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Key points

� Distinct spiking patterns may arise from qualitative differences in ion channel expression (i.e.
when different neurons express distinct ion channels) and/or when quantitative differences in
expression levels qualitatively alter the spike generation process.

� We hypothesized that spiking patterns in neurons of the superficial dorsal horn (SDH) of spinal
cord reflect both mechanisms.

� We reproduced SDH neuron spiking patterns by varying densities of KV1- and A-type
potassium conductances. Plotting the spiking patterns that emerge from different density
combinations revealed spiking-pattern regions separated by boundaries (bifurcations).

� This map suggests that certain spiking pattern combinations occur when the distribution of
potassium channel densities straddle boundaries, whereas other spiking patterns reflect distinct
patterns of ion channel expression. The former mechanism may explain why certain spiking
patterns co-occur in genetically identified neuron types.

� We also present algorithms to predict spiking pattern proportions from ion channel density
distributions, and vice versa.

Abstract Neurons are often classified by spiking pattern. Yet, some neurons exhibit distinct
patterns under subtly different test conditions, which suggests that they operate near an abrupt
transition, or bifurcation. A set of such neurons may exhibit heterogeneous spiking patterns
not because of qualitative differences in which ion channels they express, but rather because
quantitative differences in expression levels cause neurons to operate on opposite sides of a
bifurcation. Neurons in the spinal dorsal horn, for example, respond to somatic current injection
with patterns that include tonic, single, gap, delayed and reluctant spiking. It is unclear whether
these patterns reflect five cell populations (defined by distinct ion channel expression patterns),

Arjun Balachandar is a medical student at the University of Toronto with a strong interest in basic neuroscience, neurology
and neurosurgery. He completed his undergraduate studies in Honours Neuroscience at McGill University, after which
he began research under the guidance of Steven Prescott at SickKids Hospital. He is particularly interested in applying
computational modelling to understand the biophysical basis for neural information processing at the cellular and network
levels, especially pain-related sensory information and how chronic pain arises from aberrations in that processing. He hopes
to pursue a career as a clinician–scientist, translating basic science research to clinical applications.

C© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society DOI: 10.1113/JP275240

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-7658-4749
http://orcid.org/0000-0002-3827-4512
http://creativecommons.org/licenses/by/4.0/


1682 A. Balachandar and S. A. Prescott J Physiol 596.9

heterogeneity within a single population, or some combination thereof. We reproduced all
five spiking patterns in a computational model by varying the densities of a low-threshold
(KV1-type) potassium conductance and an inactivating (A-type) potassium conductance and
found that single, gap, delayed and reluctant spiking arise when the joint probability distribution
of those channel densities spans two intersecting bifurcations that divide the parameter space
into quadrants, each associated with a different spiking pattern. Tonic spiking likely arises from
a separate distribution of potassium channel densities. These results argue in favour of two cell
populations, one characterized by tonic spiking and the other by heterogeneous spiking patterns.
We present algorithms to predict spiking pattern proportions based on ion channel density
distributions and, conversely, to estimate ion channel density distributions based on spiking
pattern proportions. The implications for classifying cells based on spiking pattern are discussed.
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Introduction

Neurons can be classified using various criteria such as
their electrophysiological properties (including spiking
pattern), morphology and expression of neurochemical
and genetic markers. Classification schemes ideally
consider combinations of factors (e.g. Cauli et al.
2000; Nelson et al. 2006; Ascoli et al. 2008; Hamilton
et al. 2012; Zeng & Sanes, 2017) to identify robust
clusters representing bona fide neuron ‘types’. Accurately
identifying neuron types is critical for studying how
developmental programmes lead to neuronal diversity and
how that diversity is utilized to form complicated neural
circuits. Yet certain populations of neurons seem to defy
classification. A good example is neurons in the superficial
dorsal horn (SDH) of the spinal cord (Graham et al. 2007a;
Todd, 2017).

The SDH – defined as lamina I and II of spinal
cord – plays an important role in the early processing
of somatosensory information, especially thermal and
nociceptive input (for reviews, see Ribeiro-da-Silva &
De Koninck, 2008; Todd, 2010; Prescott & Ratté, 2012;
Cordero-Erausquin et al. 2016; Peirs & Seal, 2016). Only a
minority (�5%) of neurons in lamina I project to supra-
spinal targets (Spike et al. 2003). The remaining neurons,
including all of those in lamina II, are local interneurons
of which roughly one-third are inhibitory and two-thirds
are excitatory (Polgar et al. 2003). SDH neurons exhibit
diverse spiking patterns (Fig. 1A). Paired recordings (Lu
& Perl, 2005) and correlation with immunocytochemical
markers (Yasaka et al. 2010) have revealed differences in
the spiking patterns of excitatory and inhibitory neurons.
Molecular genetic tools have dramatically accelerated this
characterization (Duan et al. 2014; Kardon et al. 2014;
Peirs et al. 2015; Petitjean et al. 2015; Abraira et al.
2016; Cheng et al. 2017). But genetically identified cell
types can be surprisingly heterogeneous when it comes
to spiking pattern (Heinke et al. 2004; Punnakkal et al.

2014; Smith et al. 2015). Linking gene expression patterns
with electrophysiological phenotype on a cell-by-cell basis
is now conceivable with the advent of single-cell RNAseq
(Cadwell et al. 2016; Fuzik et al. 2016; Poulin et al. 2016;
Johnson & Walsh, 2017), but this will require more detailed
understanding of electrophysiological heterogeneity.

Qualitative differences in spiking pattern are often
assumed to arise from qualitative differences in ion
channel expression (i.e. expression of different ion
channels). But quantitative differences in ion channel
expression (i.e. expression of the same ion channels
but at different levels, or densities) can also yield
distinct spiking patterns if they qualitatively alter spike
generation dynamics, which reflect the non-linear inter-
action between ion channels (Izhikevich, 2007; Prescott
et al. 2008). A qualitative (discontinuous) change in
output caused by continuous variation of a parameter
is referred to as a bifurcation. Slight variations in ion
channel density may cause a neuron to exhibit very
different spiking patterns if that variation shifts the neuron
across a bifurcation. Variations in stimulus intensity or
pre-stimulus membrane potential can similarly affect the
spiking pattern if a bifurcation is crossed. It is, therefore,
notable that spiking patterns in some SDH neurons
are sensitive to stimulus intensity and/or pre-stimulus
membrane potential (Fig. 1B–D), as this suggests that
some SDH neurons do indeed operate near a bifurcation. A
direct corollary of this is that a population of neurons may
exhibit different spiking patterns because variation in ion
channel expression across the population causes subsets
of neurons to operate on opposite sides of a bifurcation.
Thus, a population of neurons may exhibit heterogeneous
spiking patterns because of qualitative differences in ion
channel expression or because an ion channel density
distribution straddles a bifurcation (where distribution
refers to the variance in ion channel density across
neurons). We hypothesized that the latter contributes to
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explaining the heterogeneous spiking patterns observed in
SDH neurons.

To test our hypothesis, we reproduced tonic, single, gap,
delayed and reluctant spiking in a simple conductance-
based computer model. Then, following the approach
used by Le Franc and Le Masson (2010) to study spiking
patterns in deep dorsal horn neurons, we systematically
co-varied the densities of potassium channels responsible
for SDH neuron spiking patterns in order to map
out parameter combinations where the model switched
patterns (i.e. bifurcated). The resulting map reveals
which spiking pattern combinations are likely to arise
from a single distribution of ion channel densities
straddling a bifurcation and which arise from separate ion
channel distributions. The implications for SDH neuron
classification are discussed.

