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Abstract: A universal multi-parameter sensing scheme based on a self-interference micro-ring
resonator (SIMRR) is proposed. Benefit from the special intensity sensing mechanism, the SIMRR
allows multimode sensing in a wide range of wavelengths but immune from frequency noise.
To process the multiple mode spectra that are dependent on multiple parameters, we adopt the
machine learning algorithm instead of massive asymptotic solutions of resonators. Employing the
proposed multi-mode sensing approach, a two-parameter SIMRR sensor is designed. Assuming that
two gases have different wavelength dependence of refractive indices, the feasibility and effectiveness
of the two-parameter sensing strategy are verified numerically. Moreover, the dependence of
parameter estimation accuracy on the laser intensity noises is also investigated. The numerical results
indicate that our scheme of multi-parameter sensing in a multimode SIMRR holds great potential
for practical high-sensitive sensing platforms compared with the single-mode sensing based on
whispering gallery mode (WGM) resonators.

Keywords: self-interference micro-ring resonator (SIMRR); dissipative sensing; multimode sensing;
multiparameter sensing; machine learning; artificial neuron network

1. Introduction

High-quality whispering gallery mode (WGM) optical resonators have emerged as a promising
platform for compact and ultrahigh sensitive sensing over the past two decades [1–3], which have been
studied theoretically and experimentally in various sensing applications, including solution and gas
sensors, thermal sensors, humidity sensors, magnetometers [4–12]. Advantageously, WGM resonators
can also detect, at a single particle level, nanoparticle, bio-molecule, and even atomic ions [13–19].
Based on WGM resonators, the sensing is typically realized by measuring the spectral changes in high
resolution using a tunable laser or an optical spectrometer [6–10]. These spectral changes include
mode shift, splitting and broadening, which is called reactive sensing [5,13,16,20–24]. Alternatively,
when WGM resonators detect absorptive target analytes, the probe light may be strongly absorbed
and then the linewidth of WGM resonator mode is significantly broadened, which is exploited to
implement the dissipative sensing [16,20]. Lately, without the limitation of near-field interaction, a
special intensity sensing has been presented in special waveguide-coupled WGM resonators [25–28].
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In our previous works, the intensity sensing was exploited twice based on a microring resonator
coupled with the sensing arm waveguide, which is called a self-interference microring resonator
(SIMRR) [26–28]. The SIMRR sensor is designed only by exposing the target to be detected to the
sensing arm or microring waveguide instead of the whole SIMRR structure. An induced tiny phase
change of the sensing arm or microring waveguide mode is converted to a change of external effective
coupling strength between the input waveguide and the microring waveguide, which then eventually
leads to a significant change in the transmission depth, which is measured to realize the intensity
sensing [26–28].

A remarkably neglected truth is that both reactive and dissipative sensing methods are always
realized by precisely monitoring the spectral change of a single resonant mode or two coupled
modes [5], and they are collectively referred to as single-mode sensing in the paper. Obviously, single-
mode sensing based on WGM resonators is often not capable of multi-parameter detection [29–33].
For example, in practical environments, when a nanoparticle approaches the WGM resonator, the gap
between the WGM resonator and input waveguide simultaneously becomes little, and single- mode
sensing is unable to effectively identify two sensing targets. The reason for this is that the spectral
changes of a single resonant mode for the abovementioned two situations are quite similar when two
cases occur alone, and two sensing targets can not be distinguished from its spectral change. Therefore,
the WGM sensor must address an open challenge to achieve the multi-parameter detection ability
for practical applications [3,34–36]. Although a micro-ring resonator biosensing array is exploited
to realize multi-parameter biosensing using wavelength division multiplexing technology [37–42],
its complexarray structure and detecting cost hinder its further development. Hence, it is critical
for WGM sensors to exploit a universal multi-parameter detection mechanism with low detection
complexity. Recently, based on WGM resonators, a machine learning algorithm has been used for
biological agents and micro/nano particles classification in [43,44]. A probabilistic neural network is
used to classify the biological compounds with good accuracy by connecting with the resonant mode
spectral frequency shift and the number of WGMs appearing within the free spectral range.

