The
constant nature of recurrence in glioblastoma and general ineffectiveness of second line
therapies highlight the need for improved understanding of the molecular characteristics
of this disease and the development of novel approaches to its treatment.

Reprogramming of cellular metabolism has been identified as a critical step in glial
cell transformation during glioblastoma tumourigenesis [6]. Metabolic reprogramming
in glioma cells has been studied in the context of a variety of mechanisms, including
increased Warburg effect and aerobic glycolysis [7–10], the pentose phosphate pathway
(PPP) [11–15], amino acid metabolism [16–19], oxidative phosphorylation [14,20–24], and
lipid metabolism [25–30]. Many of these metabolic pathways manifest in synthesis of
macromolecules needed for proliferation.

Among the various metabolic strategies used by glioma cells, the folate-methionine
pathway and 1-C metabolism remain understudied [7]. These metabolic pathways are
critical for nucleotide synthesis and DNA methylation [2,7,11,31]. Additionally, de novo
purine synthesis and upregulation of the related 1-C metabolism pathway have been noted
as characteristics of less differentiated stem and progenitor cells as well as brain tumour
initiating cells (BTICs) responsible for tumorigenesis [31–34]. In the following sections,
we aim to summarize the role of 1-C metabolism-associated vulnerabilities in cancer, and
particularly in glioma cells. Additionally, we will evaluate whether this altered metabolic
program can serve as a phenotypic identifier of BTICs and as a potential therapeutic target
in glioblastoma. Further elucidation of the role of 1-C metabolism-related vulnerabilities in
glioblastoma might uncover novel mechanisms that mediate and control cell proliferation
and reveal effective novel treatment strategies.

2. Metabolic Reprogramming in Cancer and Cancer Initiating Cells

Tumourigenic cells alter their metabolic processes to meet the increased substrate
demands required to sustain rapid proliferation, self-replication, and invasion. Since the
identification of the Warburg effect, many groups have identified a variety of ways in
which cancer cells reprogram metabolic pathways. In fact, metabolic reprogramming
has been established as one of the hallmarks of cancer [1,9]. Metabolic programs play
a significant role in balancing proliferation and cell-fate regulation. This role becomes
particularly important in stem cells, which need to retain self-renewal capacity and the
ability to differentiate [35]. Interestingly, cancer cells and normal stem cells share a number
of similarities in their signalling pathways regulating metabolic phenotypes, which are
conducive to increased proliferation, enhanced self-renewal, and improved adaptability to
differing environmental conditions [35].

The first metabolic alteration in cancer cells was observed to be an upregulation in
glucose uptake and a preference for glycolysis in oxygen-rich environments, a phenomenon
referred to as aerobic glycolysis, or the Warburg effect [9]. Cancer cells and stem cells both
engage in increased levels of aerobic glycolysis [36,37]. Additionally, both cancer cells and
stem cells are heavily reliant on exogenous glucose and glutamine supplies [38–40].

Upstream of the mentioned metabolic changes, cancer cells and stem cells share
a number of growth signalling pathways involved in metabolic regulation. In normal
cells, growth factor-mediated activation of receptor tyrosine kinases engages signalling
pathways such as PI3K, Ras, MEK/ERK, and mTOR to increase anabolic pathways and
macromolecule synthesis [41]. These pathways are often overactivated in cancer cells, and
many have also been shown to regulate pluripotent cell growth [35].

A number of the discussed metabolic alterations have been reported in connection with
pro-oncogenic signalling in glioma cells [7]. In glioblastoma cell lines, activation of ERK1/2
by epithelial growth factor (EGF) leads to the nuclear translocation of pyruvate kinase
M2 (PKM2), a critical enzyme involved in the production of pyruvate in the glycolysis
pathway, leading to a positive feedback loop that ultimately results in an increase in
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aerobic glycolysis [42]. The PPP, which is necessary for the maintenance of a constant
supply of nucleotides, has been shown to be upregulated in actively dividing cells within
gliomas [43]. Mutations in Krebs cycle enzymes isocitrate dehydrogenase 1/2 (IDH1/2)
are present in a subset of glioblastoma cases, affecting amino acid metabolism and glucose
oxidation [16]. Our group has shown that the reduction in glioblastoma tumour formation
after inhibition of inhibitor of DNA-binding 1 (ID1) is mediated by downregulation of
EGF and downstream ERK1/2 signalling [44]. ERK1/2 activation induces transcriptional
regulators of glycolysis, the tricarboxylic acid cycle, and macromolecular biosynthesis, as
well as cell proliferation programs [8]. Furthermore, ID1 is a marker of relatively quiescent
glioma stem-like cells that are required for tumourigenesis, are resistant to chemotherapy,
and can be responsible for initiating tumour recurrence [44,45]. These data suggest that
metabolic reprogramming may play a role in mediation of the stem-like phenotype in
glioma cells.

