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Invasive aspergillosis is a life-threatening mycosis caused by the pathogenic fungus

Aspergillus. The predominant causal species is Aspergillus fumigatus, and azole

drugs are the treatment of choice. Azole drugs approved for clinical use include

itraconazole, voriconazole, posaconazole, and the recently added isavuconazole.

However, epidemiological research has indicated that the prevalence of azole-resistant

A. fumigatus isolates has increased significantly over the last decade. What is worse is

that azole-resistant strains are likely to have emerged not only in response to long-term

drug treatment but also because of exposure to azole fungicides in the environment.

Resistance mechanisms include amino acid substitutions in the target Cyp51A protein,

tandem repeat sequence insertions at the cyp51A promoter, and overexpression of the

ABC transporter Cdr1B. Environmental azole-resistant strains harboring the association

of a tandem repeat sequence and punctual mutation of the Cyp51A gene (TR34/L98H

and TR46/Y121F/T289A) have become widely disseminated across the world within a

short time period. The epidemiological data also suggests that the number of Aspergillus

spp. other than A. fumigatus isolated has risen. Some non-fumigatus species intrinsically

show low susceptibility to azole drugs, imposing the need for accurate identification,

and drug susceptibility testing in most clinical cases. Currently, our knowledge of azole

resistance mechanisms in non-fumigatus Aspergillus species such as A. flavus, A. niger,

A. tubingensis, A. terreus, A. fischeri, A. lentulus, A. udagawae, and A. calidoustus

is limited. In this review, we present recent advances in our understanding of azole

resistance mechanisms particularly in A. fumigatus. We then provide an overview of the

genome sequences of non-fumigatus species, focusing on the proteins related to azole

resistance mechanisms.

Keywords:Aspergillus fumigatus, azole resistance, Cyp51A, Cdr1B, tandem repeats,A. flavus,A. niger,Aspergillus

section Fumigati

INTRODUCTION

The incidence of fungal infection has increased over the past three decades (Denning, 1998;
Dasbach et al., 2000; Kousha et al., 2011; Suzuki et al., 2013; Bitar et al., 2014). This is largely due to
the increased number of patients at risk who have received hematopoietic stem cell or solid organ
transplantation and immunosuppressive therapy. Although new antifungals have been developed,
fungal infections remain a threat to human health. Among filamentous fungal infections, those
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caused by Aspergillus species are the most common. The
mortality and morbidity associated with such infections are
relatively high, and the predominant causal agent is Aspergillus
fumigatus (Steinbach et al., 2012). Accordingly, this fungus
is regarded as a model pathogen to study many aspects of
aspergillosis, such as fungal virulence factors, immune responses,
pathology, and drug efficacy. The genome sequence of A.
fumigatus was determined in 2005 (Nierman et al., 2005), which
accelerated our understanding of the molecular mechanisms
underlying its pathogenicity (Kwon-Chung and Sugui, 2013;
Perez-Nadales et al., 2014; Brown and Goldman, 2016). However,
there is still much to be elucidated and the issue of drug resistance
has only emerged during the past decade.

The antifungal drugs currently available for the treatment of
aspergillosis fall into four categories: pyrimidine, echinocandin,
polyene, and azole drugs. Among these, azoles are the first choice
drugs in the management and prophylaxis of aspergillosis. Since
the first report of an azole-resistant A. fumigatus strain in 1997
(Denning et al., 1997), resistant isolates have been detected with
increasing incidence worldwide (Chen et al., 2005; Verweij et al.,
2007; Howard et al., 2009; van der Linden et al., 2015). It is now
widely accepted that azole resistance can develop upon prolonged
exposure to azoles at a sub-lethal concentration during the
therapy of patients with aspergillosis (particularly with chronic
aspergillosis), which is supported by the findings of several
studies (Howard et al., 2009; Tashiro et al., 2012; Hagiwara et al.,
2014). In addition, environmentally-derived resistancemutations
have emerged as a major cause of resistance among strains over
the last decade (Snelders et al., 2008; Chowdhary et al., 2013).
These mutations involve a combination of tandem repeats (TR)
in the cyp51A promoter region and amino acid substitution(s)
(TR34/L98H and TR46/Y121F/T289A). The strains harboring
such resistance mutations were prevalent among both clinical
and environmental settings. As azole resistance is correlated
with aspergillosis treatment failure (Howard et al., 2009), a
number of studies have focused on the epidemiology, molecular
mechanisms, and diagnostic methods relating to this type
of resistance. Another emerging issue in the pathology of
aspergillosis is that non-fumigatus species are being increasingly
identified as causal agents of invasive aspergillosis; these include
A. flavus, A. niger, A. terreus, and A. calidoustus as well
as other Aspergillus species that belong to Aspergillus section
Fumigati (Baddley et al., 2009; Balajee et al., 2009; Krishnan
et al., 2009; Tashiro et al., 2011). These species show variable
drug susceptibility profiles, imposing the need for clinicians to
perform accurate identification and drug susceptibility testing
of isolates. Conventional culture methods do not provide an
adequate level of specificity and/or sensitivity for accurate
diagnosis, making species identification and determination of
azole-resistance mutations in the cultured isolates a major
challenge. The lack of accurate diagnostic techniques also affects
management of patients with aspergillosis caused by azole-
resistant Aspergillus (Verweij et al., 2015).

Recent advances in DNA sequencing technology have yielded
several genomes of Aspergillus pathogens and the subsequent
detection of sequence variations associated with azole resistance
mechanisms. Taken together with epidemiological data, genomic

approaches are increasing our understanding of emerging issues
in Aspergillus pathogenesis. This review aims to summarize the
recent findings on azole resistance in A. fumigatus, as well as in
other related Aspergillus pathogens.

HOW WIDELY HAS AZOLE-RESISTANT
ASPERGILLUS FUNGI SPREAD?