In this paper, SIMRR multimode sensing has firstly been proposed with the help of signal
processing using an artificial neural network (ANN). The multimode sensing principle stems from the
wavelength dependent spectral response of the SIMRR. When a tunable probe laser is used to excite the
detecting systems, these transmission depths of multiple resonant modes can be collected for estimating
the parameters. The back-propagation ANN (BP-ANN) is used for signal processing through training
and test stages, where training and test data are constructed by these transmission depths within
the wavelength range. As an example, a sensor of two gases using the SIMRR multimode sensing
is numerically proved. The effect of the intensity noises on the multimode sensing performance are
also studied, and the numerical results prove that the multimode sensing can achieve a lower limit of
detection (LOD) at a high signal-to-noises ratio compared with that of single mode sensing. Multi-mode
and multi-parameter sensing have great potential to offer a simple, robust and high-sensitive sensing
platform with low detecting cost.

2. Multimode Sensing Mechanism by Self-Interference Micro-Ring Resonator

Figure 1a shows the schematic diagram of the SIMRR proposed in [26], where the upper and
lower coupling regions (denoted by the alphabets ‘U’ and ‘L’ in Figure 1a) are connected by a U-shaped
sensing arm waveguide. As described in our previous works [27,28], a tiny phase change induced by
the sensing arm waveguide or microring waveguide adjusts effectively the effective coupling strength
between the waveguide and microring, and then makes a significant change in the resonant wavelength
and transmission depth of a transmittance dip. Consequently, as the analyte is only exposed to the
sensing arm waveguide or microring waveguide, the proposed single mode intensity sensing is realized
by measuring the change of transmission depth in a single resonant mode. A simplified method using
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a transfer matrix method is applied to the derivation of the transmission coefficient T of the SIMRR,
and the result is obtained as follows [26]:

T =
e−iβRLR/2k− e−iβRLW (1− k) + e−iβR(LR+LW)

1− e−iβRLR(1− k) + e−iβR(LR/2+LW)k
(1)

where βR is the propagation constant of the waveguide mode (for simplicity we assume that all the
waveguides have the same propagation constant), LR denotes the physical length of the microring, LW

denotes the effective length of the sensing arm waveguide, and k is the power coupling coefficient of
two symmetric directional coupling regions. Concretely, the propagation constant of the waveguide
mode equals βR = (2π/λ)neff − iα, where λ is the optical wavelength, neff is the effective refractive
index of the waveguide and α is the loss coefficient per unit length of the optical waveguide mode.
The sensor can be fabricated in Silicon-on-Insulator (SOI) technology with a standard SOI wafer, and
the detailed fabrication procedure can be found in [10,31].
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Structural diagram of SIMRR and its sensor design. (b) The simulated transmission spectra in the 
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Figure 1. Multimode sensing mechanism by SIMRR (self-interference micro-ring resonator).
(a) Structural diagram of SIMRR and its sensor design. (b) The simulated transmission spectra
in the wavelength range of 1400–1600 nm for the cases of the length change of sensing arm waveguide
l = −10, 0, 10 nm. (c) Enlarged diagram of dotted area in (b).

In the designed sensor in Figure 1a, the analyte to be detected is only exposed to the sensing arm
waveguide. The effective length of the sensing arm waveguide is described by LW = LL + l, where LL

represents its initial physical length when no analyte is exposed to it, and l represents the induced
length change of the sensing arm waveguide. In essence, the length change l is equivalent to the
refractive index change of sensing arm waveguide. In the designed SIMRR sensor, a microring was
chosen with a radius of R = 30 µm and a 220 nm high and 500 nm width ridge waveguide. The effective
refractive index of its fundamental mode equals neff = 2.45, and the waveguide loss coefficient is set
to α = 0.1 dB/cm. The initial physical length of sensing arm waveguide is set to LL = 250 µm, and
the power coupling coefficient of the directional coupling region is set to k = 0.5. Figure 1b displays
the simulated transmission spectra in the wavelength range from 1400 to 1600 nm for the cases of
l = −10 nm, 0 and 10 nm (here, the large step size is chosen in order that the spectral changes are easy
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to be identified in Figure 1b,c). Its typical spectrum is remarkably different from that of conventional
coupled microring waveguide system. In the latter, the peaks or dips show a periodical oscillation
in wavelength, while in the former the transmittance dips with different transmission depths appear
irregularly in wavelength. When the length change l of the sensing arm waveguide is adjusted, the
SIMRR exhibits completely different wavelength dependent responses. Figure 1c is the enlarged
diagram of Figure 1b in the wavelength range from 1442 nm to 1449 nm, where two transmittance dips
are present near 1443 nm and 1448 nm at a fixed value of l. With the increasing of the induced length
change l, the resonant wavelengths of transmittance dips are slightly shifted, and simultaneously their
transmission depths are significantly varied, where the latter has been exploited to realize intensity
sensing in a single resonant mode [26–28]. However, it is observed that their transmission depths
do not show a monotonous change with l, and the single mode intensity sensing cannot be realized
within the range of −10 nm ≤ l ≤ 10 nm. With the increasing length change l, the transmission depth
near 1443 nm gets smaller and then bigger. Conversely, the transmission depth near 1448 nm gets
bigger and then smaller. Obviously, the transmission depths near 1443 nm and 1448 nm have an
opposite variation trend with l. In nature, all the transmission depths within the wavelength range of
1400 nm ≤ λ ≤ 1600 nm can be adopted as the effective sensing information, and then it is critical to
fusion these effective sensing information to improve the sensitivity. Consequently, within a broad
wavelength range, these transmission depths of multiple resonant modes can be fully used to realize
multi-mode sensing.

