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Celiac disease (CD) is a chronic autoimmune disease that occurs in genetically
predisposed individuals in whom the ingestion of gluten leads to damage of the small
bowel. It is estimated to affect 1 in 100 people worldwide, but is severely underdiagnosed.
Currently available guidelines require CD-specific serology and atrophic histology in
duodenal biopsy samples for the diagnosis of adult CD. In pediatric CD, but in recent
years in adults also, nonbioptic diagnostic strategies have become increasingly popular. In
this setting, in order to increase the diagnostic rate of this pathology, endoscopy itself has
been thought of as a case finding strategy by use of digital image processing techniques.
Research focused on computer aided decision support used as database video capsule,
endoscopy and even biopsy duodenal images. Early automated methods for diagnosis of
celiac disease used feature extraction methods like spatial domain features, transform
domain features, scale-invariant features and spatio-temporal features. Recent artificial
intelligence (AI) techniques using deep learning (DL) methods such as convolutional neural
network (CNN), support vector machines (SVM) or Bayesian inference have emerged as a
breakthrough computer technology which can be used for computer aided diagnosis of
celiac disease. In the current review we summarize methods used in clinical studies for
classification of CD from feature extraction methods to AI techniques.

Keywords: celiac disease, computer aided diagnosis, artificial intelligence, endoscopy, feature extraction
INTRODUCTION

Celiac disease (CD) is a systemic autoimmune disease driven by gluten ingestion in genetically
susceptible individuals. At some point during their lifetime, some of the DQ2/DQ8 positive
individuals become gluten intolerant and develop an autoimmune reaction in response to dietary
gluten, leading to small bowel injury consisting in villous atrophy (VA) and crypt hyperplasia.
Although it is one of the most common chronic digestive disorders, with prevalence rate of 1%
worldwide (Ludvigsson et al., 2016), CD is severely underdiagnosed. This is due to the frequently
mislabeling patients with irritable bowel syndrome, lack of awareness among medical professionals
about the extra-intestinal presentations of the disease (Jinga et al., 2018) and missed opportunities to
screen for CD such as first-grade relatives, high-risk groups and not least scoping the upper
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gastrointestinal tract for unrelated reasons. Un-diagnosed CD
bears the risk of several complications (nutritional, fertility-
related and even malignancy) and reduced quality of life
(Fuchs et al., 2018). Although the diagnosis of adult CD is very
clear cut (CD-specific serology and sampling of duodenal
mucosa by upper gastrointestinal endoscopy) and access to
diagnostic tools has improved considerably, CD remains
heavily underdiagnosed, with only 15%–20% of patients being
detected through current strategies.

In the setting of open-access endoscopy and increasing number
of examinations worldwide (including on-demand procedures),
some have considered using endoscopy as an opportunity for
detection of unsuspected CD, by careful analysis of the small
bowel mucosa and recognition of subtle markers of VA. In fact, a
study has shown that up to 5% of CD patients have undergone a
previous endoscopy examination in the years before the diagnosis,
and this could be considered a missed opportunity to diagnose it
earlier (Lebwohl et al., 2012). Thus, endoscopy can be viewed not
only as a diagnostic tool to confirm the disease by tissue sampling,
but also as a case-finding tool for CD. Some have even proposed
random duodenal biopsies during all upper endoscopy
examinations, but this has proven a low diagnostic yield for CD
with a high burden for endoscopists and pathologists and lack of
cost-effectiveness (Herrod and Lund, 2018). Thus, the interest has
been changed over to a better selection of patients in whom biopsy
sampling should be carried out and the way to do it is by detection
of markers of VA during endoscopy. However, recognition of
changes in the duodenal mucosa can be challenging, especially in
the setting of patchy or mild disease (Balaban et al., 2015); in order
to overcome the subjectiveness in detecting these endoscopic
markers of VA and to better delineate the subtle mucosal changes
seen in early CD, some have proposed the use of computer-based
processing of endoscopic images for the detection of VA, which
could trigger the examiner to perform biopsies for the diagnostic
protocol of CD.