Epidemiology of Clinically Isolated
Aspergillus Fungi
The genus Aspergillus comprises 344 species (Samson et al.,
2014), and several species have been reported to be pathogenic
in humans and animals. It is clear from epidemiological data
that A. fumigatus is the predominant etiological agent isolated
from immune-compromised patients. The second leading cause
of aspergillosis is reportedly either A. flavus or A. niger. Due
to the different sources of isolation (country, region, hospital,
or ward), and the different clinical manifestations, comparing
the frequencies of isolation among different studies is difficult.
However, to gain a generalized overview or a trend of the
incidence rates, epidemiological data collected from multicenter
studies are valuable. Recently, epidemiology data for invasive
aspergillosis (IA) was reported, which included a total of 563
patients from 30 intensive care units (ICUs) in eight countries
(Taccone et al., 2015). In this study, A. fumigatus was the most
commonly isolated fungus (n = 512, 92%), followed by A.
flavus (n = 19, 3%) and A. niger (n = 7, 1%). In a 1-year
(April 2011 to April 2012) prospective multicenter (18 Belgian
hospitals) cohort study, 192 isolates of the A. fumigatus complex
(87.3%), 13 of the A. flavus complex (5.9%), and 10 of the A.
niger complex (4.5%) were isolated (Vermeulen et al., 2015).
In another study of 29 Spanish hospitals (two periods; October
2010 and May 2011), among 278 Aspergillus isolates, 156 were
identified as A. fumigatus (56.1%), 27 were A. flavus (9.7%), 26
were A. terreus (9.4%), 22 were A. tubingensis (7.9%), and 21
wereA. niger (7.6%; Alastruey-Izquierdo et al., 2013). Prospective
cohort studies of transplant-associated fungal infections in the
United States carried out by the Transplant-Associated Infection
Surveillance Network (TRANSNET) have also revealed that A.
fumigatus is the leading cause of aspergillosis, followed by A.
flavus, A. niger, and A. terreus (Kontoyiannis et al., 2010; Pappas
et al., 2010). Analyzing these data collectively, it is clear that A.
fumigatus is the predominant causative agent of aspergillosis, but
several non-fumigatus species were also isolated from patients.

Recently, cryptic species of Aspergilli have received
much attention owing to advances in the molecular tools
for identification. Species that cannot be morphologically
distinguished from the leading pathogen of their section are
defined as “cryptic” species. Aspergillus section Nigri, whose
members are known as the black aspergilli, is represented
by A. niger, and includes more than 15 species, including A.
tubingensis (Abarca et al., 2004). Within the section Nigri, A.
niger, and A. tubingensis are the most common etiological agents
of otomycosis, onchomycosis, pulmonary aspergillosis, and
aspergilloma (Pappas et al., 2010; Alastruey-Izquierdo et al.,
2014; Gheith et al., 2014a; Gautier et al., 2016). Aspergillus

Frontiers in Microbiology | www.frontiersin.org 2 September 2016 | Volume 7 | Article 1382

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Hagiwara et al. Azole Resistance in Aspergillus Fungi

section Fumigati, comprising more than 60 species, also has
important clinical implications, with 15 of its species having
been reported to be isolated in clinical specimens (Alcazar-
Fuoli et al., 2008a; Alastruey-Izquierdo et al., 2014; Lamoth,
2016). Misidentification within the section Fumigati has
been increasingly reported, with A. lentulus, A. viridinutans,
A. fumigatiaffinis, A. fumisynnematus, A. pseudofischeri, A.
hiratsukae, and A. udagawae frequently being reported as A.
fumigatus (Balajee et al., 2005a,b, 2006; Howard, 2014). Indeed,
recent reports demonstrated that the cryptic species including A.
lentulus and A. udagawae accounted for 3–6% of the collection
of Aspergillus section Fumigati isolates (Balajee et al., 2009;
Alastruey-Izquierdo et al., 2013; Escribano et al., 2013). These
cryptic species in section Nigri and section Fumigati sometimes
show different drug susceptibility profiles and different levels
of pathogenicity from those of A. fumigatus (Vinh et al., 2009;
Coelho et al., 2011; Alastruey-Izquierdo et al., 2014).

Regarding azole resistance, Aspergillus calidoustus, belonging
to section Usti, should be noted, as it shows intrinsic pan-azole
resistance. Prior to A. calidoustus being identified by specific
sequencing as the only pathogenic species in this section, it
was often reported as Aspergillus ustus (Varga et al., 2008). The
incidence of infection caused by A. calidoustus was increased in
transplant patients under azole prophylaxis (Egli et al., 2012). The
TRANSNET study showed thatA. calidoustus accounted for 2.7%
(6/218) of Aspergillus species isolates (Balajee et al., 2009), while a
population-based survey performed in Spain found 1.4% of the
278 Aspergillus species isolates were A. calidoustus (Alastruey-
Izquierdo et al., 2013). According to these studies, some of
these intrinsically azole-resistant A. calidoustus strains emerged
in the setting of invasive aspergillosis. The growing recognition
of azole-resistant cryptic species highlights the clinical need
for full and accurate identification and susceptibility testing. In
parallel, more focused studies are required to develop a better
understanding of these species in the future.

Prevalence of Azole-Resistant Aspergillus
Species
The predominant pathogen among Aspergillus species, A.
fumigatus, is intrinsically susceptible to medical azoles. The
epidemiological cutoff values (ECVs) for three triazoles,
determined by Clinical and Laboratory Standards Institute
broth microdilution (CLSI BMD) methods, have been proposed
by Pfaller et al. (2009): itraconazole (1mg/L), voriconazole
(1mg/L), and posaconazole (0.25mg/L). They showed that 0.2,
0.2, and 0.8% of isolates in a large collection of Aspergillus species
(n = 637) had itraconazole, voriconazole, and posaconazole
minimum inhibitory concentrations (MICs) above the ECVs.
In a subsequent study (n = 1647–2778) by Espinel-Ingroff et al.
(2010), the ECVs for A. fumigatus were determined by CLSI
method as itraconazole (1mg/L), voriconazole (1mg/L), and
posaconazole (0.5mg/L). By these criteria, the rates of isolates
with itraconazole, voriconazole, and posaconazole MICs outside
of the ECVs were 2.6, 3.1, and 2.2%, respectively. The sample
size and regional differences in the collections might affect the
prevalence of azole-resistant isolates. This study also proposed

the ECVs (itraconazole, voriconazole, and posaconazole) for
otherAspergillus species includingA. flavus (1, 1, and 0.25mg/L),
A. terreus (1, 1, and 0.5mg/L), A. niger (2, 2, and 0.5mg/L), and
A. nidulans (1, 2, and 1mg/L; Espinel-Ingroff et al., 2010). These
ECV data could help to characterize Aspergillus isolates and
to monitor the emergence of azole-resistant strains by in vitro
antifungal susceptibility testing with CLSI BMDmethod.