The conventional probe laser scanning (the method is shown in [27]) can be used to collect these
transmission depths of the multiple resonant modes. When the SIMRR sensor is excited by a tunable
laser via an optical tapered fiber, a photodiode is connected with the output port of the SIMRR via
an optical tapered fiber, and an oscilloscope is ultimately used to collect its transmission spectra.
These transmission depths of the multiple resonant modes can be easily extracted from the obtained
transmission spectra. Subsequently, a machine learning technique will be used for multimode sensing
to efficiently fusion these effective sensing information.

3. Multimode Sensing Based on Artificial Neuron Network

These collected effective sensing signals (transmission depths) from the designed SIMRR sensor
are processed based on a BP-ANN. The ANN is widely known machine learning techniques, which has
been developed to tackle a variety of problems in many sensing areas [45–49]. As shown in Figure 2a,
the BP-ANN consists of three types of layers, i.e. the input layer, hidden layer and output layer, which
are connected by lines known as weights or links. When the designed sensor is used in Figure 1a,
a length change l of sensing arm waveguide is induced by the target to be detected, whose spectra have
a group of transmission depths. Hence, each induced length change l is related with one group of the
transmission depths, which are adopted as the input variables (xi) and applied to I input nodes. These
variables are multiplied by a value of weight factor wim (i = 1, . . . L; m = 1, . . . M) corresponding to the
input layer of links. Here M is the number of nodes in the hidden layer, and it has an important impact
on the learning ability of the BP-ANN. Similarly the signals in the hidden layer are multiplied by
another weight factor wmn (n = 1, . . . , N), N being the node number of output layer. The output layer
is used to estimate the sensing parameter depending on the corresponding input variables. For the
proposed multimode sensing in SIMRR, without loss of generality, the single output parameter (N = 1)
is selected as the length change l of the sensing arm waveguide, because the quantity can represent the
object to be detected in the general sense. Then the final output variable can be expressed as,

l̂t =
M∑

m=1

wmf

 I∑
i=1

wimxi

 (2)

where f(·) is generally chosen to be a sigmoid function. There are two steps when carrying out
signal processing using the BP-ANN. In the first step, a training set is constructed by many pairs
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of input variables and the corresponding theoretical output, and they are generated theoretically or
experimentally in order to train the network. The purpose of training network is to minimize the mean
squared error (MSE) Ee, which is often defined as the average sum of the squares of the errors between
the output estimated value l̂t of the length change and the corresponding theoretical output lt,

Ee =
1
T

T∑
t=1

(
lt − l̂t

)2
(3)

where T represents the total number of measurements, and t represents an index of measurements.
By means of the gradient-descent-based error back-propagation algorithm, these weight factors are
interactively changed to minimize the error function Ee as:

∆wτ
ji = wτ

ji −wτ−1
ji = −η

∂Ee

∂w ji
| wτ (4)

where η is the learning rate. The derivative of Ee is assessed by the derivative algorithm known as
backpropagation, and a detailed account of the backpropagation procedure can be found in [48]. After
the best training performance is achieved, the trained network has realized the expectation aim and
these weight factors are saved. When the object to be detected is detected by the SIMRR sensor its
spectra can be collected by the probe laser scanning method, and a group of transmission depths within
the wavelength range is extracted from the obtained spectra as a test set. In the second step, as the
input variables, the test set is input into the trained neural network, and the object to be detected can
be estimated by its corresponding output parameter based on empirical knowledge gained through
the training process.