Methods

Modified Morris–Lecar model

Simulations were conducted using a modified version of
the Morris–Lecar model (Rinzel & Ermentrout, 1989; Pre-
scott et al. 2008). The starting model contained only
a leak conductance gleak, an instantaneously activating
sodium conductance gNa and a delayed rectifier potassium
conductance gK,dr. To this model we added a low-threshold
non-inactivating (Kv1-type) potassium conductance gK,lt

and an inactivating (A-type) potassium conductance gK,A.
Activation of the latter was modelled after Connor and
Stevens (1971). The system is described by:

C
dV

dt
= I stim − ḡ Nam∞(V)(V − E Na)

− ḡ K,drw(V − E K) − ḡ K,ltz(V − E K )

− ḡ K,Aa4b(V − E K) − g leak(V − E leak) (1)

dx

dt
= φx

x∞(V) − x

τx(V)
(2)

where x corresponds to the gating variables, w, z, a or b.
Because m is assumed to activate instantaneously with
changes in V, it is always at steady state. Steady-state
activation curves and voltage-dependent time constants
are modelled according to:

m∞(V) = 0.5

[
1 + tanh

(
V − βm

γm

)]
(3)

w∞(V) = 0.5

[
1 + tanh

(
V − βw

γw

)]
(4)

z∞(V) = 0.5

[
1 + tanh

(
V − βz

γz

)]
(5)

a∞(V) = 1

1 + e−( V+60
8.5 )

b∞(V) = 1

1 + e( V+78
6 )

(6)

Tonic
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Reluctant
–69 mV
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–59 mV

–59 mV
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40 pA

80 pA
30 mV
300 ms

A B D

C
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Figure 1. Heterogeneous spiking patterns in SDH neurons
A, sample recordings from five SDH neurons showing the range of spiking patterns evoked by sustained somatic
current injection. Note that delayed spiking is preceded by a sharp inflection (shaded circle) indicative of an A-type
potassium current; the inflection is replaced by an initial spike in gap spiking. However, spiking pattern is not a
truly innate property of the neuron since it can vary with stimulus intensity (B) or pre-stimulus membrane potential
(C). D, example of a neuron in which different combinations of stimulus intensity and membrane potential yielded
four different spiking patterns. Modified from Prescott and De Koninck (2002).
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τw(V) = 1/cosh

(
V − βw

2γw

)
(7)

τz(V) = 1/cosh

(
V − βz

2γz

)
(8)

τa(V) = 1

e( V+35.82
19.69 ) + e−( V+79.69

12.7 )
+ 0.37 (9)

τb(V) =
⎧⎨
⎩

19, V > −63

1

e( V+46.05
5 ) + e−( V+238.4

37.45 )
, V < −63

(10)

C = 2 μF cm−2, ENa = 50 mV, EK = –100 mV,
Eleak = –70 mV, ḡ Na = 20 mS cm−2, ḡ K,dr = 20 mS cm−2,
ḡ leak = 2 mS cm−2, φw = 0.15, φz = 0.15, φa = 1.0,
φb = 1.0, βm = −1.2 mV, βw = −10 mV, βz = −21 mV,
γm = 18 mV, γw = 10 mV, γz = 15 mV, and ḡ K,lt

and ḡ K,A were set to values identified in the Results, or
were systematically varied in 0.1 mS cm−2 increments
to map the parameter space giving rise to different
spiking patterns. This procedure was repeated across
multiple stimulus intensities (from 30 to 110 μA cm−2,
at 5 μA cm−2 intervals) and different pre-stimulus
membrane potentials (see Results). Equations were
numerically integrated in MATLAB (The MathWorks
Inc., Natick, MA, USA) using the Euler method and a
0.1 ms time step. Each simulation was run for 250 ms to
reach steady-state before the application of a stimulating
current (Istim) for 400 ms. No dendritic or axonal
compartments were included in our model because,
although spiking pattern and dendritic morphology are
somewhat correlated, there is no evidence of a causal
relationship and, furthermore, spiking pattern is defined
by the response to somatic current injection (as opposed
to dendritic stimulation) and those spikes originate in or
near the soma.

After each simulation, neurons were classified as
tonic, single, delayed, gap, or reluctant spiking based on
the following criteria. Firstly, all neurons that did not
spike during stimulation were labelled reluctant spiking.
Neurons that produced only one spike, but did not satisfy
the criteria for delayed spiking (see below) were labelled
as single spiking. The remaining multi-spike neurons were
categorized based on the inter-spike intervals (ISI) of
their initial spikes. Neurons that exhibited an initial spike,
but had a delay before the second spike (i.e. a ‘gap’) of
greater than 1.5 times the ISI between the second and
third spikes were labelled gap spiking. Those that had a
delay before firing their first spike of more than 1.5 times
the ISI between the first two spikes were labelled delayed
spiking. Neurons that fired only one spike with a delay
>100 ms were also considered delayed spiking. Neurons

firing multiple spikes with neither a gap nor a delay (as
defined above) were labelled tonic spiking.

Predicting single neuron conductance densities
from spiking pattern sequences

Running the model with specified values of ḡ K,lt and ḡ K,A

gives a spiking pattern that depends on Istim. Re-testing
different Istim gives a sequence of spiking patterns. Working
in the opposite direction, if one knows the spiking pattern
evoked by a certain value of Istim, estimates of ḡ K,lt and
ḡ K,A are only weakly constrained (i.e. there are many
different potassium channel densities that could yield a
given pattern). But if one knows the sequence of spiking
patterns evoked by a sequence of Istim, the estimation
of ḡ K,lt and ḡ K,A becomes more tightly constrained. To
estimate those densities, all points (ḡ K,lt,ḡ K,A) that yield
the observed spiking pattern for a given value of Istim

were identified, and this was repeated for Istim from 50
to 80 μA cm−2 tested at 5 μA cm−2 intervals. The inter-
section of those points across planes was then identified,
thus revealing values of ḡ K,lt and ḡ K,A that give the correct
spiking patterns for all Istim.

Calculating spiking pattern proportions from the joint
distribution of ion channel densities

For a population of neurons, ḡ K,lt and ḡ K,A were assumed
to have Gaussian distributions with mean values μK,lt and
μK,A, and standard deviations σK,lt and σK,A, respectively.
A correlation coefficient ρ (ranging from −1 to 1) must
be included to account for any correlation between
ḡ K,lt and ḡ K,A. Combining these two univariate normal
distributions, and any correlation between them, gives
a bivariate normal distribution (BND). The probability
density function of the BND is given by:

P (x, y) = 1

2πσxσy

√
1 − ρ2

e

[
− z

2(1−ρ2)

]
(11)

z = (x − μx)2

σx
2

− 2ρ(x − μx)(y − μy)

σxσy
+ (y − μy)2

σy
2

(12)

where x and y represent gK,lt and gK,A, respectively.
Equation (12) describes an elliptic paraboloid surface,
where cross-sections parallel to the xy-plane are ellipses
with centre at (μx, μy) = (μK,lt, μK,A) and rotation
determined by the correlation coefficient ρ. Integrating
the distribution over the region in the parameter space
corresponding to a certain spiking pattern yields the
volume within that region. Since the total volume under
a BND is, by definition, 1, the volume over each
spiking pattern region Ri represents the proportion of
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neurons with spiking pattern i, where i = 1–5 and
corresponds to reluctant, single, delayed, gap and tonic
spiking, respectively. Hence, the proportion Vi of each
firing-pattern i within a given model neuron population
is given by:

Vi =
∫ ∫

Ri

P (x, y)dxdy (13)

The definite double integral in eqn (13) was com-
puted numerically using two-dimensional trapezoidal
integration.