Over the past decade, ongoing azole resistance surveillance
reports have been published by several research groups from
different countries. A summary of recent reports on the
surveillance of major Aspergillus species is shown in Table 1.
The prevalence of azole-resistant A. fumigatus and A. terreus
strains appears to be largely consistent between the studies.
Based on the ECVs determined in the study by Espinel-Ingroff
et al. (2010), the prevalence rates for azole-resistant isolates
determined using the CLSI method in these studies are listed
in Table 2. In these studies, 0.2–2.6, 0.8–3.1, and 0.2–2.2% of
A. fumigatus isolates were resistant to itraconazole, voriconazole,
and posaconazole, respectively, while 0, 0–3.0, and 0–0.3% of A.
terreus isolates were resistant to itraconazole, voriconazole, and
posaconazole, respectively (Table 2). It is notable that A. flavus,
A. niger, and A. tubingensis showed variations in the prevalence
of azole resistance between the studies. In particular, high rates
of resistance to itraconazole were demonstrated amongst A.
niger strains, suggesting intrinsic resistance to itraconazole in
this species. However, this remains controversial as the effects
of regional and individual laboratory conditional differences
between the studies cannot be ruled out. Thus, further studies are
necessary to draw definite conclusions.

In addition to the non-fumigatus species, the MICs for
azoles were determined in some species of Aspergillus section
Fumigati (Table 3). Isolates of A. lentulus, A. udagawae, and
A. viridinutans with high MICs (>1mg/L) for itraconazole
and/or voriconazole were detected in most of these studies.
Although these data were suggestive of intrinsic resistance to
the azoles in these species, it should not be overlooked that the
susceptibilities were variable among isolates. It is particularly
noteworthy that posaconazole appears to retain remarkable
antifungal activity against these cryptic species, and that novel
azole drug isavuconazole also shows significant activity in these
species (Datta et al., 2013).

Many surveys focused particularly on A. fumigatus have been
conducted, as azole resistance mechanisms have been intensively
investigated in this fungus. An overview of the prevalence of
azole-resistant strains was presented in two excellent reviews
both published in 2013 (Lelièvre et al., 2013; Vermeulen et al.,
2013). The literature cited in the review by Vermeulen et al.
(2013) revealed that the overall azole resistance rate of A.
fumigatus ranged from 0.6 to 27.8% across the studies. Again
the prevalence rates varied between studies (countries), likely
due to differences in region and disease manifestation in
patients. The emergence and spread of “environmental resistance
mechanisms” during the past decade might also have affected
the prevalence data. Accordingly, a research group from the
Netherlands most recently published a survey of azole-resistant
A. fumigatus, in which 364 of 952 clinical strains (38.2%) isolated
by, or referred to, the laboratory from 2010 to 2013 were
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TABLE 1 | Summary of recent reports on azole-resistant Aspergillus species isolates.

References Method Species n ITCZ VRCZ PSCZ

MIC90 Range MIC90 Range MIC90 Range

Pfaller et al., 2008 CLSI M38-A2 A. fumigatus 553 1 0.12–2 0.5 0.06–4 0.5 0.03–2

A. flavus 76 1 0.12–2 1 0.06–1 0.5 0.06–2

A. niger 59 >8 0.5–>8 1 0.12–2 1 0.12–2

A. terreus 35 0.5 0.12–1 0.5 0.06–1 0.25 0.06–0.5

Baddley et al., 2009 CLSI M38-A2 A. fumigatus 181 0.5 0.125–4 0.5 0.125–8 0.125 0.03–1

A. niger 28 1 0.25–1 1 0.5–1 0.25 0.06–0.5

A. flavus 27 0.25 0.06–0.25 0.5 0.125–1 0.125 0.06–0.125

A. terreus 22 0.25 0.03–0.25 0.5 0.25–0.5 0.06 0.03–0.06

Espinel-Ingroff et al., 2010 CLSI M38-A2 A. fumigatus 1684–2815 1 0.03–16 1 0.03–16 0.25 <–0.01–4

A. flavus 323–592 0.5 0.03–16 1 0.06–16 0.25 0.03–16

A. niger 366–520 2 0.03–16 2 0.03–32 0.5 0.03–2

A. terreus 330–462 1 0.03–1 1 0.03–32 0.5 0.03–2

A. nidulans 131–143 1 0.03–8 1 0.03–8 1 0.03–8

Shivaprakash et al., 2011 CLSI M38-A2 A. flavus*1 188 0.25 0.062–0.5 2 0.5–4 0.25 0.062–0.25

Al-Wathiqi et al., 2013 E-test A. flavus 92 0.25 0.064–0.25 0.25 0.016–0.38

Alastruey-Izquierdo et al.,

2013

EUCAST A. fumigatus 156 0.25 0.12–1 1 0.12–2 1 0.25–1

A. flavus 27 1 0.06–1 1 0.12–4 2 0.25–4

A. terreus 26 0.25 0.06–0.25 2 0.5–2 1 0.25–2

A. tubingensis 22 1 0.03–32 2 0.25–2 2 0.25–2

A. niger 21 0.5 0.06–1 1 0.25–2 2 0.25–2

Gheith et al., 2014b E-test A. flavus 18 0.83 0.25–1 0.25 0.06–0.5 0.25 0.06–0.25

A. niger 17 2 0.38–2 0.13 0.05–0.12 0.25 0.05–0.25

A. tubingensis 9 4.8 0.25–8 0.38 0.064–0.38 0.25 0.047–0.25

Lalitha et al., 2014 CLSI M38-A2 A. flavus 32 2 0.25–8

A. fumigatus 10 1.3 0.25–4

van Ingen et al., 2015 EUCAST A. fumigatus 952 >16 0.063–>16 >16 0.25–>16 1 0.031–>16