In the following, the feasibility and effectiveness of the multi-mode sensing strategy are verified
by the numerical simulations. In this work, the length change of the sensing arm waveguide is set
within the range of −0.01 µm ≤ l ≤ 0.01 µm and their corresponding transmission spectra can be
calculated according to Equation (1). Within the wavelength range of 1400 nm ≤ λ ≤ 1600 nm, there are
28 transmittance dips present, and then the number I of nodes in the input layer is set to 28. Other
initial neural network parameters are set as follows: The node number of 10 in the hidden layer, the
learning rate of 0.01, the training goal error of 1 × 10−6, and the number of units of 100 for training
dataset. The initial training dataset is constructed by many pairs of the theoretical value of the length
change l and its corresponding transmission depths, which are obtained from the spectra calculated by
changing the length change l from −9.999 nm to 9.999 nm with the step size of 0.202 nm. As shown in
Figure 2b–e, the effect of network parameters on its measurement results, such as number of neurons
in the hidden layer, learning rate, number of units for training dataset and training goal error, are
studied in order to optimize the network performance. When optimizing a parameter, the MSE Ee

versus the parameter is studied with other given parameters, and then the current parameter gets the
optimal value on the minimum value of the MSE Ee. Subsequently, the next parameter is optimized
continuously after replacing the current parameter with its optimal value in the given parameter set.
The final optimized parameter values are as follows: The node number of 15 in the hidden layer, the
learning rate of 1 × 10−5, the training goal error of 1 × 10−8, and the number of units of 900 for training
dataset. The number of units for training dataset can be increased by decreasing the step size of the
length change l, and the number of units of 900 for training dataset is obtained by changing the length
change l within the range of −9.99688 nm ≤ l ≤ 9.99688 nm with the step size of 0.02224 nm. The test
dataset consists of many groups of transmission depths, and they are obtained from these spectra,
which are calculated by substituting the theoretical value of length change l into Equation (1). In
Figure 2f, the theoretical values of length change are set within the range of -0.01 µm ≤ l ≤ 0.01 µm
with the step of 0.4 nm, 0.5 nm and 0.8 nm, respectively, and their estimated average values of length
change after 500 simulations separately make up of three lines from right to left. The estimated values
are compared with the corresponding theoretical values of length change l. It is clear that the estimated
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results do agree well with the theoretical values, where their total MSE achieves the value of 1.56 ×
10−13. The simulation results prove that the length change l of sensing arm waveguide can be measured
exactly by using the multi-mode sensing method.Sensors 2016, 16, x 5 of 4 
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Figure 2. SIMRR multi-mode sensing based on artificial neuron network. (a) Signal processing model
using BP-ANN (back-propagation ANN) for the designed SIMRR multi-mode sensor in the Figure 1a.
Influence of the network parameters on its measurement results, (b) MSE (mean squared error) versus
number of neurons in the hidden layer, (c) MSE versus learning rate, (d) MSE versus number of training
datasets, (e) MSE versus training goal error, (f) Comparison between the estimated values of the length
change and their corresponding theoretical values.

In summary, in combination with signal processing using BP-ANN, the SIMRR multi-mode
sensing has been proposed to improve detection accuracy. The multi-mode sensing mechanism stems
from the special transmission spectra of the SIMRR, which exhibit different wavelength responses in
multiple resonant modes. The BP-ANN for signal processing is required to be trained in advance, and
the training datasets are constructed by many groups of transmission depths within the wavelength
range paired with the corresponding known output values. When the object to be detected is detected
by the designed sensor, these corresponding transmission depths are obtained and are input into the
trained BP-ANN, and the network output is the estimated value of the unknown object.

4. Multi-Parameter Sensing by Self-Interference Micro-Ring Resonator

It is often necessary for WGM resonators to be capable of the simultaneous sensing of multiple
elements in practical applications. As previously mentioned, although a microring resonator array
has been exploited to realize the multi-parameter sensing with the aid of wavelength multiplexing
technology, the universal multi-parameter sensing method has high detection complexity. Lately,
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a novel approach to simultaneous measurement of ammonia vapor and humidity in air has been
demonstrated by exciting WGMs in an array of two microspheres [41]. Two microspheres are coated
with different polymers, and they separately have a dominant sensitivity over ammonia and humidity.
Ammonia concentration and relative humidity can be distinguished by separately monitoring the
special spectral positions of two WGM resonances relevant to each of the microspheres. However,
the method does not work if the special spectral positions relevant to each of the microspheres are
not present. In this section, based on the SIMRR multimode sensing in Sections 2 and 3, a universal
multi-parameter sensing approach is proposed with reduced detection complexity.