Estimating the joint distribution of ion channel
densities from spiking pattern proportions

Working in the opposite direction from the calculations
described above, we developed an algorithm to estimate
the underlying ion channel distributions that best account
for the proportions of different spiking patterns observed
within a sample of neurons. Specifically, a geometric-based
optimization algorithm was created to find a BND
describing ḡ K,lt and ḡ K,A such that the BND volume
within each spiking pattern region reproduces an observed
set of spiking pattern proportions. The algorithm was
implemented as follows (where μx,k and μy,k represent
the estimation in the k-th iteration of μK,lt and μK,A,
respectively). We started with an arbitrarily chosen
BND at the centre of the parameter space (i.e. for a
20 mS cm−2 × 20 mS cm−2 plot, μx,0 = 10 mS cm−2;
μy,0 = 10 mS cm−2), with no correlation (ρ = 0) and
pre-set σx =σK,lt = 1 mS cm−2 and σy =σK,A = 1 mS cm−2.
Volumes under the distribution (Vcalc) were computed
using eqn (13). The calculated proportions Vcalc,i and the
target proportions Vtarget,i were then compared for each
firing-pattern i, yielding a set of error terms Ei where:

E i = Vtarget,i − Vcalc,i; i = 0, . . . , 5 (14)

MaxError = max {|E 1| , . . . , |E 5|} (15)

In words, MaxError is the highest absolute-value
difference between the calculated and target volumes for
any spiking pattern. In additional tests, a finite number
of samples (n) was randomly drawn from the BND and
the target spiking pattern proportion was calculated from
the number of samples falling within each spiking pattern
region. This models the experimental scenario in which
Vtarget,i are estimated from a limited sampling of neurons
rather than being strictly known.

Step 1 – modifying ρ. The correlation coefficient ρ was
varied systematically from −0.9 to +0.9 by increments of
0.1, thus producing a set of rotated BNDs. MaxError was
calculated for each BND and was compared to arbitrarily
chosen error thresholds δ = 0.001 and ε = 0.003, which
correspond to 0.1% and 0.3% errors, respectively. If

MaxError fell below ε, the algorithm proceeded to vary
ρ in increments of 0.01 from −0.99 to +0.99. If instead
MaxError was less than δ, the algorithm ended (see
below). If MaxError remained above δ, the value of ρ

yielding the smallest error (ρoptimized) was carried forward
to step 2.

Step 2 – optimizing μ. The next step was to move the
centre of the BND from M0 = (μx,0, μy,0) to a new
locus M1 = (μx,1, μy,1). To efficiently reduce the error
between calculated and target volumes, the centre of the
distribution was moved towards regions where Vtarget,i >

Vcalc,i and away from those where Vtarget,i < Vcalc,i. To
determine the direction to move M, the centroid of each
region was computed using a weighted average of all
points in the region, given by:

Ci =
(∑ni

j =1 p j,x

ni
,

∑ni
j =1 p j,y

ni

)
; i = 0, . . . , 5 (16)

where ni is the number of points in Ri, j is any integer
ranging from 1 to ni, and pj = (pj,x, pj,y) is the
corresponding j-th point in Ri. Next, the direction from
M to each point Ri was determined by drawing a vector−→
di from M to each corresponding centroid Ci given by:

−→
di = −→

Ci − −→
M0 (17)

To calculate the effect of each region on the centre of the
distribution (scaled by the amount of error), each vector−→
di was divided by its magnitude to give a unit vector in
the direction of each centroid, and was then multiplied
by the respective error-term Ei to give a scaled vector −→ei

where:

−→e i = E i

−→
di∥∥∥−→di

∥∥∥ (18)

Once each error-scaled vector was determined, M = M0

was moved to a new point M = M1 by taking the net sum
of all vectors −→ei and adding the resulting vector to M0,
yielding

−→
M1 = −→

M0 +
5∑

i = 1

−→e i (19)

⇒ −→
M1 = (μx,1, μy,1) (20)

where eqn (20) describes the new centre of the BND.

Step 1 was then repeated using the new BND, and
MaxError was calculated again for each value of ρ.
If MaxError was still >δ for all BNDs centred at
M1, the algorithm repeated Step 2. This sequence was
repeated k-iterations until MaxError fell below δ = 0.001
or the algorithm converged on a point Mk+1. The

C© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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algorithm returned estimates for the following parameters:
μK,lt = μx,k+1, μK,A = μy,k+1, and ρ = ρoptimized. Adding
a step to fit σ caused the algorithm to run very slowly;
instead, the two-step algorithm was re-run with σK,lt and
σK,A set, at 0.05 mS cm−2 intervals, to values between
0.4 and 1.6 mS cm−2. Values of σK,lt and σK,A yielding
the lowest MaxError were considered the best estimates.
This process thus estimated the full set of distribution
parameters: μK,lt, μK,A, ρoptimized, σK,lt and σK,A.

All MATLAB code is available at http://prescottlab.ca.

Results

Qualitative reproduction of different spiking patterns
in a computational model

Our first step was to reproduce the spiking patterns
observed experimentally in SDH neurons during sustained
somatic current injection. Sample responses in Fig. 1A
each come from a different neuron, thus highlighting
the diversity of spiking pattern across neurons. On the
other hand, sample responses in Fig. 1B–D highlight the
sensitivity of spiking pattern within a given neuron to test
conditions such as stimulus intensity and/or pre-stimulus
membrane potential. The sensitivity of spiking pattern
to test conditions tends to complicate classification, but
can be harnessed to strengthen classification and glean
addition information if properly addressed (see below
and Discussion). All sample responses to somatic current
injection in Fig. 1 come from previously published
recordings from rat lamina I neurons (Prescott & De
Koninck, 2002).

Using a simple conductance-based model, we sought
to identify the minimal changes in ion channel
expression required to convert the model between spiking
patterns. The starting model – which contains only
fast-activating sodium conductance, delayed rectifier
potassium conductance, and a leak conductance – spikes
tonically (Fig. 2A). The ion channels we added to this
model were chosen based on past work by us (Prescott
et al. 2008; Ratté et al. 2015) and others (Grudt & Perl,
2002; Ruscheweyh & Sandkuhler, 2002; Graham et al.
2007b, 2008; Smith et al. 2015). Adding low-threshold
non-inactivating (Kv1-type) potassium conductance gK,lt

converted the model to single spiking (Fig. 2B) whereas
adding an inactivating (A-type) potassium conductance
gK,A converted it to delayed spiking (Fig. 2C). The
activation profiles show how each potassium current
shapes the spiking pattern. A single spike can occur
before gK,lt activates, but all subsequent spikes are pre-
vented because gK,lt does not inactivate. In contrast, gK,A

activates quickly enough to prevent spiking at the onset
of stimulation, but late spikes occur once gK,A inactivates.
Gap spiking (Fig. 2D), which resembles a mixture of single
and delayed spiking, occurs when ḡ K,A is low enough that a

single spike can occur despite rapid activation of gK,A, but
other spikes are delayed until gK,A inactivates. Including
high enough densities of gK,A and gK,lt disallowed single and
delayed spiking, thus yielding reluctant spiking (Fig. 2E).

Tonic-spikingA

B

C

D

E

F
C

D

E

A B

Single-spiking

Delayed-spiking

Gap-spiking

Reluctant-spiking

5 ms

5 ms

Conductance

Conductance

Voltage

Voltage

+ gK,It

+ gK,It

gK,It

1 mS cm−2
1 mS cm−2

g
K

,A

++ gK,A

+ gK,A

0.05 g/g

0.05 g/g

++ gK,A

60 μA cm−2 (panels A-E)

