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Purpose: This study describes the initial development of a deep learning algorithm,
ROP.AI, to automatically diagnose retinopathy of prematurity (ROP) plus disease in
fundal images.

Methods: ROP.AI was trained using 6974 fundal images from Australasian image
databases. Each image was given a diagnosis as part of real-world routine ROP
screening and classified as normal or plus disease. The algorithm was trained using
80% of the images and validated against the remaining 20% within a hold-out test set.
Performance in diagnosing plus disease was evaluated against an external set of 90
images. Performance in detecting pre-plus disease was also tested. As a screening
tool, the algorithm’s operating point was optimized for sensitivity and negative
predictive value, and its performance reevaluated.

Results: For plus disease diagnosis within the 20% hold-out test set, the algorithm
achieved a 96.6% sensitivity, 98.0% specificity, and 97.3% 6 0.7% accuracy. Area
under the receiver operating characteristic curve was 0.993. Within the
independent test set, the algorithm achieved a 93.9% sensitivity, 80.7% specificity,
and 95.8% negative predictive value. For detection of pre-plus and plus disease, the
algorithm achieved 81.4% sensitivity, 80.7% specificity, and 80.7% negative
predictive value. Following the identification of an optimized operating point,
the algorithm diagnosed plus disease with a 97.0% sensitivity and 97.8% negative
predictive value.

Conclusions: ROP.AI is a deep learning algorithm able to automatically diagnose ROP
plus disease with high sensitivity and negative predictive value.

Translational Relevance: In the context of increasing global disease burden, future
development may improve access to ROP diagnosis and care.

Introduction

Retinopathy of prematurity (ROP) is a vaso-
proliferative disorder affecting the retinae of prema-
ture infants with low birthweights. Although most
ROP settles without significant visual sequelae, up to
5% of ROP will require timely treatment to avoid
permanent visual loss. ROP remains one of the
leading causes of preventable childhood blindness

globally despite improvements in ophthalmic care.1

Blindness from ROP is largely preventable with early
case detection and timely treatment,2,3 although these
can be challenging.

In high-income countries, advances in neonatal
care and screening protocols have resulted in ROP
occurring mostly in infants born extremely premature.
However, improving neonatal care in middle-income
countries has led to the improved survival of
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premature infants without accompanying improve-
ments in infrastructure for ROP case detection and
treatment.4,5 This has led to a global increase in
disease burden, described as the ‘‘third-epidemic’’ of
ROP.4

Access to ROP screening is limited due to the need
for highly specialized personnel and the time-con-
suming nature of its clinical practice, as well as
significant associated medicolegal risk.6,7 Screening
examinations have traditionally been carried out by a
trained ophthalmologist using a binocular indirect
ophthalmoscope. Modern modalities of ROP screen-
ing utilize digital retinal imaging and remote diagnosis
via telemedicine by specialized clinicians, which have
improved both access to screening and objectivity in
diagnosis.8–13 Common across the various screening
modalities is the effort to identify the presence of
treatment-requiring ROP. The Early Treatment for
Retinopathy of Prematurity (ETROP) study rede-
fined treatment-requiring and observational ROP as
‘‘type 1’’ and ‘‘type 2’’ ROP, respectively.3,14 Type 1
ROP is defined as (1) any stage of ROP in zone I with
plus disease, (2) stage 3 ROP in zone I without plus
disease, or (3) stages 2 or 3 ROP in zone II with plus
disease. Type 2 ROP is defined as stages 1 or 2 ROP
in zone I without plus disease or stage 3 ROP in zone
II without plus disease.