Gautier et al., 2016 E-test A. niger 36 12 0.25–24 0.5 0.064–1 0.5 0.047–1

A. tubingensis 36 32 0.38–32 0.75 0.125–1 0.5 0.047–0.75

Badali et al., 2016 CLSI M38-A2 A. niger (clinical) 39 >16 0.25–>16 >16 0.125–>16 0.125 0.016–0.125

A. niger (environmental) 33 >16 0.125–>16 >16 0.125–>16 0.125 0.016–0.25

A. tubingensis (clinical) 20 1 0.25–1 1 0.063–1 0.125 0.016–0.125

A. tubingensis (environmental) 29 >16 0.125–>16 1 0.125-2 0.125 0.016–0.125

Khodavaisy et al., 2016 CLSI M38-A2 A. flavus (clinical) 171 0.5 0.031–2 0.5 0.031–8 0.25 0.008–0.5

A. flavus (environmental) 28 1 0.25–1 1 0.25–4 0.125 0.047–0.5

Kachuei et al., 2016 CLSI M38-A2 A. flavus 38 0.5 0.063–2 1 0.031–1 0.125 0.008–0.25

Castanheira et al., 2016 CLSI M38-A2 A. fumigatus 142 1 0.25–4 0.5 0.12–2 0.5 0.06–1

*1 Contains clinical and environmental isolates.

ITCZ, itraconazole; VRCZ, voriconazole; PSCZ, posaconazole.

resistant to azoles (van Ingen et al., 2015). Among them, 225
(23.6%) and 98 (10.3%) strains possessed the environmental
resistance mechanisms TR34/L98H and TR46/Y121F/T289A,

respectively. Another group from the Netherlands reported that
21 azole-resistant strains (20.0%) out of 105 isolates included
13 strains harboring the TR34/L98H allele (12.4%) and three
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TABLE 2 | Summary of the rates of azole resistance amongst Aspergillus species.

Species n Country Method >ECV (%)*1 References

ITCZ VRCZ PSCZ

A. fumigatus 637 Worldwide CLSI M38-A2 1/637 (0.2) 5/637 (0.8) 1/637 (0.2) Pfaller et al., 2009

1684–2815 Worldwide CLSI M38-A2 68/2554 (2.6) 88/2778 (3.1) 37/1647 (2.2) Espinel-Ingroff et al., 2010

A. flavus 76 Worldwide CLSI M38-A2 1/76 (1.3) 0/76 (0) 57/76 (25) Pfaller et al., 2008

27 The United States CLSI M38-A2 0/27 (0) 0/27 (0) 0/27 (0) Baddley et al., 2009

323–592 Worldwide CLSI M38-A2 4/536 (0.7) 12/590 (2.0) 18/321 (5.6) Espinel-Ingroff et al., 2010

188 India and The Netherlands CLSI M38-A2 0/188 (0) 49/188 (26.1) 0/188 (0) Shivaprakash et al., 2011

171 Iran (clinical) CLSI M38-A2 1/171 (0.6) 1/171 (0.6) 4/171 (2.4) Khodavaisy et al., 2016

28 Iran (environmental) CLSI M38-A2 1/28 (3.6) 1/28 (3.6) 1/28 (3.6) Khodavaisy et al., 2016

A. niger 59 Worldwide CLSI M38-A2 14/59 (23.7) 0/59 (0) 9/59 (15.3) Pfaller et al., 2008

28 The United States CLSI M38-A2 0/28 (0) 0/28 (0) 0/28 (0) Baddley et al., 2009

366–520 Worldwide CLSI M38-A2 41/427 (8.8) 5/479 (1.0) 19/325 (5.2) Espinel-Ingroff et al., 2010

39 Iran (clinical) CLSI M38-A2 7/39 (17.9) 6/39 (15.4) 0/39 (0) Badali et al., 2016

33 Iran (environmental) CLSI M38-A2 14/33 (42.4) 11/33 (33.3) 0/33 (0) Badali et al., 2016

A. terreus 35 Worldwide CLSI M38-A2 0/35 (0) 0/35 (0) 0/35 (0) Pfaller et al., 2008

22 The United States CLSI M38-A2 0/22 (0) 0/22 (0) 0/22 (0) Baddley et al., 2009

330–462 Worldwide CLSI M38-A2 0/369 (0) 14/462 (3.0) 1/330 (0.3) Espinel-Ingroff et al., 2010

A. tubingensis*2 20 Iran (clinical) CLSI M38-A2 0/20 (0) 0/20 (0) 0/20 (0) Badali et al., 2016

29 Iran (environmental) CLSI M38-A2 11/29 (37.9) 0/29 (0) 0/29 (0) Badali et al., 2016

A. nidulans 131–143 Worldwide CLSI M38-A2 9/141 (6.3) 2/139 (1.4) 3/129 (2.3) Espinel-Ingroff et al., 2010

ECV, epidemiological cutoff values; ITCZ, itraconazole; VRCZ, voriconazole; PSCZ, posaconazole.

*1: ECVs proposed by Espinel-Ingroff et al. (2010) were used for this analysis (see text).

*2: ECVs for A. niger were applied as ECVs have not been established for A. tubingensis.

strains harboring the TR46/Y121F/T289A allele (2.9%; Fuhren
et al., 2015). The isolation rate of environmentally-derived azole-
resistant A. fumigatus strains seems to be constantly increasing,
threatening the effectiveness of current frontline antifungal
therapy against aspergillosis.

A multicenter epidemiological study carried out by the
Surveillance Collaboration on Aspergillus Resistance in Europe
(SCARE) network provided a more general understanding of the
prevalence of azole-resistant Aspergillus strains (van der Linden
et al., 2015). In total, 22 centers from 19 countries participated
the study, and 3788 Aspergillus isolates were collected between
January 2009 and January 2011. Of these, 2941 isolates (77.6%)
belonged to the A. fumigatus complex, 60 of which showed azole
resistance. Forty-seven of these azole-resistant isolates were A.
fumigatus sensu stricto, and strains with environmental resistance
mechanisms TR34/L98H or TR46/Y121F/T289A accounted for
55.3% (n = 26) of isolates. These strains were recovered from
six countries: Austria, Belgium, Denmark, France, Italy, and The
Netherlands. Recently, strains containing the TR34/L98H and
TR46/Y121F/T289A mutations have also been identified in the
United States, Columbia, Taiwan, and Japan (Wu et al., 2015;
Hagiwara et al., 2016; Le Pape et al., 2016; Wiederhold et al.,
2016). These reports highlight a global risk for resistant A.
fumigatus strains.