40 mV
50 ms

Figure 2. Reproduction of SDH neuron spiking patterns in a
computational model
Equivalent stimulation (Istim = 60 μA cm−2) was applied in all panels.
Coloured traces show the relative activation (i.e. g/ḡ) of the added
conductance. A, the starting model (with leak conductance,
fast-activating sodium conductance and delayed rectifier potassium
conductance) exhibited tonic spiking. B, adding a low-threshold,
non-inactivating (Kv1-type) potassium conductance
(ḡK,lt = 6 mS cm−2) yielded single spiking. Inset shows horizontally
enlarged view of the shaded region on the main trace to highlight
that the initial spike occurs before gK,lt activates, and that all
subsequent spikes are prohibited since gK,lt does not inactivate. C,
adding an inactivating (A-type) potassium conductance
(ḡK,A = 8 mS cm−2) to the starting model yielded delayed spiking. In
this case, spiking occurs only after gK,A inactivates, as highlighted in
the inset, which again shows a horizontally enlarged view of the
shaded region on the main trace. D, decreasing ḡK,A (to 5 mS cm−2)
yielded gap spiking by allowing an initial spike to occur before
activation of gK,A but subsequent spikes are delayed until gK,A

inactivates. E, adding gK,lt (= 6 mS cm−2) and gK,A (= 8 mS cm−2) to
the starting model yielded reluctant spiking because fast activation
of gK,A prevents the initial spike while sustained activation of gk,lt
prevents late spikes even once gK,A inactivates. F, summary of
conductance changes in A–E.
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Other ion channels contribute to shaping SDH
neuron response properties, such as subthreshold sodium
and calcium conductances that encourage temporal
summation in tonic-spiking neurons (Prescott & De
Koninck, 2005; Ratté et al. 2015) and adaptation
conductances that encourage phasic spiking (Prescott &
Sejnowski, 2008). But together, gK,lt and gK,A are sufficient
to explain qualitative differences in the pattern of initial
spiking, which is the primary basis for electrophysiological
classification of SDH neurons. Fig. 2F shows these spiking
patterns relative to the 2-D space defined by the densities
of gK,lt and gK,A.

Quantitative mapping of conductance density
to spiking pattern

Next, we systematically co-varied ḡ K,lt and ḡ K,A to quantify
the impact on spiking. The resulting plot (Fig. 3A)
shows five regions, each associated with a different
spiking pattern. Whereas broadly separated conductance
densities within a region yield the same spiking pattern
(notwithstanding quantitative differences), narrowly
separated conductance densities straddling a boundary
yield distinct patterns (compare traces a–d). However,
those boundaries can shift depending on stimulus
intensity (Fig. 3B) or pre-stimulus membrane potential
(Fig. 3C), meaning the same neuron may exhibit different
spiking patterns under different test conditions. For
Fig. 3B and C, each arrow represents a neuron whose
spiking pattern (for each test condition) is predicted
by the region pierced by that arrow. The sample traces
verify these predictions. Traces in the right panel of
Fig. 3C show relative activation of gK,A; less of this
conductance is available for activation at the onset of Istim

when pre-stimulus membrane potential is depolarized
by a pre-pulse Ipre. These results are consistent with
experimental observations illustrated in Fig. 1B–D.

On the surface, classification is compromised by the
sensitivity of spiking patterns to test conditions. Indeed,
if a neuron’s spiking pattern is classified using only one
or two stimulus intensities and without any regard for
membrane potential, the classification has little value.
On the other hand, if those sensitivities are thoroughly
documented, that information can be used to help infer
the ion channel densities in that neuron. To illustrate,
Fig. 4 shows sample responses from two model neurons,
but now, rather than predicting the spiking patterns at
each stimulus intensity based on where the arrows inter-
sect each plane (as in Fig. 3), we invert the problem to
ask in what volume each arrow must pass to account
for the specific sequence of spiking patterns. A simple
algorithm (see Methods) was developed to determine all
combinations of ḡ K,lt and ḡ K,A (shown as light grey regions)
that account for the spiking pattern sequences. These
areas are smaller than the spiking pattern regions because

a sequence of spiking patterns across different stimulus
intensities is rarer than the spiking pattern at any one
intensity. Likewise, certain spiking pattern sequences are
rarer than others: a rare sequence (as for neuron a) will give
a more tightly constrained prediction of the underlying
ion channel densities than a more common sequence (as
for neuron b). For the same reason, testing more stimulus
intensities and/or membrane potentials will help refine
the prediction. Inferring ion channel densities in this way
works best for neurons that operate near a bifurcation (i.e.
whose spiking patterns are sensitive to test conditions).

Estimating spiking pattern proportions from ion
channel density distributions

Whereas each neuron is represented by a single point on
the x–y plane based on its particular expression of gK,lt and
gK,A, a set of neurons of the same type will be represented
by a cloud of points. The distribution of those points
was assumed to be Gaussian based on random variation
in ḡ K,lt and ḡ K,A. The univariate distributions describing
ḡ K,lt and ḡ K,A are represented by bell-shaped curves shown
respectively on the x- and y-axes of plots in Fig. 5.
These univariate distributions combine to form a joint
(or bivariate) distribution represented by colour on each
plot. If ḡ K,lt and ḡ K,A are uncorrelated (i.e. expression of
one channel is independent of the other channel), the joint
distribution will be circular when the standard deviations
of the two univariate distributions are equal (Fig. 5A)
or elliptical when the standard deviations are unequal
(Fig. 5B). If ḡ K,lt and ḡ K,A are positively or negatively
correlated (quantified as the correlation coefficient ρ), the
joint distribution will take a slanted elliptical shape but,
notably, this is not reflected in the univariate distributions
(Fig. 5C and D).

Within a set of neurons, different neurons may exhibit
distinct spiking patterns if the joint distribution of ion
channel densities straddles one or more spiking pattern
boundaries. Thus, to describe spiking within a set of
neurons, one must determine the proportion of different
spiking patterns (see insets on Fig. 5). We can estimate
those proportions by projecting the joint distribution of
ion channel densities onto the spiking pattern regions
and calculating the portion of that distribution that sits
over each region (see Methods). To do this, one must
know the mean (μ) and standard deviation (σ) of the
univariate distributions describing ḡ K,lt and ḡ K,A, plus the
correlation coefficient (ρ). Each univariate distribution
can be characterized with experiments conducted in
separate sets of neurons, but determining ρ requires
measurements of ḡ K,lt and ḡ K,A in the same neuron, which
can be prohibitively difficult (e.g. drugs used to isolate
one current for voltage clamp measurements may pre-
clude measurement of the other current). Consequently,
correlations are often neglected despite theoretical work
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Figure 3. Relationship between ion channel densities and spiking pattern
A, systematically co-varying ḡK,lt and ḡK,A revealed that distinct regions in this 2-D parameter space yield different
spiking patterns. Boundaries shown here are based on testing with Istim = 60 μA cm−2. Traces in a–d show
sample responses for parameter values labelled on the main plot. Large parameter variations that remain within
a region yield the same spiking pattern; compare condition a (ḡK,lt = 3 mS cm−2, ḡK,A = 4 mS cm−2) with
condition b (ḡK,A increased by 4 mS cm−2). In contrast, small parameter variations that cross a boundary yield
different spiking patterns; compare condition a with condition c (ḡK,A reduced by 0.5 mS cm−2) or condition d
(ḡK,lt increased by 0.5 mS cm−2). B, boundaries can shift because of stimulus intensity (Istim), meaning a neuron
with fixed values of ḡK,lt and ḡK,A can exhibit different spiking patterns at different Istim. To illustrate, each vertical
arrow on the left panel represents a neuron: for neuron a, ḡK,lt = 3 mS cm−2 and ḡK,A = 4 mS cm−2; for neuron b,
ḡK,lt = 3.5 mS cm−2 and ḡK,A = 2.5 mS cm−2. The spiking pattern at each Istim (illustrated on the right) depends on
which region the arrow passes through. C, boundaries can also shift because of pre-stimulus membrane potential.
For these simulations, a subthreshold ‘pre-pulse’ (Ipre) was used to vary the membrane potential before the onset
of suprathreshold stimulation. Each plane represents the response to Istim = 60 μA cm−2 after a different pre-pulse
(pre-stimulus membrane potential is indicated beside each voltage trace). The vertical arrow represents a neuron
with ḡK,lt = 2 mS cm−2 and ḡK,A = 6 mS cm−2. Traces on the right show the reduced availability of gK,A depending
on Ipre. By partially inactivating gK,A, subthreshold depolarization reduces the availability of those channels for
activation during suprathreshold stimulation, effectively re-scaling the y-axis.
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showing that they are important (Marder & Taylor, 2011).
As shown in Fig. 5, differences in correlation can yield very
different spiking pattern proportions.

