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Myosin binding protein C (MyBP-C
or C-protein) is a protein of the

thick (myosin-containing) filaments of
striated muscle thought to be involved
in the modulation of cardiac contraction
in response to β-adrenergic stimulation.
The mechanism of this modulation is
unknown, but one possibility is through
transient binding of the N-terminal end
of MyBP-C to the thin (actin-containing)
filaments. While such binding has
been demonstrated in vitro, it was not
known until recently whether such a link
between thick and thin filaments also
occurred in vivo. Here we review a recent
paper in which electron microscopy (EM)
is used to directly demonstrate MyBP-C
links between myosin and actin filaments
in the intact sarcomere, suggesting a
possible physical mechanism for modu-
lating filament sliding. Molecular details
of MyBP-C binding to actin have
recently been elucidated by EM of
isolated filaments: the results suggest that
MyBP-C might contribute to the modu-
lation of contraction in part by compet-
ing with tropomyosin for binding sites
on actin. New results on the structure
and dynamics of the MyBP-C molecule
provide additional insights into the
function of this enigmatic molecule.

Myosin binding protein C (MyBP-C or
C-protein), an accessory protein of the
thick filaments of vertebrate striated
muscle, has been the focus of intense
interest ever since the discovery that
mutations in the cardiac isoform are a
major cause of the familial heart disease,
hypertrophic cardiomyopathy (HCM).1,2

Mutations in the slow skeletal isoform also
lead to skeletal muscle myopathy: distal
arthrogryposis type 1,3,4 a disease of the
distal limbs, is thought to result from
restricted movement of the fetus in the
uterus. MyBP-C has a beads-on-a-string
structure consisting mainly of domains of
the immunoglobulin (Ig) and fibronectin
type III (Fn3) families (Fig. 1).7 The
C-terminal domains anchor MyBP-C to
the myosin tails and titin in the thick
filament backbone, while the N-terminal
region has been shown to interact with
both the initial part of the myosin tail
(subfragment 2, S2),8-10 with the myosin
regulatory light chain,11 and also with
actin.12-19 Immuno-EM studies have
shown that MyBP-C is located on 7–9
stripes, 43 nm apart, in each half of
the A-band,20-22 stripes that can also be
seen directly in well-preserved unlabelled
muscle (Fig. 2).

Although MyBP-C was discovered
nearly 40 y ago,25 its function is not yet
fully understood. In the heart it appears to
be involved in the modulation of contrac-
tion in response to β-adrenergic stimu-
lation9,26,27; in skeletal muscle its role is
unclear. One way in which MyBP-C
might in principle modulate cardiac con-
traction is through connection to the thin
filaments. Interaction with both F-actin
and Ca2+-regulated thin filaments (con-
taining tropomyosin and troponin) has
been shown in vitro to slow F-actin
motility and to modulate the state of
activity of thin filaments.16,19 Whether
such interactions occur in situ, or are
merely an in vitro artifact, has recently
been clarified by electron tomography of
sectioned skeletal muscle.24 Here we
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review these findings—the first to directly
demonstrate MyBP-C links between the
two types of contractile filament. We relate
these results to observations of N-terminal
MyBP-C fragments bound to F-actin28

and of the flexible and dynamic structure
of the MyBP-C molecule itself.29,30

Three-Dimensional Organization
of MyBP-C in the Sarcomere

While the periodic distribution of MyBP-
C within the two central regions (C-zones)

of each half thick filament has long been
known, its organization in three dimen-
sions has remained a mystery. The
narrowness of the stripes suggests that
the elongated MyBP-C molecule (Fig. 1)
is oriented perpendicular to the filament
axis, rather than longitudinally, but
whether it wraps around the backbone,
or possibly extends out toward the thin
filaments is not apparent from direct
inspection of the electron micrographs
(Fig. 2). Knowing the answer to this
question could provide key insights into