Cancer stem cells are a class of cells that exhibit the features of both normal stem
cells and cancer cells; however, the metabolic characteristics of these cells, especially
BTICs, have been poorly understood [35,46]. It has been suggested that BTICs are less
glycolytic than more differentiated glioma cell populations [47]. Additionally, BTICs
are known to have increased glucose uptake and upregulation of the de novo purine
synthesis pathway, metabolic pathways which allow maintenance of rapid proliferation and
growth [32]. Further, BTICs have a higher mitochondrial reserve than differentiated glioma
cells, suggesting that these cells use adaptive metabolic strategies to resist therapeutic
stress [47]. These data suggest that metabolic alterations, particularly in certain pathways
such as nucleotide synthesis, may be a characteristic of the stem-like phenotype in glioma
and may thus be critical to treatment resistance.

3. 1-C-Mediated de Novo Purine Synthesis: A Brief Overview

The abundance of the nucleotide pool, as well as the level and activity of different
rate-limiting enzymes of the nucleotide synthesis pathway, significantly affects the prolif-
erative capacity of cells as well as their capacity for DNA replication and repair [15]. 1-C
metabolism and the closely related purine synthesis pathway are critical to these issues [7].

1-C metabolism provides carbon units for biosynthesis through folate intermediates.
Tetrahydrofolate (THF), after entering the 1-C cycle, can bind methyl groups and act as a
carbon donor. 10-Formyl-THF is produced in the mitochondria from the reduction of 5,10-
methyl-THF by methylenetetrahydrofolate dehydrogenase 2-like protein (MTHFD2/L),
and is primarily involved in de novo purine synthesis [2,48]. Cells require a steady supply
of nucleotides to complete the processes of DNA replication and cell division. Nucleotides
can be produced either through salvage pathways recycling existing nucleobases or through
de novo synthesis pathways [49]. De novo purine synthesis has the largest demand for
1-C units [2]. De novo purine synthesis results in the production of inosine monophos-
phate (IMP) from phosphoribosyl pyrophosphate (PRPP), which is further converted into
guanosine monophosphate (GMP) or adenosine monophosphate (AMP). De novo purine
synthesis is preferentially activated in conditions with higher requirement for purine
nucleotides, such as in rapidly dividing cells [49–52]. The reactions of de novo purine
synthesis are mediated in the cytosol by enzymes working in a metabolic complex named
the purinosome, increasing the efficiency of this anabolic process [53,54].

THF, and subsequently 10-formyl-THF, are essential to the synthesis of purine nu-
cleotides [52,53]. Due to the dependency of de novo purine synthesis on 1-C metabolism,
deficiencies in 1-C metabolism leading to reduction in its products would result in a lower
availability of essential intermediates for purine synthesis. 1-C metabolism also produces
other metabolically significant compounds, including glycine and serine. Glycine is a
substrate for glutathione and purine synthesis, and serine can be used to synthesize glycine
in the absence of an exogenous supply [2,55,56]. 1-C metabolism is compartmentalized
between the cytosol and mitochondria. The compartmentalization of these reactions allows
for the existence of parallel metabolic processes, increasing the metabolic adaptability of
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cells [48]. Figure 1 shows a schematic of 1-C-mediated purine synthesis and the enzymes
involved in this process.