Type 1 ROP and indication for treatment is, thus,
distinguished predominantly by the presence of plus
disease. Plus disease was defined in the 1980s by an
international consensus panel as arterial tortuosity
and venous dilation of the posterior retinal vessels
greater than or equal to that of a standard published
fundal photograph.15 More recently, a further inter-
mediate level of pre-plus disease has been described,
defined by a level of vascular dilation and tortuosity
in between that of normal posterior pole vasculature
but less so than plus disease.16 Following the
identification of type 1 ROP, treatment may be
delivered via laser photocoagulation or intravitreal
injection of anti-vascular endothelial growth factor
agents.14,17

Significant interclinician subjectivity and regional
variation in the diagnosis of plus disease is well
documented and may lead to delayed treatment and
poorer visual outcomes.18–20 Diagnostic variation
may be due to individual ophthalmologists evaluat-
ing differing features, focusing on wider fields of
view than the standard photograph for diagnosis, or
having different cutoff points for vascular abnor-
mality required for determination of plus disease.21

Several studies have demonstrated mild to moderate

inter- and intraexpert agreement in the diagnosis of
plus disease.19,21,22 Geographical variation in diag-
nosis has also been established, with diagnosis rates
of treatment-requiring ROP significantly lower in
Australia and New Zealand (7.7% and 7.5%,
respectively) than that of international counterparts
in the United Kingdom (19.2%), Canada, and the
United States (13.0%) in a recent multinational
trial.20

In this global context of increasing disease burden,
limited access to specialized case detection, and
regional variabilities, several research groups have
investigated the development of computer-based
image analysis (CBIA) for the automated diagnosis
of ROP plus disease.23–26 Previously published CBIA
tools have evaluated retinal image features selected a
priori to reach a diagnostic conclusion. Various
systems27, including ROPtool,24 Retinal Image multi-
scale Analysis,28 and early iterations of the i-ROP
tool, have been able to demonstrate .90% sensitivity
for the detection of plus disease in two-level (normal
versus plus disease) classification.

More recently, fully automated techniques utilizing
artificial intelligence (AI) deep learning technologies
have also been validated in ROP by groups based in
the United States29 and China.25 The performance of
these systems has matured, achieving diagnostic
performance comparable or exceeding those of
human graders in the diagnosis of plus disease,
attracting significant attention.30

This study describes the initial development of a
deep learning algorithm, ROP.AI, that can automat-
ically diagnose the presence of ROP plus disease.
Fundal images for this algorithm were sourced from
infants in New Zealand, which have markedly
different demographic and clinical features to those
internationally. Dissimilarities include ethnic hetero-
geneity, with infants of European (39.0%), Māori (the
indigenous people of New Zealand; 23.9%), Pacific
Peoples (18.0%), and Asian (including East and South
Asians; 16.9%) backgrounds.8 Furthermore, New
Zealand ROP screening guidelines (,1250 g birth
weight or ,30 weeks gestational age)31 are more
restrictive than international guidelines32,33 and in-
fants screened were likely, on average, to be smaller
and more premature.

Given these clinical differences and significant
variations in the rate of plus disease diagnosis in
Australia and New Zealand,20 ROP.AI is the first
algorithm trained using fundal images sourced from
local image databases.
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Methods

Ethics

This study was approved by the New Zealand
Health and Disability Ethics Committee (approval
number 14/NTA/183/AM08) and adhered to the
tenets of the Declaration of Helsinki.

Data Sets

Deidentified fundal images were sourced from the
Auckland Regional Telemedicine ROP (ART-ROP)
image library, a database of images generated from
routine ROP screening across four neonatal intensive
care units in Auckland, New Zealand. Images used
were captured from 2006–2015, inclusive. All fundal
images were photographed using a commercially
available camera at a standard field of view of 1308

and resolution of 640 by 480 pixels (RetCam; Natus
Medical Incorporated, Pleasanton, CA).

Diagnoses were supplied by the ART-ROP image
library, which were given by author SD as part of
real-world routine ROP screening and clinical care.
Diagnoses were not added or altered, and images were
classified as either normal retina or plus disease.
Fundal images with pre-plus disease were not
available in the supplied image library.

A total of 4926 deidentified fundal images were
initially received, and all images were manually
graded by author ZT for image quality. Criteria for
image quality inclusion were that (1) the image was
not grossly out of focus and (2) the image was not
affected by blur. Following grading, 3487 fundal
images were included for preprocessing and data
augmentation. Preprocessing comprised of crop to
remove image text annotations, and data augmenta-
tion with horizontal flips were carried out to double
the number of images for the final training set.