Estimating ion channel density distributions
from spiking pattern proportions

Given the difficulty of measuring correlations in ion
channel expression, we sought to invert the approach
used in Fig. 5 (i.e. predicting spiking pattern proportions
from the joint distribution of ion channel densities) to
instead predict ion channel density distributions, most
notably ρ, from spiking pattern proportions. To solve
this optimization problem, we developed an algorithm
that finds the joint distribution of ion channel densities
best able to account for a given proportion of spiking
patterns. Estimated values of parameters μK,lt, μK,A, and ρ

are optimized through a two-step process that is repeated
iteratively to minimize the error between target and pre-
dicted spiking pattern proportions, as summarized in
Fig. 6A (see Methods for details). Using an arbitrary
distribution, a target spiking pattern proportion was
calculated as in Fig. 5 or a number of samples (nsample)
were drawn randomly from that distribution and the target
proportion was calculated from the fraction of samples
falling within each spiking pattern region. The latter
approach was used to test the effects of finite sampling.
Results of fitting are reported for target proportion
determined through the former method unless otherwise
indicated.

To start the fitting process, an initial distribution with
σK,lt = σK,A = 1 mS cm−2 was created at the centre of the
plot (μK,lt = μK,A = 10 mS cm−2 for a 20 × 20 mS cm−2

plane). Neither the starting values of μ nor the dimensions

of the plot impact the final outcome (data not shown).
The fitting process was repeated for different values of
σ (see below). The spiking pattern proportions yielded
by this distribution (i.e. the estimated proportions) were
calculated as in Fig. 5. In step 1, the value of ρ was
systematically varied and predicted proportions were
re-calculated; the value of ρ yielding the smallest error was
carried forward to the next step. In step 2, values of μK,lt

and μK,A were updated by using the error to scale vectors
pointing from the centre of the joint distribution to the
centroid of each spiking pattern region, the rationale being
to pull the distribution towards regions whose spiking
pattern was underestimated and push it away from regions
whose spiking pattern was overestimated. The updated
values of μK,lt and μK,A were carried forward to a second
iteration of step 1, during which ρ was re-optimized using
updated values of μ. These two fitting steps were repeated
until the MaxError was minimized (Fig. 6B) and estimates
of μ (Fig. 6C) and ρ (Fig. 6D) stabilized, which typically
occurred within a few iterations. The inset in Fig. 6B
shows MaxError at steady-state plotted as a function of
the number of neurons used to estimate the target spiking
pattern proportion (see above). That relationship argues
that reasonably large data sets (�100 neurons or more)
are needed to reliably estimate the target spiking pattern
proportion.

To test our method, we fitted sets of spiking pattern
proportions generated using arbitrarily chosen ion
channel density distributions. As summarized in Table 1
for the estimation of sample distributions shown in
Fig. 5A, C and D, our algorithm was very successful in
estimating the ion channel density distribution based on
spiking pattern proportions. However, for those examples,
estimated values of σ (denoted σestimate) were set to the
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Figure 4. Estimating ion channel densities from spiking pattern sequences
Spiking patterns were determined for Istim between 50 and 80 μA cm−2, at 5 μA cm−2 increments for two
neurons labelled a and b on left. Planes are shown for only a subset of Istim. To estimate the channel densities
in neurons a and b, we determined all combinations of ḡK,A and ḡK,lt that could produce that sequence. The
grey patches shown on each plane together demarcate the volume in which each arrow must exist. The spiking
pattern sequence for neuron a leads to a more tightly constrained estimate of ion channel densities than does the
sequence for neuron b.
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true values of σ (denoted σtrue) rather than being fitted. To
explore the effects of misestimating σ, and thus establish
if σ must also be fitted, we fixed σestimate at 1 mS cm−2

and generated joint distributions with σK,lt = σK,A = [0.5,
0.8, 1.0, 1.2, 1.5] mS cm−2. Although all errors were
< 5%, they were significantly lower when σestimate = σtrue

compared with when σestimate � σtrue (P < 0.001,
Kruskal–Wallis test; P < 0.05 for each pairwise comparison
to σtrue/σestimate = 1, Tukey tests). Comparing estimated
values of μ and ρ against their true values (Fig. 7B–D)
similarly revealed that those estimates were degraded when
σestimate � σtrue.

Having established the need to fit σ, we tried adding a
σ-fitting step into our algorithm. However, this caused the
algorithm to run very slowly. We found that it was more
efficient to simply re-run the algorithm with different
σestimate values and identify a posteriori which gave the best
fit of the spiking pattern proportions. When this was done,
error values fell (compare Fig. 8A to Fig. 7A) and did not
systematically differ with σ (P > 0.05, one sample t test).
Moreover, all five parameters were accurately estimated
over a range of values (Fig. 8B–F); specifically, the slope of
all regression lines fell within 7% of (and none differed
significantly from) the expected value of 1 (P > 0.05,
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Figure 5. Estimating spiking pattern proportions from ion channel density distributions
Within a set of neurons, ḡK,lt and ḡK,A are likely to exhibit variability consistent with a Gaussian distribution.
Univariate distributions describing ḡK,lt and ḡK,A, which are represented by curves on the edges of each graph,
combine to give a joint distribution represented by colour (where dark red indicates the highest probability). In
all panels, μK,lt = 3 mS cm−2 and μ,A = 4 mS cm−2. A, if the widths of the two univariate distributions are
equal (σK,lt = σK,A = 1 mS cm−2), the joint probability distribution is circular. B, if the widths are unequal (σK,lt
decreased to 0.5 mS cm−2 and σK,A increased to 1.2 mS cm−2), the joint probability distribution becomes elliptical.
Correlations between and ḡK,lt and ḡK,A, although not reflected in the univariate distributions, are important for
describing the joint distribution, with a positive correlation (ρ > 0) yielding a slanted ellipse whose long axis has a
positive slope (C), whereas a negative correlation (ρ < 0) yields slanting in the other direction (D). Since the total
volume under these joint probability distributions equals 1, the volume sitting over each spiking pattern region
represents the proportion of neurons exhibiting that pattern. Spiking pattern proportions are shown in the table
on each plot.
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one sample t tests with Bonferroni correction). These
results demonstrate that values of all μ and σ could be
estimated to within approximately ±0.2 mS cm−2 and ρ

could be estimated within ±0.2 based on the conditions
tested. Sources of neuronal heterogeneity not accounted
for in our neuron model and any inaccuracies in the
initial measurement of spiking pattern proportions will
tend to reduce performance below these benchmarks (see
Discussion).