De Novo Purine Synthesis

Figure 1. One-carbon-mediated de novo purine synthesis. Dietary folate is reduced to dihydrofolate (DHF) and subsequently
tetrahydrofolate (THF) by dihydrofolate reductase (DHFR). THF is acted on by a series of enzymes in the mitochondria,
which add methyl groups to THF, allowing it to act as the initial 1-C carrier required for a variety of biosynthesis processes.
10-Formyl-THF is produced in the mitochondria from the reduction of 5,10-methyl-THF by methylene tetrahydrofolate
dehydrogenase 2 (MHFD2/L). 10-Formyl-THF is then used in de novo purine synthesis as a carbon donor. The purine
ring is built directly onto the 5-phosphoribose-1-pyrophosphate (PRPP) backbone during de novo purine synthesis, and
requires the substrates glutamine, glycine, bicarbonate and 10-formyl-THF. De novo purine synthesis is a 10-step cy-
tosolic reaction that results in the production of inosine monophosphate (IMP). IMP is further converted into guanosine
monophosphate (GMP) via the activity of the enzymes inosine monophosphate dehydrogenase (IMPDH1) and guanosine
monosphosphate synthetase (GMPS), or adenosine monophosphate (AMP) via the activity of the enzyme adenylosuccinate
synthase (ADSS) and adenylosuccinate lyase (ADSL). TYMS: thymidylate synthase; dTMP: deoxythymidine monophos-
phate; SHMT1/2: serine hydroxymethyltrasnferase 1/2; PPAT: phosphoribosyl pyrophosphate amidotransferase; GART:
glycinamide ribonucleotide transformylase; MTHFD1L: Methylenetetrahydrofolate Dehydrogenase (NADP+-Dependent) 1
Like; FGAMS: formylglycinamidine ribonucleotide synthase (FGAMS); PAICS: phosphoribosylaminoimidazole carboxy-
lase; AICAR: 5-Aminoimidazole carboxamide ribonucleotide; ATIC: 5-aminoimidazole-4-carboxamide ribonucleotide
formyltransferase/IMP cyclohydrolase; XMP: xanthosine monophosphate.
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4. 1-C-Mediated de Novo Purine Synthesis: Relevance in Cancer and Glioblastoma

Differential expression of metabolic enzymes, for example, those of glycolysis and the
PPP, has been found to be a source of intratumoural heterogeneity in glioblastoma [13],
and often results in differential rates of nucleotide synthesis within glioma cells [13]. The
enzymes of the mitochondrial folate cycle, including MTHFD2/L and serine hydrox-
ymethyltrasnferase (SHMT), have been found to be expressed at markedly higher levels
in cancer cells, including hepatocellular carcinoma, colorectal cancer, breast cancer, and
glioblastoma [55–59]. BTICs show increased expression of 1-C metabolism enzymes, and it
has been hypothesized that folate cycle reprogramming is associated with acquisition of the
stem-like phenotype in glioblastoma tumour cells [31,60]. Alterations in 1-C metabolism
have been shown to influence overall survival in some cancers, including head and neck
squamous cell carcinomas, colorectal cancer, pancreatic cancer, breast cancer, lung ade-
nocarcinoma, and paediatric medulloblastoma [59,61–65]. Knockdown of MTHFD2/L
has been shown to result in reduced cell growth and Ki67 staining, reduced in vivo tu-
mourigenesis, and G0/G1 cell cycle arrest in lung adenocarcinoma [50,66]. Deficiency
of MTHFD2/L and alteration of mitochondrial 1-C metabolism result in defects in other
metabolic pathways, particularly de novo purine synthesis. Additionally, accumulation
of glutaminolysis, glycolysis, and PPP intermediates has been observed after MTHFD2/L
knockdown [66]. The inhibition of MTHFD2/L from 1-C metabolism results in purine
nucleotide deficiency and reduced cell proliferative capacity, which can be restored by ex-
ternal supplementation of hypoxanthine and the purine salvage pathway [67–69]. Studies
have shown that knockdown of MTHFD2/L results in reduced rates of IMP, AMP, and
GMP—i.e., of the products of de novo purine synthesis [50].

As mentioned previously, purine synthesis is a limiting factor for the growth, prolifer-
ation, and maintenance of BTICs [32,70]. Deficiencies in purine synthesis enzymes such as
5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase
(ATIC), formylglycinamidine ribonucleotide synthase (FGAMS), adenylosuccinate lyase
(ADSL), phosphoribosylaminoimidazole carboxylase (PAICS), guanosine monosphosphate
(GMPS) and inosine monophosphate dehydrogenase (IMPDH2) have been found to re-
sult in altered purinosome assembly and reduced purine synthesis rates [71,72]. Purine
synthesis enzymes are found to be overexpressed in patient populations across a variety
of tumour types, including glioblastomas [33,61,73]. Goswami et al. report increased
expression of PAICS and PPAT in lung cancer [74]. Expression of PPAT and PAICS was in-
dependently associated with patient survival in lung adenocarcinomas; further, a subset of
adenocarcinoma patients harbour aneuploidy and amplification in divergently transcribed
loci of PPAT and PAICS [74].