AZOLE RESISTANCE MECHANISMS IN A.

FUMIGATUS

The basic resistance mechanisms of microbial cells to growth-
inhibiting drugs are depicted in Figure 1. The mechanisms are
categorized as: (1) reduced interaction affinity of the target
protein to the drugs, (2) overexpression of the target protein
in the cells, (3) decreased drug concentration by boosted efflux
system, (4) intra- or extra-cellular degradation of the drugs, and
(5) alternative pathways bypassing the drug effects. The following
section summarizes recent advances in our understanding of
each of these resistance mechanisms, particularly in regard to A.
fumigatus. Furthermore, we review several attempts to reproduce
the resistance mutations under laboratory conditions, and new
approaches to identifying the responsible mutations by genome
comparison.

CYP51 Proteins
The main mechanisms of azole resistance were elucidated
based on the identification of numerous mutations in resistant
A. fumigatus isolates. The most frequent mutations detected
were related to the target protein Cyp51A: 14α-demethylase.
This enzyme is involved in ergosterol biosynthesis and sterol
metabolism, and plays an important role in Aspergillus. A.
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TABLE 3 | Summary of the MICs for Aspergillus section Fumigati.

References Species n ITCZ VRCZ PSCZ

MIC90 Range MIC90 Range MIC90 Range

Tamiya et al., 2015 A. fumigatus 69 0.5 – 1 – – –

A. lentulus 8 2 – 8 – – –

A. udagawae 9 8 – 8 – – –

Datta et al., 2013 A. lentulus 15 2 0.5–2 2 0.5–2 – –

N. udagawae 10 1 0.25–1 1 0.25–1 – –

Escribano et al., 2013 A. lentulus 6 – 1–2 – 1–4 – 0.5–1

N. udagawae 2 – 1 – 1 – 0.5

A. viridinutans 1 – 4 – 4 – 0.5

Vinh et al., 2009 N. udagawae 4 – 1–4 – 1–116 – 0.25–0.5

Gürcan et al., 2013 A. lentulus 1 – – – 0.25 – 0.125

Lago et al., 2014 (A. lentulus)*1 7 – 1 – 2–4 – 0.125–0.25

(A. fumigatus)*1 8 – 0.25–1 – 0.25–0.5 – 0.031–0.25

Alastruey-Izquierdo et al., 2014 A. lentulus 26 16 0.12–16 8 0.25–16 0.5 0.03–1

A. udagawae 5 1 0.25–1 4 2–4 0.25 0.12–0.25

Mortensen et al., 2011 A. fumigatus 107 1 <–0.03–>4 0.5 0.125–2 0.25 <–0.03–>4

A. lentulus 1 – 2 – 2 – 0.5

Balajee et al., 2009 A. lentulus 4 – 0.25–0.5 – 1–4 – 0.25

A. udagawae 3 – 0.25–2 – 0.25–2 – 0.125–0.25

Alcazar-Fuoli et al., 2008a A. lentulus 14 – (0.43–16)*2 – (3–7.5)*2 – (0.12–2)*2

A. viridinutans 2 – (14.4–16)*2 – (4)*2 – (0.25–0.41)*2

*1: isolated from the environment.

*2: Geometric means (GMs) were used.

ITCZ, itraconazole; VRCZ, voriconazole; PSCZ, posaconazole.

fumigatus has a paralogous protein Cyp51B. Both proteins are
capable of complementing the lethality of a Saccharomyces
cerevisiae erg11/cyp51 (sterol 14α-demethylase) mutant (Martel
et al., 2010), indicating the functionality of the Cyp51 proteins.
Neither Cyp51A nor Cyp51B is individually essential for A.
fumigatus growth (Garcia-Effron et al., 2005; Mellado et al.,
2005), but the attempted inactivation of both genes was lethal
(Hu et al., 2007). Azoles interact with and inhibit the Cyp51
proteins (Warrilow et al., 2015), which in turn reduce the
ergosterol content and impair sterol metabolism in the cells
(Alcazar-Fuoli et al., 2008b), resulting in a fungistatic (under
low azole concentrations), or a fungicidal (under high azole
concentrations) effect. Single amino acid substitutions at G54,

P216, F219, M220, and G448 in the Cyp51A protein have been
well-described to confer azole resistance (Mann et al., 2003;

Mellado et al., 2004; Camps S. M. et al., 2012; Krishnan-Natesan
et al., 2012; Figure 2A). Besides these “hotspots,” amino acid
changes at other positions (Y121, G138, and Y431) were also
found in the Cyp51A protein of resistant strains (Albarrag
et al., 2011; Lescar et al., 2014). These resistance mutations
tend to arise during prolonged treatment of chronic aspergillosis

with azole drugs. This was well-exemplified by several cases,
in which azole-susceptible and azole-resistant isolates were
serially isolated from one individual patient (Howard et al.,
2009; Hagiwara et al., 2014). It is worth noting that such
resistance mutations have never been reported to date in the
Cyp51B protein. Instead, high-level induced expression and
constitutive overexpression of the cyp51B gene were observed
in azole-resistant clinical isolates (Buied et al., 2013). Although
these findings await further genetic verification, they raise the
possibility of the involvement of Cyp51B in azole resistance
as a non-Cyp51A-mediated resistance mechanism in clinical
settings.

Efflux Transporters
The overexpression of efflux transporters has been well-
documented in yeasts. A. fumigatus contains at least 49 genes
encoding the ATP-binding cassette (ABC) transporter (Lelièvre
et al., 2013), among which 12 genes show high homology
(>30% identities and >50% positive results for >80% of the
query protein sequences) with the S. cerevisiae PDR5 and
PDR15 proteins that are involved in azole resistance (Paul and
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FIGURE 1 | Basic drug resistance mechanisms and the corresponding azole resistance mechanisms in A. fumigatus. Drug resistance mechanisms are

categorized into five basic types. The underlying molecular mechanisms identified in A. fumigatus are shown in red text.