MyBP-C function, in particular whether
it interacts with thin filaments in situ.
Deciphering the organization of this
narrow, elongated, and labile protein in
intact muscle has recently been achieved
by 3D electron microscopy of exception-
ally well preserved specimens.24 Tissue
structure is conventionally preserved for
EM by chemical fixation using glutaralde-
hyde, a bi-functional protein crosslinker.
Major cellular components and organelles
are well preserved in this way, but fine
molecular details are usually lost. It has
been found experimentally that the best
preservation is achieved by cryo-fixation,
which can instantaneously capture 3D cell
and molecular architecture by the physical
process of freezing. Freezing is achieved
by “slamming” tissue against a polished
copper block cooled with liquid helium,
which vitrifies specimens (freezes them
without ice crystal damage) within a
millisecond to depths of up to 20 mm.
Following vitrification, specimens can be
sectioned at low temperature (cryo-
sectioned) then imaged in the frozen state
by cryo-EM.31 While this procedure pre-
serves native structure better than any
other, it is complex and technically
challenging. An alternative method that
yields excellent results is freeze-substitution:
instead of cryo-sectioning, the vitrified
tissue is chemically fixed at low temper-
ature (e.g., with osmium tetroxide in
acetone) as the ice gradually dissolves.
This is followed by embedding in epoxy
resin and conventional thin sectioning
(e.g., Padron et al.32). This is the pro-
cedure we used to preserve thick filament
3D molecular structure in sections of frog
skeletal (sartorius) muscle.33 Comparison
of the averaged Fourier transform of the
A-bands from several electron micrographs
showed excellent agreement with X-ray
diffraction patterns of living muscle, demon-
strating that we had indeed achieved high
quality filament preservation (Fig. 2).24

Visualization of fine structure in normal
EM sections is hampered by superposition
of components at different levels in the
section. This problem can be overcome by
collecting images at different tilt angles
in the microscope and recombining them
computationally by the procedure of back
projection (electron tomography).34 Tilt
series were collected from the sections of

Figure 1. Domain structure of MyBP-C. The majority of this elongated protein consists of tandem
Ig-like and Fn3-like, 10 kDa globular domains, ~4 nm in diameter. The cardiac isoform shown has
11 such domains together with a MyBP-C-specific “M-domain” (which includes 4 phosphorylation
sites), a 28-residue insertion in the C5 domain, and a Pro-Ala-rich region (PA).5 The skeletal isoform
is similar, but lacks the N-terminal C0 domain, the C5 insertion and the phosphorylation sites. The
C-terminal domains bind to the thick filament (LMM and titin),5 while the N-terminal domains are
capable of binding to actin and/or myosin S2. Mutations over the whole length of cardiac MyBP-C
lead to HCM and to date 197 HCM-causing mutations have been found.6

Figure 2. Longitudinal section of rapidly frozen, freeze-substituted frog sartorius muscle. Thick
filaments and thin filaments run horizontally; examples are shown in red and yellow, respectively.
Stripes 5–11 in the C-zone represent MyBP-C. Finer stripes between the MyBP-C stripes are myosin
heads. Components of the sarcomere are labeled: M, M-band; P, P-zone; C, C-zone; D, D-zone;
Z, Z-disc.23 The inset is the averaged Fourier transform of 23 half A-bands, showing six orders of
layer lines and meridional reflections coming from the thick filaments, demonstrating excellent
preservation of three-dimensional order of myosin heads and MyBP-C. Inset from Luther et al.24

Scale bar = 200 nm
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rapidly frozen, freeze-substituted sartorius
muscle. The high density of the MyBP-C
stripes in untilted sections (Fig. 2) suggests
that a large part of the protein is confined
to a thin disc at the stripe location.
However, direct inspection of the tomo-
grams at this location does not reveal
MyBP-C structure due to noise in the
tomograms. To overcome this problem,
we computationally extracted thick fila-
ments from the 3D volume of three
tomograms (207 filaments in all), and
performed multiple rounds of alignment
and averaging to obtain a final thick
filament average.

Inspection of the averaged tomogram in
3D (using UCSF Chimera35) showed clear
“crowns” of myosin heads with a 14.3 nm
spacing (Fig. 3), long known to be present
based on X-ray diffraction patterns of
muscle, but never before directly visualized
in muscle sections. A radially extensive
envelope of density (MyBP-C) was seen at
every third level of heads in the C-zone,
corresponding to the location of the dense
stripes in the sections (Fig. 2). While
MyBP-C appears prominent when visua-
lized by this surface rendering (Fig. 3A),
depiction as a density map reveals that it is
in fact weak and diffusely localized. This
becomes especially evident in viewing the
reconstruction from different angles (see
Movie S3 in Luther et al.24), which shows
that the intense stripes appear only when
viewed exactly edge-on. Analysis of the
tomogram shows that the bulk of MyBP-C
density is at high radius, further from the
filament backbone than the myosin heads.
The density emanates at a fixed point on
the filament circumference, has an initial
radial component and then veers to a more
circumferential direction, apparently mak-
ing contact with the actin filaments (white
in Figure 3B and C).