ROP.AI Algorithm Development

Images were uploaded with the desktop Safari web
browser (Apple Inc, Cupertino, CA) to a cloud-based
deep learning platform (MedicMind, https://ai.
medicmind.tech; MedicMind, Dunedin, New Zea-
land) utilizing TensorFlow’s Inception-v3 (Alphabet
Inc., Mountain View, CA) convolutional neural
network (CNN).34 CNNs are an advanced AI deep
learning technology specialized for image recognition.
CNNs operate by learning and applying a series of
filters that emphasize image features that are relevant
to the task at hand.

Graded classification was used, with normal and
plus disease fundal images uploaded to separate bins.
The algorithm was trained to diagnose only the
presence of plus disease. The RMSProp optimizer was
used, with a weight decay factor of 0.00004 and
momentum of 0.9. The learning rate was exponen-
tially decayed with a decay factor of 0.16, 30 epochs
per decay, and an initial learning rate of 0.1. Binary
cross-entropy loss was used for training. The batch
size was 16. A softmax output layer was used to
produce probabilistic outputs.

Training and validation of the CNN was per-
formed by cloud-based graphics processing units
hosted by Amazon Web Services (Amazon Inc.,
Seattle, WA).

Internal Validation

Images were randomly assigned in an 80:20 split to
training and hold-out test sets. The ratio of normal to
plus disease fundal images were, thus, expected to be
comparable between image sets. The ROP.AI algo-
rithm was trained on fundal images within the
training set and evaluated on images within the
hold-out test set. This internal validation assessed
the algorithm’s ability to diagnose plus disease on
previously unseen images from the ART-ROP image
library. Statistical performance for the classifier was
measured by calculating sensitivity, specificity, accu-
racy, receiver operator characteristic (ROC) curve,
and area under receiver operating characteristic curve
(AUROC).

External Validation

The performance of the algorithm was subsequent-
ly evaluated against an external test set of 90 fundal
images. These images were not included in the
training and internal validation hold-out sets and
were provided by author CL. Diagnoses were given as
part of real-world routine ROP screening and clinical
care and not subsequently added or altered. Of this
external test set, 57 fundal images were of normal
retina and 33 of plus disease.

Fundal images were uploaded to the ROP.AI
algorithm. The statistical performance of the classifier
in diagnosing plus disease was measured by calculat-
ing sensitivity, specificity, accuracy, positive predic-
tive value, and negative predictive value.

Detection of Pre-plus Disease

ROP plus disease likely exists as a continuous
spectrum of retinal vascular abnormality.21,29 Thus,
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the performance of the algorithm in detecting
intermediate and less severe pre-plus disease was
evaluated. The statistical performance of the classifier
was evaluated in an expanded external test set of 116
fundal images, which comprised of the initial external
test set of 57 normal retina and 33 plus disease
images, with an additional 26 pre-plus disease fundal
images. Statistical performance was measured by
calculating sensitivity, specificity, accuracy, positive
predictive value, and negative predictive value.

Operating Point Optimization

ROP.AI returns a probability value following
evaluation of a fundal image. Values between 0 and
1.00 are returned. By default, an operating point
threshold of 0.50 is used, with values above this point
indicative of plus disease.

As the algorithm can have multiple operating
points, its performance can be tuned to match the
requirements for specific clinical settings.35 Given the
consequences of missing a ROP diagnosis, high
sensitivity and negative predictive value are required
in a screening setting. Thus, the algorithm was
subsequently tested against its normal retina/plus
disease external validation set at 0.01 operating point
intervals between 0.01 and 1.00. An operating point
optimized for sensitivity and negative predictive value
was subsequently identified.

Results

In total, we obtained 4926 deidentified fundal
images from the ART-ROP image database (Fig. 1).
Of the 4926 supplied fundal images, 3792 (77.0%)
were of normal retina and 1134 (23.0%) plus
disease. As images were deidentified, the unique
number of infants is unknown, although are likely
to have been obtained from .300 total unique
imaging sessions.