Endoscopy with biopsy is currently considered the gold
standard for the diagnosis of adult CD. Computer-assisted
systems for the diagnosis of CD could improve the whole
diagnostic work-up, by saving costs, time and manpower and
at the same time increase the safety of the procedure by
avoiding biopsy sampling and prolonged sedation associated
with the multiple biopsy protocol. Not least, this nonbiopsy
protocol could translate into a longer life for the endoscope,
by avoiding warn of the working channel of the scope. Also,
the histological staging of biopsies is subject to a significant
degree of intra- and interobserver variability (Weile et al.,
2000; Corazza et al., 2007; Mubarak et al., 2011; Arguelles-
Grande et al., 2012). A further limitation of the endoscopy
biopsies for the diagnosis of CD is due to the possibly patchy
distribution of CD (Bonamico et al., 2004; Hopper et al.,
2007), areas affected by CD can be in the midst of normal
mucosa. So, given the case that the biopsies would be targeted
from areas of healthy mucosa, CD could be missed due to a
sampling error. Therefore, observer independent diagnostic
methods such as computer-assisted diagnosis systems are very
useful to improve the accuracy of diagnosis.
Frontiers in Pharmacology | www.frontiersin.org 2
From the first research focused on computer-assisted
system in the context of automated diagnosis of CD which
has started in 2008 (Vécsei et al., 2008), over 50 publications
on the topic that are using spatial domain, transform domain,
scale-invariant and and spatio-temporal features have
appeared (Hegenbart et al., 2015) but artificial intelligence
(AI), machine learning (ML) and deep learning (DL) have
emerged as a breakthrough computer technology in this world
of big data and computational power based on graphics
processing units. In the field of medical images, the
accumulation of enormous digital images and medical
records drove a need for the utilization of AI to efficiently
deal with these data, which also become fundamental
resources for the machine to learn by itself. ML and AI
techniques have played an important role in the medical
field, supporting such activities as medical image processing,
computer-aided diagnosis, image interpretation, image
fusion, image registration, image segmentation, image-
guided therapy, and image retrieval and analysis (Razzak
et al., 2018; Yang and Bang, 2019). In this work, we try to
give a comprehensive overview of the research focused on
computer-assisted diagnosis of CD from classical features
extraction to AI. Several image-processing techniques have
been reported so far in the literature, with good diagnostic
performance in discriminating CD patients from healthy
controls. Applying these image-processing techniques could
be used to select in real-time, during endoscopy, patients with
high probability of CD, who warrant a full diagnostic work-up
including small bowel biopsies. The purpose of our review is
to summarize current evidence of computerized methods in
detecting CD, according to their diagnostic accuracy.

METHODS

We conducted the present research according to the principles of
the preferred reporting items for meta-analysis protocol
(PRISMA) (Moher et al., 2015).

A systematic search of the literature was carried out in
September 2019 in PubMed (Medline) database, using the
following search criteria: CD (Mesh) and terms referring to
computer-aided detection by image processing – computer,
digital, image processing, AI, DL, neural network, quantitative
assessment or texture features. There were no restrictions set on
the search with regard to article type, text availability or
publication date.

Publications revealed through this search were assessed for
consistency with the topic, according to their title and abstract,
by the two first authors. Conflicts resulted from independent
data extraction according to inclusion and exclusion criteria were
resolved by consensus.

Studies included in our systematic review were required to meet
the following inclusion criteria: (i) full-text paper available in
English, (ii) original papers describing image-processing
techniques for computer-aided diagnosis of CD. We excluded
case-reports, reviews and descriptive papers without validation of
methods described on CD patients. We also excluded papers
April 2020 | Volume 11 | Article 341
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referring to digital processing of histology images in diagnosing CD.
References from the retrieved articles were also checked for possible
match with the review topic, in order to identify potentially relevant
publications that could have been missed on the initial search.

For each study included in the systematic review we recorded
the following data: first author, year of publication, type of
endoscopic image used, study population (CD cases and
controls), method tested and diagnostic performance
(sensitivity, specificity, diagnostic accuracy).
RESULTS

The process of study selection for this systematic review is
summarized in Figure 1. The search yielded 174 results from
1970 onward, which were evaluated according to the above
described methodology. Another six papers were found
through other sources. A total of 139 papers were excluded
because of irrelevance to the topic (confounding use of search
words in the papers) or type of article (review/editorial) and the
remaining 41 publications, consisting in original work describing
image processing techniques for computer-aided diagnosis of
CD, were analyzed for this review.

Among published papers, several techniques have been
validated for the diagnosis of CD—first attempts were focused
on features extraction methods used for classification such as
Frontiers in Pharmacology | www.frontiersin.org 3
spatial domain features, transform domain features,
scale-invariant features and spatio-temporal features. More
recent AI techniques DL methods such as convolutional neural
network (CNN) have emerged as a breakthrough computer
technology which can be used for computer aided diagnosis of
CD. A statistic of common methods is presented, as well as an
evaluation of their use in CD diagnosis.

Feature Extraction Methods
Table 1 summarizes the feature extraction methods used in
clinical studies for the classification of the CD and the overall
classification rates (OCR) [sensitivity (sens), specificity (spec)
and accuracy (acc)]. Features can be classified into four main
categories: spatio-domain features, transform domain features,
scale-invariant features, and spatio-temporal features. Images
used for feature extraction are obtained either by standard
endoscopy or using video-capsule. While some of the studies
reported the number of subjects analyzed (healthy and with CD),
others have reported the number of full images and the number
of subimages obtained as patches from the full images that were
used for training and testing.