4.1. The Designed Two-Parameter Sensor by Self-Interference Micro-Ring Resonator

A two-parameter SIMRR sensor is designed in Figure 3a. Here, in order to detect two kinds of gases,
the surfaces of two half-ring waveguides in the left and right are separately coated by two gas sensitive
materials. The cladding layer refractive index shift ∆nc is caused due to the interaction between gas
molecules and the corresponding sensitive materials, and then it is related to the wavelength (λ) and
gas molar concentration (C). The refractive index shift further leads to an effective index change ∆neff

of mode propagating around the micro-ring waveguide, which can be described as,

∆ne f f (λ, C) = Sw∆nc(λ, C) (5)

where Sw is the dielectric waveguide sensitivity. The waveguide sensitivity depends on the geometry
and material of the waveguide, which is obtained as follows:

∆nc(λ, C) = F(λ, λ0)ε(λ0)νtSbpC (6)

where λ0 is the central wavelength in absorption band, F(λ, λ0) is the proportionality factor
betweenabsorption and effective index changes, νt is the total number of BCP (bromocresol purple)
molecules per PMMA (polymethylmethacrylate) unit of volume, Sb is the reagent-analyte binding
constant, and p is the polymer permeability factor. Due to two different interactions between two kinds
of gas molecules and their corresponding sensitive materials, the effective index changes ∆neff of two
half-ring waveguides in the left and right exhibit the different responses in multiple resonant modes.
As is known to all, almost all WGM-based sensors have focused on the measurement of a single mode,
which results in the throw away of experimental data in other modes of different wavelengths. In order
to prove two-parameter sensor’s feasible numerically, it is assumed that their effective refractive index
changes exhibit two different functions of wavelength. For simplicity, the effective refractive index
changes ∆neff of two half-ring waveguides are the Gaussian and Lorentz functions of wavelength,
respectively, which are given as followed,

Sw =
dne f f (λ)

dnc(λ)
(7)

Assuming that one of two gases is ammonia, and the polymethylmethacrylate (PMMA) doped
with bromocresol purple (BCP) has been selected as sensitive material in the cladding layer to detect
ammonia [50]. As PMMA-BCP absorption band extends from 350 nm to 450 nm, a cladding layer
refractive index shift ∆nc at wavelengths around 1550 nm is given by,

∆ne f f 1(λ, C1) = 0.02975C1 exp

−(λ− 1550)2

5000

 (8)

∆ne f f 2 = 0.02975C2
100

(λ− 1550)2 + 100
(9)
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where C1 and C2 denote separately two gas molar concentrations. In order that the refractive index
changes are in line with the reality, the parameters in Equation (8) and Equation (9) are elaborately
selected so that their effective index changes are close to the corresponding actual values in [50].
The effective refractive index of two half-ring waveguides in the left and right can be separately given
by neff1 = neff + ∆neff1 and neff2 = neff + ∆neff2, and the length of the unexposed sensing arm waveguide
equals LW = LL = 250.005 µm. The other structural and physical parameters are the same with that
in Figure 1a. Figure 3b displays their effective refractive indices versus wavelength at C1 = C2 = 5%.
It can be seen that their refractive index curves are quite different from each other, whose values are
essentially in agreement with the actual values [50].
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Figure 3. The designed two-parameter SIMRR sensor. (a) Structural diagram of the designed
two-parameter SIMRR sensor. The surfaces of two half-ring waveguides in the left and right are
separately coated by two sensitive materials to detect two kinds of gases. (b) when two gases to be
detected are only exposed to two half-ring waveguides in the left and right, it is assumed that their
effective refractive index changes are the Gaussian and Lorentz functions of of wavelength, respectively.
At C1 = C2 = 5%, their waveguide effective refractive indices can be separately given by neff1 = neff +

∆neff1 and neff2 = neff + ∆neff2.