Following manual grading, there were 1439 images
that did not meet initial image quality criteria and
were excluded from the ROP.AI training set. A total
of 3487 fundal images were subsequently identified as
suitable for training. Following image preprocessing
to remove image text annotations and data augmen-
tation with horizontal flips, 6974 fundal images were
included in the ROP.AI algorithm training set.

Figure 2 displays the ROC curve for the ROP.AI
algorithm tested against its internal validation set (n¼
1395, 20% of the provided data). The AUROC for the
diagnosis of plus disease was 0.993.

On internal validation, the sensitivity and specific-

ity of the ROP.AI algorithm were 96.6% and 98.0%
respectively, providing an overall accuracy of 97.3%

(96.6%–98.0%, 95% confidence interval).

External Validation

The ROP.AI algorithm was evaluated against an

external test set of 90 images, which it had not been

trained with or encountered previously. Figure 3

displays the ROC curve for this validation. The

AUROC for the diagnosis of plus disease was 0.977.

Using a default operating point threshold of 0.50,

the algorithm provided a sensitivity and specificity of

93.9% and 80.7%, respectively. Overall accuracy,

positive predictive value, and negative predictive

value of 85.6%, 73.8% and 95.8% was achieved.

The orange diamond highlights the performance of

Figure 1. Development of initial training set and algorithm
validation process.
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the algorithm at the optimized operating point
identified for high sensitivity.

Detection of Pre-plus Disease

Despite being trained on normal retina and plus
disease fundal images only, the performance of the
ROP.AI algorithm in detecting both pre-plus and plus
disease was evaluated in an expanded external test set
of 57 normal, 26 pre-plus, and 33 plus disease images.
Using a default operating point threshold of 0.50, the
algorithm provided a sensitivity and specificity of
81.4% and 80.7%, respectively. Overall accuracy,
positive predictive value, and negative predictive
value of 81.0%, 81.4%, and 80.7% was achieved.

The average outputs produced by the algorithm
for normal, pre-plus, and plus disease images were
0.23, 0.65, and 0.93, respectively. The distribution of
these probability outputs is illustrated in the violin
plot in Figure 4.

The violin plot shows the distribution of proba-
bility outputs produced by the algorithm for normal,
pre-plus, and plus disease fundal images. The 25th,
50th, and 75th percentile outputs for normal, pre-
plus, and plus disease fundal images are 0.002, 0.088,
and 0.317; 0.387, 0.760, and 0.879; and 0.963, 1.00,
and 1.00, respectively. The operating point optimized
for high sensitivity is shown with the horizontal line at
0.38.

Operating Point Optimization

The algorithm was subsequently tested against its
normal retina/plus disease external validation set at
0.01 operating point intervals between 0.01 and 1.00
(Fig. 5). Given the consequences of missing a ROP
diagnosis, high sensitivity and negative predictive
value are required in a screening setting. An
optimized operating point of 0.38, which maximized
these values, was subsequently identified.

Performance metrics at the optimized operating
point of 0.38 are highlighted.

With an optimized operating point of 0.38, the
sensitivity and specificity values for diagnosing plus
disease were 97.0% and 78.9%, respectively. Overall
accuracy, positive predictive value, and negative
predictive value of 85.6%, 72.7%, and 97.8% was
achieved.

Discussion

This study describes the initial development of a
deep learning algorithm, ROP.AI, trained to auto-
matically diagnose ROP plus disease. Our results have
shown that a deep learning algorithm can successfully
diagnose this form of treatment-requiring ROP with
high accuracy. Over the last decade, digital retinal
imaging to screen for ROP has been implemented in

Figure 2. Receiver operator characteristic (ROC) curve for algorithm diagnosis of retinopathy of prematurity plus disease.
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numerous Australian and New Zealand centers, with
large fundal image databases now available. Given
the significant differences in infant demographic
features and well-documented regional variations in
the threshold for plus disease diagnosis,20 ROP.AI is
the first algorithm trained using fundal images
sourced from local databases. The performance of
this algorithm was subsequently validated against
images from an external test set obtained from a
separate geography, in Hong Kong.

Early CBIA tools developed for the diagnosis of
ROP required the manual identification of the optic
disc and segmentation of key vessel segments.24,26 Our
algorithm is a refinement on these earlier tools, uses
advanced deep learning techniques, and is the first
fully automated tool for ROP diagnosis from Austral-
asia.