Mutations in ADSL are known to abrogate purinosome formation, limiting purine
synthesis [50,71]. Purinosome formation is significantly affected in patients with ADSL
deficiency, an autosomal recessive disorder of purine metabolism [71]. Skin fibroblasts
derived from patients with ADSL deficiency show reduced spatial overlap between the
purine synthesis enzymes ADSL, ATIC, GART, and phosphoribosyl pyrophosphate ami-
dotransferase (PPAT), suggesting reduced purinosome formation and reduced purine
synthesis [71]. Disruption of purinosome assembly has also been shown to enhance sensi-
tivity to chemotherapy agents such as methotrexate [73]. shRNA-mediated knockdown
of ADSL and GMPS in BTICs results in abrogation of self-renewal and tumourigenesis in
xenografts [32]. IMPDH2 expression has also been found to be necessary for glioblastoma
tumourigenesis in vivo [75]. Knockdown of ADSL and GMPS results in increased levels of
cleaved caspase-3 and reduced levels of Ki-67 and SOX2 in BTICs [32]. Additionally, data
from The Cancer Genome Atlas (TCGA) show increased expression of PRPS1, GMPS, and
ADSL protein in BTICs compared to normal brain tissues [32,76]. Wang et al. show that
BTICs have an upregulation of H3K27ac at purine synthesis pathway genes, suggesting
priming of purine pathway genes in glioblastoma compared to normal brain tissue [32].
Increased levels of ADSL, adenylosuccinate synthase (ADSS), IMPDH1, and PPAT are asso-
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ciated with poor prognosis in glioblastoma patients [32]. Additionally, overexpression of
PPAT, IMPDH1, and ADSS correlate with worse survival among glioblastoma patients [32].

In addition to proliferation of BTICs, purine nucleotide synthesis has been shown to
regulate DNA repair and therapeutic resistance in glioblastoma [77]. Overexpression of
IMPHD2 in glioblastoma tumour cells results in a high turnover of GTP, which is required
for DNA replication and proliferation, rRNA and tRNA synthesis, as well as certain
signalling pathways [75,78]. In addition to GTP, extracellular ATP and ADP show extremely
low degradation rates in glioma cell lines compared to normal astrocytes, which speaks to
the importance of adenosine for glioma cell proliferation [79]. Furthermore, adenosine has
neuroprotective abilities that can induce angiogenesis, which makes high adenosine levels
even more beneficial to glioma cells [79–81]. Downregulation of inosinates and guanilates
correlates positively with sensitivity to radiotherapy [77]; while nucleotide availability did
not prevent DNA damage induction, exogenous supplementation of purines following
treatment with radiation did reduce DNA damage, suggesting that purine nucleotides
enhance the ability of glioblastoma cells to repair DNA lesions [77]. Inhibition of GTP
synthesis resulted in a reversal of radiotherapy resistance in a patient-derived xenograft
(PDX) model of glioblastoma [77]. Other groups suggest that purine synthesis may also be
a driver for chemoresistance in glioblastoma cells [78]. TMZ therapy has been shown to
results in epigenetic modifications that cause glioblastoma cells to rely on de novo purine
synthesis [78]. Increased rates of de novo nucleotide synthesis provide tumour cells with
enhanced ability to repair DNA damage caused by alkylating agents, such as TMZ, in
addition to preventing cells from recycling damaged nucleotides from the extracellular
environment through the purine salvage pathway [78].

The expression of purine synthesis enzymes in glioma initiating cells has been shown
to be regulated in a concerted manner, which suggests the influence of upstream tran-
scriptional regulators or programs [32]. Although alteration of purine metabolism has
not been exclusively associated with specific oncogenic events in cancer, many oncogenic
alterations that drive glioblastoma formation, including of PTEN, EGFR, and PI3CA, can
cause similar alternations in nucleotide synthesis and metabolism [67,77,82–84]. Table 1
provides a summary of the discussed 1-C metabolism and purine synthesis associated
vulnerabilities.

Table 1. Summary of described 1-C metabolism and purine synthesis associated vulnerabilities in cancer.