Moye-Rowley, 2014). These 12 transporters are included in a
PDR (also called an ABC-G) sub-class of ABC transporters.
Among them, Cdr1B was identified to be overexpressed in azole-
resistant strains, and deleting the cdr1B gene in one such strain
resulted in increased susceptibility to itraconazole (Fraczek et al.,
2013; Figure 2B). The other strains with the cdr1B gene deleted
showed azole hyper-sensitivity (Paul et al., 2013), which indicated
that Cdr1B is responsible for azole resistance in A. fumigatus.
Recently, Dr. Sanglard and his colleagues demonstrated that
deletion mutants of two distinct ABC transporters (AtrF, AtrI)
and a major facilitator superfamily transporter (MdrA) also
showed sensitivity to azoles (Meneau et al., 2016). The expression
levels of the cdr1B gene (also called abcB) were slightly induced
upon voriconazole treatment (Paul et al., 2013), whereas some
of the other transporter genes (abcB/Afu1g10390, abcE, mfsA,
mfsB, and mfsC) were shown to be upregulated in response to
voriconazole (da Silva Ferreira et al., 2006). It therefore appears
that other efflux transporters may potentially be involved in
clinical azole resistance.

Environmentally-Derived Resistance
Mechanisms
During this decade, A. fumigatus azole-resistant strains with a
combination of a TR in the promoter region of cyp51A and
amino acid mutation(s) (TR34/L98H and TR46/Y121F/T289A)
have been increasingly reported. These strains have been isolated

from patients regardless of their azole treatment history, as well
as from the environment. The strains harboring such mutations
were isolated inmany countries from several continents (Mellado
et al., 2007; Snelders et al., 2008; Vermeulen et al., 2012;
Chowdhary et al., 2014; Wu et al., 2015; Hagiwara et al.,
2016; Wiederhold et al., 2016). The high incidence of resistant
strains reported in the Netherlands is particularly alarming
(Fuhren et al., 2015; van Ingen et al., 2015). It is now widely
accepted that such resistance mechanisms were derived from
exposure to azole fungicides in the environment (Snelders et al.,
2008).

The molecular mechanisms underlying environmentally-
derived mutations were intensively studied by Dr. Melchers’s
group (Figure 2C). A. fumigatus recombinants with different
cyp51A amino acid substitutions and/or a promoter insertion
were constructed (Snelders et al., 2011, 2015). The recombinants
harboring TR34 or TR46 showed increased expression of the
cyp51A gene compared with the parental strains, however, the
TR by itself only had a moderate effect on azole susceptibility
(itraconazole (ITCZ) MIC: 0.25–0.5 to 0.5–1 mg/L; voriconazole
(VRCZ) MIC: 0.25–0.5 to 1–2 mg/L). Site-directed mutagenesis
of L98H or Y121F alone also showed a moderate increase in
the MICs (ITCZ MIC: 0.25–0.5 to 0.5–1 mg/L; VRCZ MIC:
0.25–0.5 to 1–4 mg/L). Azole resistance levels comparable to
those of the clinical isolates (TR34/L98H or TR46/Y121F/T289A)
were achieved by a combination of the TR and an amino acid
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FIGURE 2 | Known azole resistance mechanisms in A. fumigatus. (A) Amino acid substitutions responsible for azole resistance. G54, P216, F219, M220, and

G448 show the position at which amino acid changes resulted in azole resistance. The MICs of the strains harboring the change (to the indicated amino acid) are

shown in parentheses (Mann et al., 2003; Mellado et al., 2004; Camps S. M. et al., 2012; Krishnan-Natesan et al., 2012). (B) The efflux transporters related to azole

resistance. The MIC of the strain with overexpression of the cdr1B gene is shown in parentheses (Fraczek et al., 2013). (C) The tandem repeat sequences in a cyp51A

promoter. The none-overlapping bases are shown in italics. The MICs of the strains harboring TR34 or TR46 and/or amino acid change(s) are shown in parentheses

(Snelders et al., 2011, 2015). ITCZ, itraconazole; PSCZ, posaconazole; VRCZ, voriconazole.

substitution; the recombinant with TR34/L98H showed MICs
>16 mg/L for ITCZ and 2mg/L for VRCZ, and the recombinant
with TR46/Y121F showedMICs>8mg/L for ITCZ and>8mg/L
for VRCZ. Interestingly, the results suggested that T289A was
dispensable for full resistance to azoles. Paul et al. (2012)
also evaluated the effect of the TR34 element on cyp51A gene
expression using a promoter-luciferase reporter system. The lack
of the 34-bp sequence led to a 90% reduction in the expression
level compared with the wild-type promoter, indicating that
the 34-bp element played a critical role in maintaining wild-
type expression of the cyp51A gene. Although repeats of the
34-bp element resulted in a modest increase in expression, the
sequence may function as an enhancer element for cyp51A gene
expression.

Several reports of similar Cyp51 overexpression were also
found in plant fungal pathogens (Becher and Wirsel, 2012). The
high expression was correlated with the presence of insertions
in the promoter region of the cyp51 gene. A five-time TR of
a unique 126-bp sequence was found in the cyp51A promoter
region in Penicillium digitatum (Hamamoto et al., 2000).
Furthermore, 553-, 120-, and 65-bp insertions were found in the
cyp51 promoter region in Venturia inaequalis, Mycosphaerella
graminicola, and Monilinia fructicola, respectively (Schnabel
and Jones, 2000; Luo and Schnabel, 2008; Cools et al., 2012).
Changes in the promoter region of the cyp51 gene by the
presence of insertions or TRs may frequently occur under certain

conditions such as long-term exposure to azole fungicides in
environmental niches.