A key finding is that this algorithm is able to
diagnose ROP plus disease with high accuracy.
Following operating point optimization, the algo-
rithm had a 97.0% sensitivity and 97.8% negative

predictive value in the diagnosis of plus disease (Fig.
5). This statistical performance is comparable with
those recently reported by international groups.25,29

In the clinical context of screening, high sensitivity
and negative predictive value are critical to avoid
missed and underdiagnosed ROP. This is particularly
acute in ROP where delayed case detection and
clinical intervention may have severe visual impair-
ment and medicolegal sequelae.

Furthermore, despite being initially trained to
diagnose plus disease only, the algorithm has shown
promise also in the detection of pre-plus disease, an
intermediate, less severe disease state. Following
evaluation of a fundal image, ROP.AI generates a
continuous number between 0 and 1.00, reflecting the
probability of plus disease present. Average proba-
bility values returned for fundal images diagnosed
clinically as normal, pre-plus, and plus disease were
0.23, 0.65, and 0.93, respectively.

Although the number of pre-plus images available
for evaluation was relatively small, this may support

Figure 3. Receiver operator characteristic (ROC) curve for algorithm performance in the external validation set.
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reports that plus disease likely exists as a continuous
spectrum of retinal vascular abnormality (Fig. 4),29,36

a hypothesis also suggested in recent ROP deep
learning literature.29,37,38 With significant further
development and validation, the algorithm may be
able to assist in the objective quantification of ROP
disease severity and the monitoring of disease
progression.

Limitations

This initial study has several key limitations. The
ROP.AI algorithm was trained using fundal images
from only a single institution and clinician-provided
diagnoses. CNNs use ‘‘supervised learning’’ where
performance is only as robust as the quality of the
input data. Given known interclinician variations in
the threshold of plus disease diagnosis,20 this algo-
rithm likely reflects the diagnostic preferences of the
single treating clinician and institution. This may
result in overfitting in internal validation and may
restrict the overall applicability of the algorithm in its
current stage of development. Despite this limitation,
the algorithm was still able to perform with high
accuracy in external validation against a test set of

Figure 4. Violin plot for algorithm performance in normal, pre-
plus, and plus disease fundal images.

Figure 5. Statistical performance of the algorithm at operating point intervals between 0.01 and 1.00.
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fundal images provided by an independent clinician
and institution. Further training with images from
multiple clinicians and institutions and the develop-
ment of a training image set with consensus expert
diagnoses may mitigate the impact of individual
clinician diagnostic preferences in the future.

Furthermore, a significant proportion of fundal
images initially sourced from the ART-ROP database
were of insufficient image quality (1439 of 4926 initial
images; Fig. 1). Images were predominantly excluded
due to motion blur or other artifacts. These images
reflect the challenging nature of the real-world
capture of fundal images in ROP screening. Potential
future systems for automated ROP diagnosis will
likely require a layer to assess for fundal image quality
before evaluation for diagnosis.

The algorithm was trained with fundal images
from Australia and New Zealand and tested against
an external test set obtained from a separate region, in
Hong Kong. Although our fundal images are sourced
from a network with a significant proportion of Asian
infants,8 ethnic compositions were likely to signifi-
cantly differ between the training and external test
sets, with differences in retinal pigmentation poten-
tially adversely affecting the accuracy of these results.

Our algorithm was developed on a postdata
augmentation training set of 6974 fundal images,
including 5336 normal and 1638 plus disease images.
The relatively low number of plus disease images may
result in algorithm overfitting, resulting in erroneous-
ly high statistical performance reported on internal
validation (Fig. 2). The size of this training image set,
however, is consistent with those reported by other
groups.25,29,36 The total number of plus disease
images available to train deep learning algorithms in
ROP may be limited due to the relatively low
incidence of plus disease in centers where digital
retinal imaging is currently available and where
neonatal care is sufficiently progressed to largely limit
the development of plus disease.39

Furthermore, the ratio of plus disease to normal
fundal images in the image sets included in our study
is much higher than the real-world prevalence of plus
disease, which may be as low as ,5%.20 This may
skew the reported sensitivity and negative predictive
values, with the algorithm potentially not performing
as effectively in a real-world setting. If the training
data set of the size used in this study reflected real-
world prevalence of plus disease, there would likely
have been insufficient images to have trained the
algorithm effectively. Potential future development to
mitigate the limitations posed by this class imbalance

may include attaining more fundal images, using
techniques including synthetic oversampling, and
oversampling through augmentation.

