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ABSTRACT Spore-forming microorganisms are of concern for forward contamina-
tion because they can survive harsh interplanetary travel. Here, we report the draft
genome sequences of 12 spore-forming strains isolated from the Manned Spacecraft
Operations Building (MSOB) and the Vehicle Assembly Building (VAB) in Cape Canav-
eral, FL, where the Viking spacecraft were assembled.

The Viking 1 and 2 spacecraft were launched in August and September 1975,
respectively, to explore the planet Mars and specifically look for signs of extant

extraterrestrial life (1). As part of a routine environmental microbial monitoring of the
Vehicle Assembly Building (VAB) and the Manned Spacecraft Operations Building
(MSOB) facilities in Cape Canaveral, FL, 32 Teflon ribbons were left out for 7 days and
used to collect airborne microorganisms (2). The Teflon ribbons were then exposed to
a total of 6 different heat treatments at three different time cycles (2).

Strains were sequenced on the Illumina HiSeq 2500 platform using a paired-end
module. The CLC Genomics Workbench (version 10.1.1) was used to filter for adapter-
free high-quality reads, which were subsequently de novo assembled. The draft genome
statistics for all 12 strains are provided in Table 1. Draft genomes were annotated using
both the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) and the Rapid Anno-
tations using Subsystems Technology (RAST) server.

Strain V3-13 had putative genes coding for clustered regularly interspaced short
palindromic repeat (CRISPR)-associated proteins Csn1 and Cas2. Strain V1-29 had genes
coding for cobalamin synthase and lipoteichoic acid primase (LtaP), which are essential
in the lipoteichoic acid synthesis pathway (3). Strain T33-2 had genes coding for prolyl
peptidase, RNase E inhibitor RraA, which has been shown to affect the abundance of
over 700 transcripts in Escherichia coli (4), and macrolide-specific efflux pump MacA.
Strain V33-4 had genes coding for programmed cell death toxin MazF, which is part of
the toxin-antitoxin system that allows for growth regulation under stressful conditions
(5). Strain M6-12 had a putative RecX gene that functions in the SOS response and is
typically coexpressed with RecA (6, 7). Strain V32-6 had genes coding for the HtrA
protease/chaperone protein that plays a critical role in protein quality control (8), as
well as a hydrogen peroxide-induced gene activator.

Strain V44_23b had a uniquely present gene coding for a phage tail protein and shared
41 genes with strain V48-19 only, such as the competence protein CoiA, which has roles in
maintaining transformation efficiency (9), and the multidrug efflux transporter MdtP.

Strain V48-19 had genes coding for GgaA and GgaB that have roles in pathogenesis
and antibiotic resistance (3, 10, 11) and have been shown to protect cells from
thermally induced damage (12).
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Strain ATCC 29669 had a uniquely present gene coding for glycogen branching
enzyme GH-57 archaeal type, which was previously isolated in a hyperthermophilic
archaeon, Thermococcus kodakaraensis KOD1T (13). It also has genes coding for the
cobalamin biosynthesis protein BluB, which was previously only thought to be present
in Bacillus megaterium (14), and the biotin synthesis protein BioC.

Strain V21-33 had genes coding for phytoene desaturase that is involved in carot-
enoid biosynthesis (15), as well as spore germination proteins GerQB, GerHA/GerIA, and
GerQC. Strain V5-8f had genes coding for a pseudouridine synthase (YciL), triacylglyc-
erol lipases, and legionaminic acid cytidlyltransferase, which have roles in the biosyn-
thesis of sialic acid (16). Strain V16-21-2 had unique genes coding for a chitodextrinase
precursor that was previously identified in Vibrio furnissii (17) and an acetoin diacetyl
reductase (18, 19).

Accession number(s). The genome sequences of all 12 isolates have been depos-
ited at DDBJ/EMBL/GenBank under the accession numbers listed in Table 1.
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TABLE 1 Draft genome statistics of 12 bacterial strains isolated from the VAB and MSOB facilities of the Kennedy Space Center during
assembly of the Viking spacecraft

Strain
Taxonomic
identification

GenBank
accession no.

No. of
contigs

Genome
size (bp) N50 (bp)

Largest
contig (bp)

G�C
content (%)

No. of 5S/16S/
23S rRNAs

No. of protein-
coding genes

Coverage
(�)

No. of
filtered reads

V32-6 Bacillus cucumis PGVE00000000 110 5,707,899 158,423 338,809 38.61 6/3/1 5,309 142 5,418,558
M6-12 Bacillus sp.a PGVF00000000 42 5,304,653 260,613 739,256 39.53 4/4/1 5,203 166 5,890,782
V3-13 Bacillus sp.a PGUZ00000000 109 4,603,859 100,463 164,973 42.23 3/1/1 4,299 246 7,580,694
V33-4 Bacillus sp.a PGVC00000000 98 4,350,768 90,863 192,558 41.83 5/1/2 4,096 293 8,526,302
T33-2 Bacillus sp.a PGVB00000000 66 4,786,686 152,536 549,933 43.26 1/3/2 4,582 308 9,831,100
V48-19 Bacillus halotolerans PGUV00000000 31 4,161,687 393,825 526,719 43.5 2/1/2 4,109 460 12,784,788
V5-8f Bacillus sp.a PGUW00000000 29 4,433,545 331,031 737,412 40.81 4/3/1 4,123 480 14,213,734
V21-33 Bacillus safensis PGU00000000 14 3,715,075 882,133 1,006,594 41.59 3/2/1 3,730 571 14,151,324
V44_23b Bacillus halotolerans PEOF00000000 35 4,102,525 279,851 599,848 43.7 1/2/1 4,026 440 12,035,058
V1-29 Bacillus deserti PGUY00000000 106 4,915,484 73,500 237,457 41.11 5/3/1 4,463 361 11,842,962
V16-21-2 Bacillus licheniformis PIJD00000000 28 4,166,736 404,327 604,429 46.12 2/1/1 4,191 107 2,991,160
ATCC 29669 Bacillus canaveralius PGVD00000000 117 4,694,986 74,302 324,486 41.64 4/1/5 4,399 562 17,615,760
aPotentially novel species of the genus Bacillus.
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