Lessons from In vitro Evolution and
Perspectives
To broaden our knowledge of azole resistance mutations,
attempts to evolve drug-resistant A. fumigatus strains in
vitro by transferring strains onto plates containing sub-lethal
concentration of azoles have been undertaken by several groups.
da Silva Ferreira et al. (2004) generated 10 itraconazole-
resistant strains (nine showed >16mg/L of ITCZ MIC and
one showed 1 mg/L) by in vitro evolution procedure, three of
these possessed a G54R point mutation in the Cyp51A protein,
and two possessed a M220I point mutation in this protein.
Novel mutations (positions N22, T440, and Y491) were also
found in the Cyp51A protein of itraconazole-resistant strains,
among which the N22D substitution was shown to confer
itraconazole resistance to wild-type A. fumgiatus by genetic
transformation. They also demonstrated that these resistant
mutants tended to show increased expression levels of efflux
transporter genes. Upon voriconazole exposure in another study,
six resistant strains were obtained from three different parental
strains under laboratory conditions (Krishnan-Natesan et al.,
2012). All of these strains harbored a G448S mutation in the
Cyp51A protein and showed MICs of 2–8mg/L for VRCZ,
whereas the ITCZMIC ranged from 0.25 to 2 mg/L and the PSCZ
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MIC from 0.0625 to 0.15mg/L. This suggested that G448S is
the predominant mutation conferring resistance to voriconazole.
Snelders et al. (2012) exposed distinct A. fumigatus strains
(wild-type, the strain with TR34, and the strain with L98H) to
itraconazole, azole fungicides (bromuconazole, difenoconazole,
epoxiconazole, propiconazole, or tebuconazole), or a mixture
of the fungicides. In the case of itraconazole exposure, G138C
and P216L were identified in the wild-type strain that had
evolved by more than three transfers. However, none of the
strains gained “environmentally-derived mutations” such as
TR34/L98H and TR46/Y121F/T289A. The authors hypothesized
that the development of TR34/L98H and TR46/Y121F/T289A
mutations might be extremely infrequent in the environment.
Recent microsatellite genotyping studies showed that less genetic
variation was found among strains harboring TR34/L98H or
TR46/Y121F/T289A mutations compared with the set of wild-
type isolates (Snelders et al., 2009; Hagiwara et al., 2016). From
these studies, it is tempting to speculate that the TR34/L98H
and TR46/Y121F/T289A-containing isolates did not arise in
distinct strains in various regions, but might have originated
from common ancestors. If this is the case, the rapid spread of
these resistant strains across the globe in a short period of time
is quite surprising and worrisome. At this moment, however,
the possibility that there is a preferential genetic background
in which “environmental mutations” occur more frequently
cannot be ruled out. More extensive studies, potentially including
population genetic analyses, might provide insight into this
important issue.

Exploring Resistance Mutations by
Whole-Genome Comparisons
As stated earlier, azole resistance mutations tend to occur
during long-term azole treatment (Tashiro et al., 2012). In some
cases, multiple strains are serially isolated from one patient at
different time points. Resistant isolates theoretically possess the
mutation attributed to resistance, which does not exist in the
corresponding sensitive isolates. Inspection of the cyp51A gene
sequence between these isolates has uncovered several mutations
in the Cyp51A protein. Furthermore, to identify novel non-
cyp51A resistance mutations, whole-genome comparisons were
conducted between azole-sensitive and azole-resistant cognate
isolates. Camps S. M. T. et al. (2012) identified a new mutation
in the hapE gene by whole-genome comparison and verified
its involvement by sexual crossing. HapE encodes a subunit of
the CCAAT-binding transcription factor complex, which plays a
regulatory role in a wide array of fungal phenotypes. The cyp51A
expression level in strains with the hapE mutation was higher
than in the corresponding wild-type strain, which suggested
that HapE plays a role in regulating cyp51A gene expression.
As a presumed CCAAT-box is present in the promoter region
of cyp51A, further analysis may uncover the mechanism of
regulation of the cyp51A gene. In addition to this novel resistance
mutation, they also detected at least 22 mutations in a pair of
strains that were recovered 17 weeks apart. Among them, five
of these mutations appeared to be in non-coding regions and
11 were synonymous mutations. This indicated that dynamic

alterations, likely irrespective of azole resistance, occur in the A.
fumigatus genome within its host during infection and treatment.
In another study, a large genomic deletion in a region containing
11 genes was identified by whole-genome comparison (Hagiwara
et al., 2014). Accordingly, whole-genome comparison analysis
can provide interesting insight into genetic variation provoked
during infection, and is therefore a powerful tool for further
understanding genome-scale azole resistance mechanisms.

FRONTIERS OF AZOLE RESISTANCE IN
NON-FUMIGATUS ASPERGILLUS SPECIES

As is the case with A. fumigatus, acquired antifungal resistance
is potentially able to arise in non-fumigatus species, whether in
the environment or within a host. However, reports identifying
antifungal resistance in such species are so far limited. Genome
data for several Aspergillus species are available in databases, and
the genomes of the cryptic species A. lentulus and A. udagawae
as well as A. calidoustus were recently added (Kusuya et al., 2015,
2016; Horn et al., 2016). Thus, there is an opportunity to study
pathogenic Aspergillus genomes with special reference to azole
resistance. The characteristics of pathogenic Aspergillus genomes
are shown in Table 4.