Discussion

In this study, we reproduced five of the spiking
patterns observed in SDH neurons by varying the
densities of just two ion channels, namely, a low-

threshold non-inactivating potassium conductance gK,lt

and an inactivating (A-type) potassium conductance
gK,A. Systematically co-varying those two conductances
revealed boundaries that represent the transition between
spiking patterns. Le Franc and Le Masson (2010) used
a similar approach to study spiking patterns in deep
dorsal horn neurons, but we are not aware of pre-
vious studies like this in the superficial dorsal horn.
The boundaries we found imply that subtle changes
in ḡ K,lt or ḡ K,A can cause a neuron to switch spiking
patterns. Yet the regions in parameter space associated
with each spiking pattern are themselves quite large,
implying that the same spiking pattern (notwithstanding
quantitative differences) can arise from a broad range of
ḡ K,lt and ḡ K,A, so long as a boundary is not crossed. This
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Figure 6. Estimating ion channel density distributions from spiking pattern proportions
A, schematic representation of the iterative, two-step process used to estimate the joint distribution of ion channel
densities (μK,lt, μ,K,A and ρ) from an observed (target) set of spiking pattern proportions. Starting with arbitrarily
chosen parameter values for μ, in step 1, ρ is systematically varied in 0.1 increments to find the value yielding
the best match between estimated and target spiking pattern proportions. That value is carried forward to step 2,
in which estimates of μK,lt and μ,K,A are updated by drawing vectors from the centre of the joint distribution
to the centroid of each spiking pattern region. The length of each vector was adjusted based on the error (see
Methods) and the distribution is shifted to the position given by the net vector. Step 1 was then repeated with
the updated values of μK,lt and μ,K,A, and so on, until the error decreased below a threshold, after which point
ρ was systematically varied in 0.01 increments for greater accuracy. The algorithm continued until the MaxError
reached a minimum (B) and estimates of μ (C) and ρ (D) stabilized, which occurred within a few iterations. Data
in B–D show results of fitting the spiking pattern proportions from a target distribution with μK,lt = 3 mS cm−2,
μ,K,A = 4 mS cm−2, ρ = 0 and σK,lt = σK,A = 1 mS cm−2. In additional tests, n samples were drawn randomly
from the target distribution and spiking pattern proportions were determined from the fraction of samples falling
within each spiking pattern region. Regardless of how target spiking pattern proportions were generated, the
estimation process was the same. Inset in panel B shows MaxError at steady-state (mean ± standard deviation) as
a function of nsample, where each data point is based on five tests.
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Table 1. Testing the algorithm with different target neuron population distributions

Population A Population C Population D

Target Estimated Target Estimated Target Estimated

Parameter
μK,lt (mS cm−2) 3 2.998 3 2.999 3 2.997
μ,K,A (mS cm−2) 4 4.002 4 4.003 4 4.003
ρ 0.00 0.00 0.60 0.61 −0.60 −0.60

Proportions
Tonic (T) 0.274 0.273 0.332 0.333 0.196 0.195
Single (S) 0.086 0.086 0.034 0.033 0.159 0.158
Delayed (D) 0.275 0.276 0.206 0.206 0.375 0.376
Gap (G) 0.351 0.351 0.390 0.390 0.268 0.268
Reluctant (R) 0.012 0.012 0.038 0.038 0.000 0.000

MaxError
From volume 0.001 0.001 0.001
nsample = 200 0.0368 ± 0.0162 0.0261 ± 0.0142 0.0334 ± 0.0189
nsample = 100 0.0445 ± 0.0126 0.0461 ± 0.0187 0.0330 ± 0.0133
nsample = 50 0.0997 ± 0.0303 0.0692 ± 0.0237 0.0911 ± 0.0374
nsample = 25 0.0915 ± 0.0349 0.1263 ± 0.0765 0.1112 ± 0.0931

Population A, C, and D refer to conditions shown in the corresponding panels of Fig. 5. MaxError values for target proportions based
on random sampling are mean ± standard deviation based on five tests for each condition.

combination of observations has important implications
for (i) classifying neurons based on spiking pattern and (ii)
ascribing different spiking patterns to unique ion channel
expression patterns. We will discuss each point and will
summarize the tools we have developed to address these
issues.

Anyone with first-hand experience recording from SDH
neurons will appreciate that classifying those neurons
by spiking pattern is more of an art than a science.
The same is true to varying degrees for other neuron
populations, but this is not the sort of information that
is well documented in publications. That said, some
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Figure 7. Sensitivity of ion channel density
estimation to assumed value of σ

Sets of spiking pattern proportions were calculated for
joint distributions with arbitrarily chosen parameter values.
σ estimate was fixed at 1 mS cm−2 but, unlike previously
fitted distributions, σ target ( = σK,lt and σK,A) took a range
of values. Specifically, the algorithm was applied to target
distributions where σ estimate correctly estimated σ target =
1.0 mS cm−2 (σ target/σ estimate = 1.0), σ target was 20%
greater or less than estimated (σ target/σ estimate = 1.2 or
0.8, respectively), or σ target was 50% greater or less than
assumed (σ target/σ estimate = 1.5 or 0.5, respectively).
N = 40 target distributions belonging to each group were
used for testing, each with arbitrarily chosen values of
μK,lt, μ,K,A and ρ. A, box-plot shows the MaxError in the
estimated spiking pattern proportions, with box ends and
whisker ends representing the 1st/3rd quartiles and
5th/95th percentile, respectively. The median error value of
0.002 when σ was correctly estimated (σ target/σ estimate =
1.0) was significantly less than when σ was misestimated
(P < 0.05, Tukey tests). Estimations of μK,lt (B), μ,K,A (C)
and ρ (D) are shown relative to their true values. Black
lines show the regression using all points; their slopes were
all within 5% of the expected value of 1. However, when
the regression was calculated using points from
σ target/σ estimate = 0.5 (blue) or 1.5 (red), 5 of the 6 values
deviated significantly from the expected value of 1
(P > 0.05, one sample t tests with Bonferroni correction).
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SDH cell types are more distinguishable than others. For
example, tonic-spiking neurons tend to spike repetitively
over a broad range of stimulus intensities, irrespective of
pre-stimulus membrane potential, and they also exhibit
features such as rebound spiking and a biphasic after-
hyperpolarization that distinguishes them from other
cell types (Prescott & De Koninck, 2002). Punnakkal
et al. (2014) found that nearly all genetically defined
GABAergic and glycinergic neurons in the SDH were
tonic spiking, which contrasts with the heterogeneity
they observed for glutamatergic neurons (see below).
Although other cell types can spike repetitively, especially
in response to strong stimulation, they tend to exhibit
single or delayed spiking for stimulus intensities near
rheobase. And unlike the voltage-insensitivity of tonic
spiking, single-spiking neurons can switch to reluctant
spiking and delayed-spiking neurons can switch to
gap spiking depending on membrane potential (Fig. 1C).
Such observations cast doubt on whether distinctions
between single and reluctant spiking or between delayed
and gap spiking are legitimate. But more importantly,
those observations reveal that some neurons operate

near spiking pattern boundaries (or bifurcations). We
have shown here that boundaries shift with changes in
stimulus intensity or pre-stimulus membrane potential
(Fig. 3), thus allowing a given neuron to exhibit more than
one spiking pattern. Indeed, our simulations specifically
predict voltage-dependent switching between single and
reluctant spiking, and between delayed and gap spiking.
The observation of temperature-dependent switching
between delayed and reluctant spiking (Graham et al.
2008) is also consistent with our simulations insofar
as those two spiking patterns also share a boundary.
Specifically, temperature will quantitatively alter ion
channel gating, but would not be expected to qualitatively
alter the spiking pattern unless a bifurcation occurred.

An association between single and delayed spiking may
seem unlikely given how distinct those patterns are, yet
our simulations indicate that these two patterns can arise
from similar ion channel densities. Gap spiking helps
reveal the ‘missing link’ between them. Notably, single
and delayed spiking can occasionally be observed in the
same neuron (Fig. 1D) and are disproportionately found in
neurons with multipolar (or radial/vertical) morphology
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Figure 8. Estimating ion channel distributions, including σ, from spiking pattern proportions
Values of σ estimate for σK,lt and σK,A were independently varied between 0.4 and 1.7 mS cm−2 by increments of
0.1 mS cm−2. The two-step algorithm explained in Fig. 6 was re-run for all combinations of σ estimate values. Values
of σK,lt and σK,A yielding the least error after fitting the remaining parameters (μK,lt, μ,K,A, ρ) were considered the
best estimates. This approach was tested on N = 29 target distributions. A, MaxError plotted against true σK,A on
the x-axis and σK,lt represented in colour. Scaling of the y-axis on the main graph is the same as for Fig. 7A for
comparison; inset shows enlarged view. Slope of the regression line did not deviate significantly from 0 (P > 0.05,
one-sample t test). Plotting estimated vs. true values of μK,lt (B), μ,K,A (C), ρ (D), σK,lt (E) and σK,A (F) revealed the
accuracy with which each parameter was estimated. Regression lines are shown in black, with the 95% prediction
intervals shown in green. No regression line slopes deviated significantly from the expected value of 1 (P < 0.05,
one sample t tests with Bonferroni correction).
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(Prescott & De Koninck, 2002) and in neurons defined
by expression of calretinin (Smith et al. 2015) or
vesicular glutamate transporter type 2 (Punnakkal et al.
2014). Conversely, neither single nor delayed spiking
is commonly observed in inhibitory neurons defined
by expression of parvalbumin (Hughes et al. 2012) or
prion protein (Ganley et al. 2015). Of all the spiking
patterns, phasic spiking tends to be the most promiscuous.
Together, these observations suggest that tonic spiking
occurs almost exclusively amongst inhibitory neurons
whereas delayed, gap, single and reluctant spiking are
associated with excitatory neurons. That said, the four
different spiking patterns do not imply that there are four
different excitatory cell types (each defined by expression
of a distinct set of ion channels); instead, those four spiking
patterns likely represent a single cell population in which
variations in ḡ K,lt and ḡ K,A straddle the intersection of two
spiking pattern boundaries.