4.2. Simulation Verification Based on Artificial Neuron Network

In this section, the two-parameter SIMRR sensing is verified by numerical simulation. According
to Equation (1), the two-parameter sensor’s transmission coefficient T can be rewritten into,

T =
e−iβR1LR/2k− e−iβRLL(1− k) + e−i(βR1LR/2+βR2LR/2+βRLL)

1− e−i(βR1LR/2+βR2LR/2)(1− k) + e−i(βR2LR/2+βRLL)k
(10)

where the propagation constants of two half-ring waveguides in the left and right separately equal
βR1 = (2π/λ)(neff + ∆neff1) ) − iα and βR2 = (2π/λ)(neff + ∆neff2) − iα. Then, the sensor’s spectra can
be calculated numerically according to Equation (10), from which the required training and test sets
can be extracted. Subsequently, the two-parameter sensing can be realized with the help of signal
processing using a BP-ANN. As shown in Figure 4a, a two-output BP-ANN is designed for signal
processing of the two-parameter sensor. The input variables come from the transmission depths in
the calculated transmission spectra, xi, and two output parameters (N = 2) correspond to two gas
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concentrations. Each group of training dataset is constructed by one group of transmission depths
within the wavelength range paired with two known gas concentrations C1 and C2. With two output
parameters being adopted, a huge amount of training data is required in the BP-ANN. Therefore,
several small concentration ranges are separately adopted for the training and test set selection,
including 1% ≤ C1(C2) ≤ 0.2 and 0.05% ≤ C1(C2) ≤ 0.1%. The input transmission depths are obtained
from the spectra, which are calculated by substituting two gas concentrations into Equations (8)–(10).
As two gas concentrations are set to a molar concentration of 1% or 5%, the transmittance dips within
the wavelength range of 1400 nm < λ < 1600 nm are displayed in Figure 4b. These transmission
depths are marked by the labels of square and circle for the gas molar concentrations of 1% and 5%,
respectively. With two gas concentrations being changed, these transmission depths show irregular
changes in multiple resonant modes.
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Figure 4. Multi-parameter SIMRR sensing using BP-ANN. (a) a BP-ANN for signal processing of the
two-parameter SIMRR sensor in Figure 3a. (b) The simulated transmission spectra in the wavelength
range of 1400–1600 nm at C1 = C2 = 1% or 5%. (c) MSE versus wavelength range, (d) MSE versus
threshold value of transmission depth, (e) Comparison between the estimated values by BP-ANN and
the theoretical value of gas concentration C1, (f) Comparison between the estimated values by the
BP-ANN and the theoretical value of gas concentration C2.