The sequences of the Cyp51 and Cdr1B proteins of A.
flavus, A. niger, A. tubingensis, A. terreus, A. fischeri, A.
lentulus, A. udagawae, A. calidoustus as well as A. fumigatus,
were retrieved from the NCBI (http://www.ncbi.nlm.nih.gov/)
and AspGD (http://www.aspgd.org/) databases and compared.
Phylogenetic trees constructed based on the Cyp51 and Cdr1B
protein sequences are depicted in Figures 3A,B, respectively.
All of the species listed above, except for A. flavus, possess
two Cyp51 proteins, Cyp51A and Cyp51B, which form distinct
sub-groups in the phylogenetic tree. The third Cyp51 protein,
Cyp51C, is found only in A. flavus, and is relatively similar to
Cyp51A (Figure 3A). The Y319H mutation in A. flavus Cyp51C
was found specifically in an azole-resistant clinical isolate,
suggesting a role in the resistance mechanism (Paul et al., 2015).
Through an in vitro evolution experiment, several mutations
in Cyp51A (K197N, D282E, M288L, Y132N, and T469S) and
Cyp51B (H399P, D411N, T454P, and T486P) were identified in
multi-azole-resistant A. flavus, which warranted further study
(Krishnan-Natesan et al., 2008). It is interesting to note that
intrinsically azole-resistant species A. calidoustus has two Cyp51
proteins. One of these, a Cyp51A-like protein, shows relatively
distant homology to A. fumigatus Cyp51A, whereas the other
falls into the Cyp51B group (Figure 3A).When theA. calidoustus
Cyp51A-like protein was aligned with Cyp51A proteins from
other Aspergillus species, the methionine at position 220 in A.
fumigatus Cyp51A was replaced with a valine in A. calidoustus
Cyp51A (Figure 3C). As M220 in the A. fumigatus Cyp51A
protein is involved in azole resistance, this replacement may
cause the observed insensitivity to azole drugs in this fungus.
It is yet to be confirmed whether the varied azole susceptibility
among species is indeed derived from the sequence difference
in the Cyp51A protein. Regarding the protein sequences of
Cyp51A and Cyp51B in A. lentulus, differences of 16 and 12
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TABLE 4 | Features of pathogenic Aspergillus genomes.

Species Strain Size (Mb) GC% Protein-coding genes Cyp51 genes Cdr1B genes Reference database

A. fumigatus Af293 29.42 49.8 9840 2 1 AspGD

A. flavus NRRL 3357 36.89 48.3 13,485 3 2 NCBI

A. niger CBS 513.88 33.98 50.4 14,058 2 2 AspGD

A. tubingensis CBS 134.48 35.15 49.2 12,322 2 2 JGI

A. terreus NIH2624 29.36 52.8 10,401 2 3 NCBI

A. fischeri NRRL 181 31.77 49.5 10,395 2 1 NCBI

A. lentulus IFM 54703 30.96 49.5 9680 2 1 NCBI

A. udagawae IFM 46973 32.19 49.6 9999 2 1 NCBI

A. calidoustus SF006504 41.10 51.1 15,139 2 2 NCBI

FIGURE 3 | The molecular genetic phylogenetic trees of the Cyp51A and Cdr1B proteins of pathogenic Aspergillus fungi. The sequences were retrieved

from the AspGD and NCBI databases according to sequence similarity. The protein sequences of Cyp51A (A) and Cdr1B (B) were aligned using the ClustalW

software, and the phylogenetic trees were constructed by the UPGMA method. The trees were drawn using FigTree v1.4.2 software. The IDs shown behind a species

name are associated with the database from which the sequences were retrieved. (C) Amino acid sequence alignment of Cyp51A. The sequence surrounding the

azole resistance-related amino acids (G54, P216, M220, and G448) is depicted. The numbers indicate amino acid position in the A. fumigatus Cyp51A protein.

amino acids, respectively, were detected compared with the
corresponding sequences in A. fumigatus. Mellado et al. showed
that heterologous expression of the A. lentulus cyp51A gene
in the A. fumigatus cyp51A deletion mutant resulted in an A.
lentulus level azole-resistant phenotype (Mellado et al., 2011).
This elegantly demonstrated that Cyp51A is responsible for the

differences in azole resistance between A. fumgiatus and A.
lentulus.

As described above, A. fumigatus has 12 ABC transporters
in a PDR sub-group that includes the Cdr1B protein. Likewise,
according to sequence similarity, A. flavus and A. niger have 13
and 15 PDR-type ABC transporters, respectively (Table 5). The
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TABLE 5 | List of the PDR-type ABC transporter genes.

A. fumigatus Protein length A. flavus Protein length A. niger Protein length

Gene ID Gene ID Gene ID

Afu1g14330 (cdr1B) 1498 AFL2T_01689 1367 An01g03900 1355

Afu1g17440 1454 AFL2T_03236 1482 An01g08720 1976

Afu2g15130 1500 AFL2T_03320 1408 An01g12380 (cdr1B1) 1540

Afu3g01400 1425 AFL2T_03503 1468 An05g01660 (cdr1B2) 1496

Afu3g07300 (atrI) 1502 AFL2T_05157 (cdr1B1) 1495 An06g02550 1336

Afu4g01050 1350 AFL2T_05761 1520 An07g01250 1442

Afu5g00790 1472 AFL2T_07664 1491 An08g03300 1456

Afu5g02260 1470 AFL2T_07785 (cdr1B2) 1499 An08g04500 1474

Afu5g09460 1476 AFL2T_07845 1445 An11g02110 1490

Afu6g04360 (atrF ) 1548 AFL2T_07984 1410 An13g03060 1421

Afu6g08020 1527 AFL2T_09480 1334 An13g03570 1478

Afu8g02650 1454 AFL2T_10593 1420 An14g02610 1358

AFL2T_11475 1518 An14g03570 1433

An15g01130 1536

An15g02930 1491

Cdr1B ortholog is duplicated in A. flavus and A. niger. From
the genome sequence data, one Cdr1B protein is present in A.
fumigatus, A. fischeri, A. lentulus, and A. udagawae, whereas
A. flavus, A. niger, A. tubingensis, and A. calidoustus possess
two Cdr1B proteins, and A. terreus has three such proteins
(Figure 3B). The distribution of Cdr1B proteins therefore varies
among Aspergillus species/complexes.

CONCLUSION AND PERSPECTIVES

Recent genetic and genomic studies have provided important
insights into azole resistance mechanisms in Aspergillus. In
particular, whole-genome comparison has proven to be a
powerful tool for discovering novel mutations responsible for
drug resistance. The analysis of genome sequences has also
advanced our understanding of the important diversity of
Aspergilli. However, there remains much to be investigated in
A. flavus and A. niger, the second most frequent causative
agents of aspergillosis. A comprehensive investigation of the
genes related to azole resistance among a large population of
clinical isolates would broaden our knowledge. In addition,

the variable drug susceptibility within the cryptic species may
form an important focus of future studies. A more complete
understanding of the mechanisms underlying azole resistance
will aid the development of new therapeutic drugs against azole-
resistant Aspergillus fungi/strains.
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