The above conclusion is seemingly inconsistent with
Abraira et al. (2016) who reported delayed spiking in
certain sets of inhibitory neurons and tonic spiking in
certain sets of excitatory neurons. But the samples of
delayed spiking they showed for inhibitory neurons lack
the inflection association with an A-type potassium
current (see Fig. 1A) and the sample of tonic spiking they
showed for a parvalbumin-expressing excitatory neuron
could be considered phasic spiking (see Fig. 1B). Their
‘regular spiking’ cells align better with our definition
of tonic spiking. In other words, the inconsistencies are
arguably superficial, based on nuanced criteria that form
the basis for this sort of phenomenological classification.
The potential for confusion speaks to the need for
mechanism-based classification schemes. In other words,
functional classification should become more of a science
and less of an art. Cluster analysis based on quantifiable
metrics is a must, but the choice of metrics should be
guided by putative ionic mechanisms (e.g. measuring
the delay to spiking for test stimuli applied at different
membrane potentials to rule in/out the contribution of
an A current). The modelling and quantitative analysis
presented in this study aim to help shift the field in that
direction.

Though spiking pattern-based classification is comp-
romised by the sensitivity of spiking patterns to test
conditions, carefully documenting that sensitivity can help
constrain estimates of the underlying ion channel densities
(Fig. 4). Moving from the characterization of single
neurons to the characterization of neuronal populations,
spiking pattern heterogeneity can help inform our under-
standing of the underlying distributions of ion channel
density. As demonstrated in Figs 6–8, the proportion of
different spiking patterns observed within a population
can be used to estimate ion channel density distributions,
including any correlations in the expression of different
ion channels. We are not aware of any past studies

that have used this approach and, in that respect, the
success of our algorithm represents proof-of-principle
demonstration that this approach can work. But notably,
such an approach requires that data are collected in a
standardized way, and from many neurons (to ensure that
the population is appropriately sampled). Even then, our
modelling has neglected sources of neuronal heterogeneity
that may compromise the ability to estimate ion channel
distributions. First, even if our model included all the
ion channels expressed in real neurons, the densities
of channels that we did not systematically vary (i.e.
leak conductance, fast sodium conductance, and delayed
rectifier potassium conductance) would also vary between
neurons, and this additional heterogeneity would blur
the spiking pattern boundaries plotted on planes defined
by ḡ K,lt and ḡ K,A. That said, >2 ion channel densities
could be co-varied during initial mapping, in which case
boundaries currently depicted as lines on a plane would
become manifolds within a higher dimensional space;
this is harder to visualize but is still computationally
feasible. Second, real neurons express other ion channels
that were not included in our model, and even if those
channels are not necessary to explain each spiking pattern,
heterogeneity in their expression may also contribute to
blurring the spiking pattern boundaries. Addressing these
and other sources of heterogeneity (e.g. expression of
ion channels in the dendrites and variations in dendritic
morphology) is computationally feasible but requires
larger data sets than can be acquired by painstakingly
patching one neuron at a time. As higher throughput
recording methods are developed, and larger data sets are
collected, analysis of those data using these computational
tools will become practicable. The collation of data across
labs into databases like NeuroElectro (Tripathy et al. 2014)
will also facilitate such efforts. But even if the data are
available, one must develop a valid computational model
of the cells of interest in order to fit its parameters to the
data.

Our results also highlight how correlations in ion
channel expression may influence spiking pattern pro-
portions. Specifically, in Fig. 5 we show that the same
univariate distributions of ḡ K,lt and ḡ K,A can yield
different spiking pattern proportions depending on if
and how the densities of those channels are correlated.
Such correlations are often overlooked, but can reveal
themselves during computational modelling, when the
average neuron (in functional terms) is not recapitulated
by endowing the model with the average densities of
conductances known to be expressed in that cell type
(Golowasch et al. 2002). Correlations in ion channel
expression levels have been documented experimentally
(MacLean et al. 2003; Bergquist et al. 2010; Cao
& Oertel, 2011), as have correlations in the voltage
dependencies of co-expressed channels (Amendola et al.
2012). Such correlations emerge via co-regulation of ion
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channels by homeostatic (O’Leary et al. 2013) or neuro-
modulatory (Khorkova & Golowasch, 2007) processes,
and are important for enabling robust regulation of
cellular function (Zhao & Golowasch, 2012; Golowasch,
2014). But whereas most past work has focused on
maintaining cellular function on the basis of different
ion channel combinations, where compensation for one
channel by another channel naturally leads to correlations
(Hudson & Prinz, 2010), our results suggest that functional
heterogeneity may also depend on correlations. The
algorithm we have developed provides a novel tool to pre-
dict correlations on the basis of that heterogeneity.

To conclude, we have used computational modelling
to reproduce five of the spiking patterns by which SDH
neurons are often classified. Our results demonstrate
that different combinations of two potassium channels
can account for that heterogeneity. By mapping the
relationship between channel densities and spiking
pattern, our results reveal the relationship between
different spiking patterns (i.e. which patterns share
a boundary), which in turn predicts the switching
between certain spiking patterns based on factors like
stimulus intensity or membrane potential. Together with
past observations, our data suggest that certain spiking
patterns do not reflect cell types with distinct ion
channel expression patterns, but, rather, suggest that
certain spiking patterns result from continuous variations
in ion channel densities that manifest distinct spiking
patterns because of the inherent non-linearity of the spike
generation process. These are important issues to consider
for making neuron classification schemes more robust and
for ensuring efficient identification of the molecular basis
of important functional differences.
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Packer A, Petersen CC, Rockland KS, Rossier J, Rudy B,
Somogyi P, Staiger JF, Tamas G, Thomson AM, Toledo-
Rodriguez M, Wang Y, West DC & Yuste R (2008). Petilla

terminology: nomenclature of features of GABAergic
interneurons of the cerebral cortex. Nat Rev Neurosci 9,
557–568.

Bergquist S, Dickman DK & Davis GW (2010). A hierarchy of
cell intrinsic and target-derived homeostatic signaling.
Neuron 66, 220–234.

Cadwell CR, Palasantza A, Jiang X, Berens P, Deng Q, Yilmaz
M, Reimer J, Shen S, Bethge M, Tolias KF, Sandberg R &
Tolias AS (2016). Electrophysiological, transcriptomic and
morphologic profiling of single neurons using Patch-seq.
Nat Biotechnol 34, 199–203.

Cao XJ & Oertel D (2011). The magnitudes of
hyperpolarization-activated and low-voltage-activated
potassium currents co-vary in neurons of the ventral
cochlear nucleus. J Neurophysiol 106, 630–640.

Cauli B, Porter JT, Tsuzuki K, Lambolez B, Rossier J, Quenet B
& Audinat E (2000). Classification of fusiform neocortical
interneurons based on unsupervised clustering. Proc Natl
Acad Sci USA 97, 6144–6149.