These observations demonstrate directly
that MyBP-C can indeed interact with
thin filaments in the intact sarcomere. We
conclude that previous in vitro studies of
MyBP-C-thin filament interaction, and
the functional conclusions derived from
them, may be relevant in vivo. While the
binding of MyBP-C to actin in vivo must
be weak, in order to allow for filament
sliding during contraction, it could have
profound physiological consequences,
e.g., by sensing and modulating filament

sliding. Weakening of actin binding by
phosphorylation of the M-domain17 could
contribute to the enhancement of cardiac
contraction that occurs in response to
β-adrenergic stimulation. Binding to actin
could help to account for a long-standing
puzzle—how MyBP-C, with its restricted
location in the thick filament, can affect
thick-thin filament sliding as a whole.
This would not appear to occur via
interaction with the small number of
myosin molecules that are in contact with
MyBP-C; direct connection to actin could
explain effects at the whole filament level
straightforwardly.

While the tomogram clearly reveals the
extension of MyBP-C between thick
and thin filaments, it does not provide
molecular detail on the binding to the
surface of either. Suggestive information
on the binding of the C-terminal end to
the thick filament has come from a 3D
reconstruction of isolated filaments, which
shows three 4-nm globular domains (coin-
cident with the MyBP-C stripes) running
longitudinally along the filament in con-
tact with titin.36 These may represent
domains C8-C10, known to bind to the
thick filament backbone; the rest of the
molecule is not visualized, presumably due

Figure 3. Three-dimensional reconstruction of averaged thick filament from electron tomography
of sectioned muscle. (A) Surface view, with M-line at bottom. Myosin heads show as helically
arranged projections along length of filament; MyBP-C forms “shelves” of density (S5-S11) at every
third level (crown) of myosin heads, marked by c2 and c3 (c1 coincides with the MyBP-C stripes).
(B) Levels 7–9 (bottom to top) of MyBP-C (pink mesh) with associated myosin heads. Straight white
lines show positions of thin filaments, and curved white lines show two possible paths followed by
MyBP-C as it emerges from the thick filament and runs toward its contact with the thin filaments.
(C) Transverse view of (B) at level 8, showing MyBP-C as pink mesh and thin filaments as white discs.
Curved white line shows possible course of MyBP-C from the surface of the thick filament to the
thin filament. Figure adapted from Luther el al.24
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to its disordering in isolated filaments.
Fitting of our tomogram to the isolated
filament reconstruction suggests a simple
model for MyBP-C organization, in which
the C-terminal three or four domains
bind along the thick filament while the
N-terminal half extends out and binds
to the thin filaments. This arrangement
argues against the organization of MyBP-C
molecules into a collar around the thick
filament backbone, proposed on the basis
of interactions observed between C5 and
C8 and between C7 and C10 in yeast 2
hybrid screens37; indeed there is no visible
evidence in the thick filament reconstruc-
tion for circumferentially arranged 4-nm
domains, even though the resolution is
clearly good enough to see such detail.36

Mode of Interaction of MyBP-C
with Thin Filaments

Structural information on the binding of
MyBP-C to thin filaments has recently
come from observations of actin filaments
decorated with expressed N-terminal frag-
ments. Based on neutron scattering data
from filaments decorated with C0-C1-m-
C2 (C0C2) fragments, it has been sug-
gested that binding occurs by interaction
of the C0 and C1 domains with sub-
domain 1 and the DNase I binding loop
of actin.38 However, this work was per-
formed at relatively low ionic strength,
and depended on model building of
relatively low resolution data. Binding