Lastly, the algorithm is currently only trained to
detect plus disease changes. Plus disease remains only
one component of determining treatment-requiring
type 1 ROP, which also includes consideration of
disease stage and zone. Previous groups, however, have
demonstrated that severe ROP that results in changes
in stage and zone rarely occurs in isolation of vascular
abnormalities observed in pre-plus or plus disease.14,36

Clinical Applications

As recently discussed by Ting et al,30 deep learning
has significant clinical potential in improving the
reliability of and access to ROP screening. Deep
learning algorithms, including ROP.AI, may in the
future be adopted into existing models of care that use
fundus camera systems for digital retinal imaging. In
high-demand regions, including middle-income coun-
tries, these may serve as triage tools to identify cases
that demand further clinician review. Furthermore,
particularly given known interclinician and regional
diagnostic differences, these algorithms may have
potential in assisting clinicians to objectively quantify
and monitor the severity of ROP disease.

In settings with limited access to specialized
clinician screening or specialized fundus cameras,
deep learning algorithms may have the potential to
improve accessibility to ROP screening. The use of
digital retinal imaging captured via existing or new
camera systems, coupled with sufficiently validated
algorithms, may allow for the point-of-care diagnosis
(Fig. 6) of treatment-requiring ROP in settings
without previous access to case detection.

Numerous evidence generation and regulatory
milestones remain prior to realizing this potential
novel model of care.30 The efficacy of deep learning
algorithms for ROP diagnosis in real-world prospec-
tive settings remains to be established, and there
continue to be significant ethical and intelligibility
concerns impeding the uptake of AI systems in
healthcare.40 Ophthalmology, however, appears to
be a leader in the adoption of deep learning systems,
with algorithms for the diagnosis of diabetic retinop-
athy having already received regulatory approval for
routine clinical use.40,41

Future Directions

Future research goals are in development to
address the limitations highlighted in this initial
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study. A multicenter local consortium that combines
fundal images from ROP screening centers across
Australia and New Zealand is under consideration to
enable significantly expanded training and testing
data sets. Data review and consensus diagnoses by
multiple clinicians may reduce bias introduced by
individual clinician diagnostic preferences. Greater
numbers of fundal images and formal training with
pre-plus and plus disease images may mitigate
algorithm overfitting and improve the performance
of the algorithm.

Furthermore, to improve the generalizability of the
deep learning algorithm, technical variations in the
fundal imaging process (e.g., different camera models,
lenses, and optical aberrations) must be accounted
for. Advanced deep learning frameworks utilizing
segmentation maps, which decouple technical varia-
tions in optical coherence tomography imaging, have
recently been successfully described and may poten-
tially also be applied to fundal imaging.42 A
consideration of similar frameworks may be required
to enable novel models of care that utilize varying
fundal image capture systems.

Lastly, given the current discussions and ongoing
review of ROP diagnostic criteria, consideration
should also be given to the ontology of data used to
train and test future algorithms. Pre-plus and plus
disease remain discrete diagnostic categories that may
not capture the full nuance present in ROP’s disease
processes. Novel diagnostic categories, aided in
output by an algorithm, may in the future better
reflect patient status and prognosis.

Conclusion

This study describes the initial development of a
deep learning algorithm, ROP.AI, trained to auto-
matically detect ROP. ROP.AI is the first algorithm

trained using fundal images sourced from local
Australasian image databases and shows high perfor-
mance in the detection of plus disease. In the context
of ROP’s third epidemic, future development may
allow for novel models of ROP screening and improve
access to care for this leading cause of childhood
blindness.
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