The network parameters of the BP-ANN are optimized in the same way that they are optimized
for the BP-ANN in Figure 2a. When 1% ≤ C1(C2) ≤ 0.2, the obtained optimized parameters are as
follows: The node number of 21 in the input layer, the node number of 15 in the hidden layer, the
learning rate of 0.01, and the training goal error of 5 × 10−5. In addition, we have investigated the
effect of wavelength range and threshold of transmission depth on the measurement results. It is
necessary to determine how much wavelength range is suitable to collect the transmission depths for
the BP-ANN. In the example, the wavelength range always centered at 1550 nm, and could be increased
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or decreased to investigate the performance of the BP-ANN. Figure 4c displays the MSE versus the
wavelength range curve. Noted that the MSE can achieve a lower value when the wavelength range is
greater than 150 nm, and the 150 nm is enough to monitor accurately two gas concentrations using the
ANN in the case. Thus, the wavelength range from 1400 nm to 1600 nm is adopted in the remainder
of the paper. Within the wavelength range, only the transmission depths are selected as the input
variables of the BP-ANN when they are less than the value, which is defined as the threshold value
of transmission depth. When the threshold value is set range at 0.75 to 1, Figure 4d displays MSE
versus the threshold value of transmission depth curve. The MSE achieves the lower values when
the threshold is located between 0.8 and 0.96. The reason can be explained as followed. When the
threshold value is smaller than 0.8, the number of the transmission depths is very little within the
wavelength range so that the approach loses a great deal of useful sensing information. While the
threshold value is larger than 0.96, there are so many transmission depth values close to 1 present
within the wavelength range. However, they show a slight change with two gas concentrations being
changed (which can be seen from Figure 4b). Hence, these transmission depths is ineffective for
the sensing, and they may unfavorably affect the accuracy of measurement results by the BP-ANN.
The threshold value is chosen as 0.8 in such a case. In order to effectively reduce training set, the
set is chosen as two gas concentrations that are equal to a certain value C0 in this paper. When the
value is changed from a molar concentration of 1% to 0.2 with the step size of 0.0019, each group of
training data is constructed by one group of transmission depths within the wavelength range paired
with two known gas concentrations of C1 and C2. At 1% ≤ C1(C2) ≤ 0.2, the test set is selected to
investigate the performance of the BP-ANN when the gas concentration C1 is adjusted within the
range of 0.01187 ≤ C1 ≤ 0.19983 with the step of 0.04699 and the gas concentration C2 is adjusted within
the range of 0.01819 ≤ C2 ≤ 0.18277 with the step of 0.02743. The output measurement results by the
BP-ANN are compared with the theoretical values of two gas concentrations, and they are in accord
with these theoretical values. However, the concentration range of a molar concentration of 1% to
0.2 is not realistic, so a small concentration range of 0.05% ≤ C1(C2) ≤ 0.1% is used to investigate the
performance of the method. In such a case, the obtained optimized network parameters are as follows:
The node number of 16 in the input layer, the node number of 8 in the hidden layer, the learning rate of
0.01, and the training goal error of 5 × 10−5. The threshold value of transmission depth is optimized
as 0.9. The training set is chosen when C0 is changed from a molar concentration of 0.05% to 0.1%
with the step size of 0.0005%. The test set is selected when the gas concentration C1 is adjusted within
the range of 0.050138% ≤ C1 ≤ 0.099848% with the step of 0.012426% and the gas concentration C2 is
adjusted within the range of 0.052049% ≤ C2 ≤ 0.094905% with the step of 0.0071426%. Obviously,
there are five values of gas concentration C1 and seven values of gas concentration C2 within a small
concentration range of 0.05% ≤ C1(C2) ≤ 0.1%. Thus the test set corresponds to 35 values of two gas
concentrations C1 and C2, which are considered as the test indices. The selection of test set almost
cover the small concentration range, and the measurement does not lose its generality. As shown in
Figure 4(e) and (f), the measurement results by the BP-ANN are compared with the theoretical values
of two gas concentrations, and they do agree well with these theoretical values. The total number
of measurements is set to 500, and their MSEs achieve the value of 9.4132 × 10−7. The numerical
results have demonstrated that two gas concentrations can be measured accurately in the designed
two-parameter sensor.

In the same way, the method can be easily expanded to a multi-parameter ( the number of
parameter Npara > 2) sensing in SIMRR, and the proposed method offers a universal multi-parameter
sensing approach with low detection complexity.

5. Multimode and Multi-Parameter Sensing under Intensity Noises

All of the above studies are based on ideal model without considering the effect of the noises.
In practical applications, experimental noises are mainly categorized into the frequency and intensity
noises [28]. The former results in the uncertainty of the variation in the resonant wavelength of
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transmission dip, and the latter leads to the variation in the depth of transmission dip [32,33,51]. In our
previous research, it was theoretically and numerically proved that the variation in the transmission
depth was almost immune from the frequency noises at a high signal-to-noise ratio (SNR) [28]. While
in the proposed multimode sensing, only the transmission depths are utilized without considering
their resonant wavelengths, and the effect of the frequency noises on the transmission depths can be
effectively removed by expanding the wavelength range [28]. Thus, only the effect of intensity noises
on the approach is investigated in this work.

For the designed SIMRR sensor in Figure 1a, Figure 5a shows the simulated transmission spectra
in the wavelength range of 1400–1600 nm at l = −10 nm without noises. The transmission spectra under
various noise levels are obtained by adding the small Gaussian noise with zero mean to a noise-free
spectra. A given SNR value can be obtained by adjusting the variance of Gaussian noise. Figure 5b,c
display the transmission spectra at the SNR values of 15 dB and 30 dB, respectively. Noted that the
intensity noises have great influences on the transmission depths at SNR = 15 dB, while they have
less influence on the transmission depths at SNR = 30 dB and these depths almost do not change
compared with the corresponding values without noises in Figure 5a. At a given SNR value, the
training and test sets are constructed separately by the collected transmission depths with noises, and
they are input to the BP-ANN to investigate the influence of intensity noises on measurement results.
In the presence of intensity noises, Figure 5d displays root-mean-square error (RMSE) of estimated
parameter versus SNR. The RMSE under the intensity noises descends with the increasing of the SNR
value, and keeps a stable value of about 10−6 nm at SNR > 48 dB, which is in accord with the RMSE
level under noise free condition. In this work, after the measurement is repeated for 500 times, for
the multimode sensing scheme, its RMSE is approximately equal to its limit of detection (LOD). As a
comparison, the single mode sensing is also used by monitoring the variation in the transmission
depth of a single resonant mode, and the detailed derivation of its LOD is provided by Equation (A1)
in Appendix A. Figure 5d also shows the LOD of the single mode sensing method as a function of
the SNR value. At 30 dB > SNR > 48 dB, the RMSE level of the multimode sensing is more than two
orders of magnitude lower than the LOD of the single mode sensing. When SNR > 48 dB, the RMSE
level of the multimode sensing is gradually close to the LOD of the single sensing. These numerical
results prove that the multi-mode sensing under intensity noises have a significant improvement in
the accuracy of detection compared with the single mode sensing. Obviously, the multi-mode sensing
gets more effective sensing information than the single mode intensity sensing, and it has lower LOD
than the single mode intensity sensing.