has now been studied by more direct
means, using EM imaging of negatively
stained F-actin decorated with the same
fragment and under closer to physiological
ionic strength and pH.18 The larger fila-
ment diameter, together with alterations
in the Fourier transform of decorated
filaments, clearly demonstrated regular
binding of the fragment; however, its
location and mode of binding on actin
were not revealed as 3D reconstruction
was not performed. Reconstructions of
filaments decorated with a number of
N-terminal fragments (C0C1 with part
of the M-domain, C0C2 and C0C3) at
a variety of ionic strengths have now
provided this missing information.28 All
fragments showed MyBP-C density over
a broad portion of subdomain 1 of actin,
centered over the N-terminus, with the
longer fragments extending tangentially
from the actin surface in the direction of
the pointed end. Molecular fitting with an
Ig domain atomic structure suggests that
C0 and C1 bind to subdomain 1, while
the M domain may bridge over subdomain
2 and possibly connect to subdomain 1 of
the adjacent actin, while the C2 and C3
domains appear to lie above the actin
surface (Fig. 4A). While this appearance
agrees broadly with the neutron scattering
model, the M-domain in the reconstruc-
tion appears to be attached to the actin
filament, in agreement with solution
data suggesting that binding to actin
occurs primarily through the C1 and

M-domains.17 It is possible that the higher
pH of the neutron scattering experiments
caused the M-domain to dissociate. New
in vitro motility and optical trap experi-
ments localize the M-domain binding site
to a cluster of highly conserved arginines
within the first 17 amino acids of the
domain.19 These appear to be involved
in stereospecific binding of cMyBP-C to
actin, possibly by binding to actin’s
negatively charged N-terminus.

The most interesting finding to emerge
from the reconstruction is the apparent
steric clash between the C0 and C1
domains and tropomyosin. This appears
to occur when tropomyosin is in the low
Ca2+ (Fig. 4C) but not the high Ca2+

(Fig. 4B) position, consistent with the
conclusions from neutron scattering38

and from reconstructions of F-actin deco-
rated with C0 and C1.40 In vitro motility
assays show that thin filaments are slowed
by the presence of the C0C2 or C1C2
fragment under high Ca2+ conditions,
whereas at low Ca2+ their velocity is
increased.16 The reconstruction offers a
possible explanation. The absence of steric
clash at high Ca2+ could allow uninhibited
binding of cMyBP-C to actin, exerting a
significant drag on thin filament sliding
(consistent with a similar inhibition of the
sliding of F-actin alone). In contrast, the
competition of cMyBP-C and tropomyo-
sin for part of the same region of actin at
low Ca2+ could destabilize the blocking
position of tropomyosin, thus tending to

Figure 4. Binding of the N-terminal fragment C0C3 of cMyBP-C to actin. (A) F-actin reconstruction (gray) fitted with F-actin atomic model39 (monomers
colored white, blue and cyan) and showing best-fit position of two C0C3 fragments based on C0C3-decorated reconstruction. The approximate fitting of
an Ig domain atomic structure to represent each of the major domains in C0C3 suggests that C0 and C1 lie on actin subdomain 1, while the M-domain
crosses over subdomain 2 to the next subdomain 1, and C2 and C3 extend above the filament toward the pointed end of actin; (B and C) Fitting of
tropomyosin (yellow and orange coiled coils) in high (B) and low (C) Ca2+ positions, showing potential steric clash of MyBP-C with tropomyosin at low but
not high Ca2+. (D) Fitting of myosin head (S1, green) in rigor position showing clear steric clash of S1 with C0C3. Figure adapted from Mun et al.,28

with permission from Elsevier.
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activate the thin filament, enhancing its
motility. If comparable effects occur in
vivo, cMyBP-C might thus contribute
(together with troponin) to the balance
between the low and high Ca2+ positions
of tropomyosin.28 It will be of interest to
test this model by directly determining the
effect of MyBP-C binding on tropomyosin
position in regulated thin filaments.

The reconstruction also shows a major
clash between myosin head and MyBP-C
binding (Fig. 4D). Because of the low
stoichiometry of MyBP-C in muscle this
would be unlikely to have a major
physiological effect. Phosphorylation of
cMyBP-C has been shown to weaken its
binding to actin, which may reduce any
effect of MyBP-C on thin filament activity,
and allow an increased rate of filament
sliding in muscle. This could be one means
by which β-adrenergic stimulation of the
heart (which leads to phosphorylation of
cMyBP-C) increases cardiac contractility.

Overall, these recent and earlier data
suggest a model in which cMyBP-C's
ability to bind reversibly to actin provides
an internal load to myosin power genera-
tion in muscle, a load that can be
modulated by phosphorylation of the M-
domain. cMyBP-C’s potential interference
with tropomyosin position on actin sug-
gests an additional means of regulating
contraction.