Metabolic Enzyme Implication Cancer Type/Cell Type Reference

MTHFD2
Cell growth and tumourigenesis; knockdown of
MTHFD2 resulted in reduced cell growth and

Ki-67 staining
Lung adenocarcinoma [66]

MTHFD2
Cell migration and invasion; overexpression

associated with poor prognosis and increased
metastasis

Breast cancer [85]

MTHFD2 Cell growth and survival; metabolic adaptation to
glutamine starvation Glioblastoma [86]

DHFR, SHMT1, MTHFD1 Tumour sphere formation, methionine
dependency, and stem-like phenotype Glioblastoma [31]

MTHFD2 Highly overexpressed; overexpression associated
with poor prognosis Various cancer types [58]

SHMT2 Polymorphisms associated with increased risk of
cancer

Squamous cell carcinoma
of the head and neck [61]

SHMT2, MTHFD2,
MTHFD1

Overexpressed and associated with increased
proliferation; associated with increased mortality

in breast cancer
Various cancer types [56]



Cancers 2021, 13, 3067 7 of 14

Table 1. Cont.

Metabolic Enzyme Implication Cancer Type/Cell Type Reference

MTHFD2, SHMT2,
ALDH1L2 1

Overexpressed; overexpression associated with
poor prognosis Colorectal cancer [59]

MTHFD2 and SHMT2,
ALDH1L2

High expression associated with lower overall
survival and shorter progression free survival Pancreatic cancer [62]

DHFR, TYMS, MTHFD2 Overexpression associated with poor prognosis Group 4 Medulloblastoma [63]

PPAT, PAICS
Overexpressed; overexpression associated with

aneuploidy and gene amplification in subgroup of
patients

Lung adenocarcinoma [74]

DHFR, TYMS, MTHFD2 Tumourigenesis; overexpression associated with
poor prognosis

Brain tumour initiating
cells [32]

IMPDH2 Cell proliferation and tumourigenesis;
overexpression associated with poor prognosis Glioblastoma [75]

IMPDH2 Chemoresistance Glioblastoma [78]

IMPDH2 Resistant to radiotherapy Glioblastoma [77]
1 ALDH12L: aldehyde dehydrogenase 1 family member L 2.

5. Signalling Pathways Upstream of Metabolic Reprogramming

A number of signalling pathways have been proposed to be upstream of the metabolic
changes described above. The activation of the PI3K/Akt pathway induces excessive
glucose uptake and dependency on aerobic glycolysis, while overexpression of Myc can
induce uptake of glutamine in excess of bioenergetic needs [15]. The PI3K-Akt and Myc
pathways have been associated with increased proliferation and metabolic reprogramming
in cancer cells [8,58], as well as regulation of purine synthesis in glioblastoma cells [32].
PI3K-Akt activation has been shown to lead to excessive glucose uptake by cancer cells,
increasing their dependence on aerobic glycolysis, and as a consequence increasing the
availability of glycolysis intermediates required for biosynthetic pathways [15].

As a master regulator of metabolism, mTORC1 has been studied extensively in the
context of cancer cell metabolism, and mTORC inhibitors such as rapamycin have been used
to delay tumourigenesis [49]. Activation of the mTORC1-ATF4 axis by growth signals has
been shown to lead to an increase in the transcription of MTHFD2/L [2]. Ben-Sahara et al.
show that rapamycin-mediated mTORC inhibition results in the depletion of MTHFD2/L,
as well as the downstream de novo purine synthesis pathway [67]. Nucleotide metabolism
has been reported to be regulated both by oncogenes and tumour suppressors [87]. For
example, Mtp53 regulates nucleotide pools by transcriptionally upregulating nucleotide
biosynthesis pathways and has been shown to support invasion and proliferation in cancer
cell lines [87]. It has also been shown that p53 silencing results in the reduced expression of
nucleotide metabolism enzymes, including DHFR, TYMS, and IMPDH1/2 [87].

One of the pathways most extensively studied in relation to purine synthesis regula-
tion is the AMPK signalling pathway. AMPK acts as a metabolic checkpoint regulator of
cell growth [6,88]. AMPK is known to be highly active in high-grade gliomas, regardless of
their genetic background, and AMPK-mediated transcriptional regulation of bioergenetics
has been found to be essential for tumour growth [89–91]. While AMPK is more classically
known as a suppressor of cell growth due to its inhibitory effects on anabolism, some
studies have shown that AMPK-deficient cells are at a growth disadvantage [90,92]. The
differential effects of AMPK activation on metabolic reprogramming and growth may be
due to the differential environmental stressors impacting cancer cells and the need to adapt
to these conditions for survival. For example, AMPK activation can lead to the reduced
activity of phosphoribosylpyrophosphate synthetase (PRPS), which is required for the
production of the phosphoribosyl backbone of nucleotides via the PPP, a critical substrate
for cell replication [50,86,93,94]. Furthermore, AMPK activation has been shown to lead to
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the sequestration of the de novo purine synthesis enzyme FGAMS [95], which can impair
purinosome assembly [52–54,71].