For the designed two-parameter SIMRR sensor in Figure 3a, Figure 6a shows the simulated
transmission spectra in the wavelength range of 1400–1600 nm at C1 = C2 = 0.01 without noises.
Figure 6b,c show the corresponding spectra under laser intensity noises at the SNR values of 15 dB
and 30 dB, respectively. It is observed that the intensity noises have great impact on the transmission
depths at SNR = 15 dB, while the transmission depths at SNR = 30 dB are immune from the intensity
noises. At 0.05% ≤ C1(C2) ≤ 0.1%, under various noise levels, the two-parameter SIMRR sensor is
used, and the performance of the BP-ANN in Figure 4a is investigated. Figure 6d displays the MSE of
estimated concentrations versus SNR curves. With the increasing of the SNR value, the mean square
errors (MSEs) of C1 and C2 decrease. At SNR = 60 dB, the MSEs of C1 and C2 are both close to their
corresponding values without noises. As the single mode intensity sensing method can not realize the
two-parameter detection, no results by the method are submitted to compare with the MSEs by the
multi-mode sensing method. These numerical results prove that the proposed multi-mode sensing can
carry out highly accurate two-parameter sensing at high SNR.
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Figure 5. For the designed SIMRR sensor in Figure 1 (a), the simulated transmission spectra in
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of the measurement results by the BP-ANN and the LOD (limit of detection) of single mode dissipative
sensing versus the SNR value.
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6. Conclusions

A systematical investigation on the performance of the multi-mode SIMRR sensor was presented
in this paper. The multimode sensing mechanism results from the different responses to the analyte
to be detected in multiple resonant modes, i.e. the different transmission depth changes in multiple
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resonant wavelengths. After the transmission spectra were obtained by scanning the probe laser
wavelength, the transmission depths within a wavelength range are extracted as effective sensing
features and input into a BP-ANN for signal processing. The multi-mode sensing was exploited for the
multi-parameter detection, and a two-parameter detection was numerically demonstrated based on the
designed SIMRR two-parameter sensor. The dependence of the multi-mode sensing performance on
the laser intensity noises was also studied. Compared with the single mode sensing, the multi-mode
SIMRR sensing had the potential to achieve a much lower LOD at a high SNR.
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Figure A1. For the designed SIMRR sensor in Figure 1a, at SNR = 45 dB, the simulated transmission
spectra near 1500 nm when only l is changed from −15 nm (far left) to 0 nm (far right) with the step size
of 0.5 nm. The single mode dissipative sensing is realized by measuring the variations in the depth of
the transmittance dip near 1500 nm. The largest sensitivity often occurs at the normalized transmission
depth close to 0.5, and it is the slope of the line marked in the figure.

From the [28], without considering the frequency noises, I0/σd denotes the value of SNR, where I0

is the incident beam power, σ2
d is the variance of the Gaussian intensity noises. The LOD of single

mode intensity sensing can be expressed as,

LOD =
σd
SI

(A1)

where SI denotes the single mode intensity sensitivity at a fixed SNR value. At SNR = 45 dB, Figure A1
shows the simulated transmission spectra near 1500 nm for the designed SIMRR sensor, where the
induced length change l of sensing arm waveguide is adjusted from −15 nm (far left) to 0 nm(far
right) with the step size of 0.5 nm. The single mode intensity sensing is realized by measuring
the variations in the transmission depth near 1500 nm. The largest sensitivity often occurs at the
normalized transmission depth close to 0.5, where the transmission depths changes sharply with a
slope SI = 0.08566/nm.
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