Cheng L, Duan B, Huang T, Zhang Y, Chen Y, Britz O,
Garcia-Campmany L, Ren X, Vong L, Lowell BB, Goulding
M, Wang Y & Ma Q (2017). Identification of spinal circuits
involved in touch-evoked dynamic mechanical pain. Nat
Neurosci 20, 804–814.

Connor JA & Stevens CF (1971). Prediction of repetitive firing
behaviour from voltage clamp data on an isolated neurone
soma. J Physiol 213, 31–53.

Cordero-Erausquin M, Inquimbert P, Schlichter R & Hugel S
(2016). Neuronal networks and nociceptive processing
in the dorsal horn of the spinal cord. Neuroscience 338,
230–247.

Duan B, Cheng L, Bourane S, Britz O, Padilla C, Garcia-
Campmany L, Krashes M, Knowlton W, Velasquez T, Ren X,
Ross SE, Lowell BB, Wang Y, Goulding M & Ma Q (2014).
Identification of spinal circuits transmitting and gating
mechanical pain. Cell 159, 1417–1432.

Fuzik J, Zeisel A, Mate Z, Calvigioni D, Yanagawa Y, Szabo G,
Linnarsson S & Harkany T (2016). Integration of
electrophysiological recordings with single-cell RNA-seq
data identifies neuronal subtypes. Nature Biotech 34,
175–183.

Ganley RP, Iwagaki N, del Rio P, Baseer N, Dickie AC, Boyle
KA, Polgar E, Watanabe M, Abraira VE, Zimmerman A,
Riddell JS & Todd AJ (2015). Inhibitory interneurons that
express GFP in the PrP-GFP mouse spinal cord are
morphologically heterogeneous, innervated by several
classes of primary afferent and include lamina I projection
neurons among their postsynaptic targets. J Neurosci 35,
7626–7642.

Golowasch J (2014). Ionic current variability and functional
stability in the nervous system. Bioscience 64, 570–580.

Golowasch J, Goldman MS, Abbott LF & Marder E (2002).
Failure of averaging in the construction of a conductance-
based neuron model. J Neurophysiol 87, 1129–1131.

Graham BA, Brichta AM & Callister RJ (2007a). Moving from
an averaged to specific view of spinal cord pain processing
circuits. J Neurophysiol 98, 1057–1063.

Graham BA, Brichta AM & Callister RJ (2008). Recording
temperature affects the excitability of mouse superficial
dorsal horn neurons, in vitro. J Neurophysiol 99, 2048–2059.

C© 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society



1696 A. Balachandar and S. A. Prescott J Physiol 596.9

Graham BA, Brichta AM, Schofield PR & Callister RJ (2007b).
Altered potassium channel function in the superficial dorsal
horn of the spastic mouse. J Physiol 584, 121–136.

Grudt TJ & Perl ER (2002). Correlations between neuronal
morphology and electrophysiological features in the rodent
superficial dorsal horn. J Physiol 540, 189–207.

Hamilton DJ, Shepherd GM, Martone ME & Ascoli GA (2012).
An ontological approach to describing neurons and their
relationships. Front Neuroinform 6, 15.

Heinke B, Ruscheweyh R, Forsthuber L, Wunderbaldinger G &
Sandkuhler J (2004). Physiological, neurochemical and
morphological properties of a subgroup of GABAergic spinal
lamina II neurones identified by expression of green
fluorescent protein in mice. J Physiol 560, 249–266.

Hudson AE & Prinz AA (2010). Conductance ratios and
cellular identity. PLoS Comput Biol 6, e1000838.

Hughes DI, Sikander S, Kinnon CM, Boyle KA, Watanabe M,
Callister RJ & Graham BA (2012). Morphological,
neurochemical and electrophysiological features of
parvalbumin-expressing cells: a likely source of axo-axonic
inputs in the mouse spinal dorsal horn. J Physiol 590,
3927–3951.

Izhikevich EM (2007). Dynamical Systems in Neuroscience. MIT
Press, Cambridge, MA, USA.

Johnson MB & Walsh CA (2017). Cerebral cortical neuron
diversity and development at single-cell resolution. Curr
Opin Neurobiol 42, 9–16.

Kardon AP, Polgar E, Hachisuka J, Snyder LM, Cameron D,
Savage S, Cai X, Karnup S, Fan CR, Hemenway GM,
Bernard CS, Schwartz ES, Nagase H, Schwarzer C, Watanabe
M, Furuta T, Kaneko T, Koerber HR, Todd AJ & Ross SE
(2014). Dynorphin acts as a neuromodulator to inhibit
itch in the dorsal horn of the spinal cord. Neuron 82,
573–586.

Khorkova O & Golowasch J (2007). Neuromodulators, not
activity, control coordinated expression of ionic currents.
J Neurosci 27, 8709–8718.

Le Franc Y & Le Masson G (2010). Multiple firing patterns in
deep dorsal horn neurons of the spinal cord: computational
analysis of mechanisms and functional implications.
J Neurophysiol 104, 1978–1996.

Lu Y & Perl ER (2005). Modular organization of excitatory
circuits between neurons of the spinal superficial dorsal horn
(laminae I and II). J Neurosci 25, 3900–3907.

MacLean JN, Zhang Y, Johnson BR & Harris-Warrick RM
(2003). Activity-independent homeostasis in rhythmically
active neurons. Neuron 37, 109–120.

Marder E & Taylor AL (2011). Multiple models to capture the
variability in biological neurons and networks. Nat Neurosci
14, 133–138.

Nelson SB, Sugino K & Hempel CM (2006). The problem of
neuronal cell types: a physiological genomics approach.
Trends Neurosci 29, 339–345.

O’Leary T, Williams AH, Caplan JS & Marder E (2013).
Correlations in ion channel expression emerge from
homeostatic tuning rules. Proc Natl Acad Sci USA 110,
E2645–E2654.

Peirs C & Seal RP (2016). Neural circuits for pain: recent
advances and current views. Science 354, 578–584.

Peirs C, Williams SP, Zhao X, Walsh CE, Gedeon JY, Cagle NE,
Goldring AC, Hioki H, Liu Z, Marell PS & Seal RP (2015).
Dorsal horn circuits for persistent mechanical pain. Neuron
87, 797–812.

Petitjean H, Pawlowski SA, Fraine SL, Sharif B, Hamad D,
Fatima T, Berg J, Brown CM, Jan LY, Ribeiro-da-Silva A,
Braz JM, Basbaum AI & Sharif-Naeini R (2015). Dorsal horn
parvalbumin neurons are gate-keepers of touch-evoked pain
after nerve injury. Cell Rep 13, 1246–1257.

Polgar E, Hughes DI, Riddell JS, Maxwell DJ, Puskar Z & Todd
AJ (2003). Selective loss of spinal GABAergic or glycinergic
neurons is not necessary for development of thermal
hyperalgesia in the chronic constriction injury model of
neuropathic pain. Pain 104, 229–239.

Poulin JF, Tasic B, Hjerling-Leffler J, Trimarchi JM &
Awatramani R (2016). Disentangling neural cell diversity
using single-cell transcriptomics. Nat Neurosci 19,
1131–1141.

Prescott SA & De Koninck Y (2002). Four cell types with
distinctive membrane properties and morphologies in
lamina I of the spinal dorsal horn of the adult rat. J Physiol
539, 817–836.

Prescott SA & De Koninck Y (2005). Integration time in a
subset of spinal lamina I neurons is lengthened by sodium
and calcium currents acting synergistically to prolong
subthreshold depolarization. J Neurosci 25, 4743–4754.

Prescott SA, De Koninck Y & Sejnowski TJ (2008). Biophysical
basis for three distinct dynamical mechanisms of action
potential initiation. PLoS Comput Biol 4, e1000198.
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