While growth signalling pathways can result in metabolic reprogramming of cancer
cells, metabolic changes can consequently alter cell signalling pathways. As an example,
decreased rate of de novo purine synthesis has been shown to result in accumulation
of 5-aminoimidazole carboxamide ribonucleotide (AICAR), the final purine synthesis
intermediate before IMP in the de novo purine synthesis pathway [32,66]. AICAR is
an activator of AMPK signalling and hence can inhibit cell growth. AICAR treatment
results in reduced cell growth in a dose-dependent manner and, combined with gefitinib,
has resulted in enhanced sensitivity to the EGFR inhibitor in lung cancer cells [66]. Guo
et al. show that AICAR-mediated AMPK activation also leads to negative regulation of
glioblastoma cell growth, particularly in EGFR-activated cells [6]. This growth inhibitory
effect seems to be mediated through metabolic reprograming, as AICAR treatment resulted
in AMPK-mediated inhibition of lipogenesis in EGFR-activated tumours, which could be
reversed by exogenous supplementation of malonate and palmitate [6].

6. Treatments Targeting 1-C Metabolism and Purine Synthesis in Cancer

Although 1-C-mediated purine synthesis has received significant attention as a regu-
lator of cancer cell proliferation and treatment resistance, the importance of this process
as a viable target for anticancer therapy remains understudied [96]. Drugs targeting cy-
tosolic 1-C metabolism, such as methotrexate (MTX) and pemetrexed, have been used as
anticancer agents [96]. MTX is a competitive inhibitor of DHFR, while pemetrexed targets
multiple enzymes involved in nucleotide synthesis, including DHFR, thymidylate synthase
(TYMS), and glycinamide ribonucleotide transformylase (GART) [93,94,97,98]. Walling
provides a thorough review of antifolates and their use as therapeutic agents [99]. While
these compounds are inhibitors of 1-C metabolism, physiologically relevant concentrations
of extracellular hypoxanthine inhibit the toxic effect of MTX, which suggests that MTX-
mediated DHFR inhibition also results in downstream inhibition of the purine synthesis
pathway [68]. This finding suggests that purine synthesis may also be a viable therapeutic
target in cancer.

Drugs that directly inhibit de novo purine synthesis, such as L-alanosine and thiop-
urines, have also been studied in cancer. The toxicity of these chemicals can be influ-
enced by the expression of other metabolic enzymes or the selective reliance of cancer
cells on certain metabolic pathways. For example, sensitivity to thiopurines such as 6-
mercaptopurine (6-MP) and 6-thioguanine (6-TG)—compounds extensively used for the
treatment of leukaemias—has been shown to be dependent on the expression of methy-
ladenosine phosphorylase (MTAP) [69]. The deletion of the MTAP gene is a frequent
event in many cancers, and results in the dependence of cancer cells on de novo purine
synthesis or exogenous purine salvage [69,100–105]. In the event of limited exogenous
purine availability, MTAP-deficient cancer cells are more sensitive to inhibitors of de novo
purine synthesis [69,106]. Loss of MTAP in glioblastoma cells promotes stemness as well
as susceptibility to purine starvation and inhibition of de novo purine synthesis using
L-alanosine [106]. Direct inhibition of purine synthesis in glioblastoma has gained recent
therapeutic interest with studies showing the correlation between treatment resistance and
purine metabolism in glioblastoma [77,78]. Mycophenolate mofetil (MMF), an inhibitor
of IMPDH1 and GTP synthesis, was found to sensitize glioblastoma cells to radiation
therapy and significantly improve survival in combination with TMZ in a PDX model of
glioblastoma [77,78]. There is currently an ongoing phase 0/I trial of MMF in recurrent
and primary glioblastomas (NCT04477200) [107].