Binding of S2 to N-Terminal
Domains of MyBP-C

In addition to its actin binding capability,
the N-terminal region of cMyBP-C has
also been shown to interact with myosin
subfragment 2 (the initial part of the
myosin tail, emerging from the junction
of the heads, which is thought to lie
relatively loosely associated with the thick
filament backbone) primarily through the
M-domain.8-10 This interaction may also
play a critical role in actin-myosin inter-
action in intact muscle, regulated by phos-
phorylation of the M-domain,9 although
it would appear that this effect must be
qualitatively different from that involving
actin binding. The positioning of MyBP-
C at only every third level of myosin
heads in the middle third of each half
thick filament (the C-zone, Fig. 2) means
that only about 20% of all heads in the

filament are likely to be directly affected
by MyBP-C interaction. In contrast,
binding of MyBP-C to actin, even in
a limited region, could have a global
impact, affecting sliding of the entire
filament. In addition, if MyBP-C affects
tropomyosin position on actin, this could
be transmitted cooperatively along a
substantial length of the filament, due to
the significant stiffness of the tropomyosin
polymer.41,42

While the work discussed above impli-
cated the M-domain in binding to both
actin and S2, a recent NMR study suggests
that sites on the C1 domain might also
serve such a dual purpose.43 Apparent over-
lap between putative N-terminal actin and
S2 binding sites suggests the possibility that
MyBP-C might switch between binding
partners in a defined way, possibly controlled
by phosphorylation of the M-domain.14,43

Flexibility and Disorder in MyBP-C

Fascinating new insights into the structure
of the isolated MyBP-C molecule, which
may help to explain some of its enigmatic
behavior, have emerged from two recent
biophysical studies. Atomic force micro-
scopy experiments, in which the mech-
anical properties of individual MyBP-C
domains can be measured, show that the
Ig and Fn3 domains that comprise most of
the molecule are stably folded, but capable
of unfolding under imposed stress, with
different domains having different unfold-
ing thresholds.30 The M-domain stands
out in being much weaker than the Ig and
Fn3 domains. It appears to behave like a
highly extensible spring, a property that
probably relates to its predicted intrinsic
disorder.30 What function does this plas-
ticity of MyBP-C serve? One speculation
is that mechanical load on MyBP-C
may affect its binding to or activation of
signaling molecules. Similarly, binding
sites for actin or S2 within the extensible
M-domain may be modulated by stretch,
becoming more exposed when MyBP-C
is under tension, and these interactions
may be further modulated by phospho-
rylation of this domain.30 The unusual
mechanical and structural properties of
the M-domain suggest that it may func-
tion as an entropic spring (similar to the
PEVK domain of titin), readily extending

with low applied force and relaxing back
to a globular structure when tension is
removed. It is speculated, for example,
that such behavior could contribute to the
relaxation properties of the heart.30

Small angle X-ray scattering (SAXS) and
NMR spectroscopy have provided further
insights into the structural properties of
cMyBP-C in solution.29 The Pro-Ala rich
region between C0 and C1 (Fig. 1) is
found to be highly extended and flexible,
consistent with the intrinsic disorder
predicted for this region of the molecule
(as well as the M-domain).30 This may
allow C0 to adopt multiple positions at
the end of the molecule, and potentially
allow even the small C0C1 segment to
extend sufficiently to span between thick
and thin filament surfaces.29 By com-
parison with titin, which has a similar
combination of defined modules and
flexible/elastic proline-rich domains, it is
suggested that this design of cMyBP-C
may enable it to adjust to the highly
dynamic environment of the contracting
cardiac sarcomere.29 Inclusion of both
flexible and defined modules in the
N-terminus bound to actin could clearly
influence the overall transverse mechani-
cal properties of the cardiac sarcomere.29,44

Comparison of proline/alanine content
in the Pro/Ala-rich region of cMyBP-C
from different species shows a direct
correlation with mammalian body size
and inverse variation with heart rate.45

These differences may be important in
matching contractile speed to cardiac
function in different species by differenti-
ally affecting crossbridge kinetics.45 Alter-
natively, differences in the extensibility
of the Pro/Ala-rich region may have
evolved to generate different distributions
of extended and compact states, depend-
ing on the mechanical requirements of
different hearts, possibly affecting the
rate of the putative switching of cMyBP-
C’s N-terminus between binding sites on
myosin9,11 and actin.29
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