One of the major downfalls of targeting metabolic programs in cancer treatments is
the possibility of adverse effects that may rise due to disturbance of normal cell metabolism.
For example, combination of high-dose MTX with other therapeutic strategies, such as ra-
diotherapy, has shown to result in neurotoxic adverse events [99]. Studies have shown that
the same antiproliferative effects observed in cancer cells are not observed in normal cells
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with the inhibition of mitochondrial 1-C metabolism enzymes [58]. This effect may be due
to the existence of parallel 1-C metabolism pathways in the cytoplasm [65] or some toxic
event that is unrelated to normal cell metabolism, perhaps related pathways that are further
upregulated in highly proliferative cancer cells, such as de novo purine synthesis. Asai
et al. have identified chemical compounds, MTHFD2 Inhibitor for THF pocket (MIT) and
MTHFD2 Inhibitor for NAD pocket (MIN), that can effectively target and inhibit MTHFD2
in colorectal cancer cells [108]. Additionally, small-molecule inhibitors of SHMT1/2 have
been demonstrated to be effective at exerting cytotoxic effects against diffuse B-cell lym-
phoma progression in vitro [109]. Although both cytosolic and mitochondrial processes are
significant for 1-C metabolism, it has been indicated that mitochondrial folate metabolism
affects the prognosis of patients more significantly [58,108]. Inhibitors of mitochondrial
1-C metabolism have not been studied in clinical settings; however, pre-clinical studies
highlight them as attractive therapeutic targets. This warrants further research into the
metabolic reprogramming of 1-C metabolism in cancer cells. Zhou et al. also show that
GTP synthesis is preferentially upregulated in glioblastoma cells and not normal brain
tissue, resulting in minimal toxic effects of GTP synthesis inhibition in normal cells [77]. In
addition to selective targeting of cancer cells, inhibitors of purine synthesis do not require
a specific oncogenic event for activity; this means that even genetically heterogeneous
tumours can potentially benefit from purine synthesis inhibition [70,78,85]. Table 2 pro-
vides a summary of recent studies showing the efficacy of targeting 1-C-mediated purine
synthesis enzymes in inhibition of glioblastoma cell growth and tumourigenesis.

Table 2. Summary of recent studies targeting 1-C metabolism and purine synthesis-related metabolic
pathways in glioblastoma.

Chemical Compound/Drug Metabolic Target Reference

Mycophenolate Mofetil IMPDH2 [107]

Mycophenolate Mofetil IMPDH2; Purine synthesis [78]

Mycophenolate Mofetil IMPDH2; Purine synthesis [77]

Methotrexate DHFR; Folate-mediated 1-C
metabolism [60]

Pemetrexed DHFR, TYMS; Folate-mediated 1-C
metabolism, nucleotide synthesis [110]

siRNA-mediated knockdown
SERBP1 1

SERBP1 Methionine synthesis and 1-C
metabolism [111]

siRNA-mediated knockdown
of MTHFD2 MTHFD2; Purine synthesis [86]

L-Alanosine ADSS; Purine synthesis [106]

Adenosine Deaminase Adenosine synthesis [112]

shRNA-mediated knockdown
of PRPS1 2, GMPS and ADSL De novo purine synthesis enzymes [32]

1 SERBP1: Serpine1 mRNA-binding protein; 2 PRPS1: phosphoribosyl pyrophosphate synthetase.

7. Conclusions

Macromolecules, including nucleic acids, lipids, and proteins, are fundamental req-
uisite substrates for proliferation in all mammalian cells. Cancer cells and stem cells rely
on diverse metabolic strategies to maintain macromolecule synthesis. As discussed in this
review, a number of 1-C metabolism and purine synthesis-related vulnerabilities exist in
glioblastoma cells that can be leveraged to inhibit tumour cell proliferation and tumour
growth. To sustain proliferation, glioblastoma cells, and particularly BTICs, upregulate and
rely on anabolic pathways such as 1-C-mediated purine synthesis. Multiple studies have
suggested that these metabolic vulnerabilities are not associated with specific oncogenic
events or specific genetic subtypes in glioblastoma, yet are specific to tumour cells. As
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a result, tumour-specific 1-C-mediated purine synthesis vulnerabilities may be effective
therapeutic targets to inhibit tumour growth with minimal adverse effects on normal cells.
The importance of nucleotide synthesis pathways for maintenance of BTICs also suggests
that these metabolic pathways may offer an attractive strategy to overcome treatment
resistance and prevent tumour recurrence. Further research is required to understand the
underlying mechanisms through which these vulnerabilities may arise in BTICs. Such
studies can elucidate more concrete ways to target the metabolic processes that underly the
glioma proliferation and resistance.
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