The spatial domain features that were used for CD
classification are the edge shapes, shape curvature histograms
(SCH), gray-level cooccurence matrix (GLCM), edge orientation
histogram (EOH), local binary patterns (LBP) and extended LBP
(ELBP), local ternary patterns (LTP) and extended LTP (ELTP),
174

180 132

FIGURE 1 | Search algorithm on computer-aided diagnosis of celiac disease (CD).
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TABLE 1 | Summary of features extraction methods used in clinical studies for classification of celiac disease (CD).

Reference Published
Year

Type of
endoscopic

images

Number of subjects
(Database)

Method OCR

Spatial domain features

Gschwandtner
et al. (2010)

2010 standard Control: 153 image patches
Celiac: 120 image patches

Edge- Shapes
ELBP
ELBP- Delaunay
LTP

Edge-Shapes: 95.0%
ELBP: 94.1%
LBP-Delaunay: 61.6%
LTP: 94.1%

Hegenbart
et al. (2011b)

2011 standard Control: 587 image patches
Celiac: 412 image patches

LTP
ELBP
LBP/C

LTP: 98.9%
ELBP: 98.9%
LBP/C: 98.0%

Hegenbart
et al. (2011c)

2011 standard Control: 306 image patches
from 131 patients
Celiac: 306 image patches
from 40 patients

LBP
ELBP
ELTP

LBP: sens 94.2%, spec 93.6%, acc 93.9%
ELBP: sens 93.6%, spec 94.3%, acc 93.9%
ELTP: sens 93.6%, spec 94.3%, acc 93.9%

Vécsei et al.
(2011)

2011 standard Control: 306 image patches
from 131 patients
Celiac: 306 image patches
from 40 patients

LBP
LTP
LBP/C
ELBP
WT-LBP

LBP: sens 87.3%, spec 79.5%, acc 83.3%
LTP: sens 94.0%, spec 75.5%, acc 84.7%
LBP/C: sens 92.6%, spec 82.1%, acc 87.3%
ELBP: sens 92.6%, spec 79.5%, acc 86.0%
WT-LBP: sens 90.6%, spec 85.4%, acc 88.0%

Ciaccio et al.
(2011)

2011 video-
capsule

Control: 10 patients
Celiac: 10 patients (200
frames/patients)

morphological
skeletonisation

acc 64%

Hämmerle-Uhl
et al. (2012)

2012 standard Control: 304 image patches
from 132 patients
Celiac: 303 image patches
from 54 patients

GLCM
EOH

GLCM: sens 77%, spec 81%, acc 79%
EOH: sens 73%, spec 72%, acc 72%

Hegenbart
et al. (2012a)

2012 standard Control: 86 images patches
from 74 patients
Celiac: 263 image patches
from 74 patients

LBP

ELBP

LBP: sens 68.5%, spec 90.7%, acc 79.2%

ELBP: sens 79.4%, spec 86.1%, acc 82.6%

Hegenbart
et al. (2012b)

2012 standard Control: 306 images
patches from 131 patients
Celiac: 306 image patches
from 40 patients

LBP
LTP
ELBP
ELTP
WT-LBP

LBP: sens 90.6%, spec 79.5%, acc 85.0%
LTP: sens 83.2%, spec 75.5%, acc 79.3%
ELBP: sens 94.0%, spec 74.2%, acc 84.0%
ELTP: sens 92.0%, spec 73.2%, acc 83.0%
WT-LBP: sens 92.6%, spec 85.4%, acc
89.0%

Gadermayr
et al. (2013a)

2013 standard Control: 163 image patches
from 100 images from 59
patients
Celiac: 124 image patches
from 67 images from 23
patients

SCH
ECM
Haralick features
SSD
LBP
LTP

SCH: 86.1%
ECM: 86.1%
Haralick features: 86.8%
SSD: 90.2%
LBP: 88.2%
LTP: 86.8%

Gadermayr
et al. (2013c)

2013 standard Control: 163 image patches
Celiac: 124 image patches

LBP
LTP
RLBP

LBP: 92.3%
LTP: 92.3%
RLBP: 90.2%

Gadermayr
et al. (2013b)

2013 standard Control: 306 image patches
from 234 images from 131
patients
Celiac: 306 image patches
from 172 images from 40
patients

SCH sens 85.3%, spec 89.9%, acc 87.8%

Gadermayr
et al. (2014b)

2014 standard Control: 306 image patches
from 131 patients
Celiac: 306 image patches
from 40 patients

LBP
LTP
ELBP
RLBP

LBP: approx. 79%
LTP: approx. 90%
ELBP: approx. 80%
RLBP: approx. 78%

Kwitt et al.
(2014)

2014 standard Control: 592 images
patches from 240 patients
Celiac: 458 images from 80
patients

Multiscale LBP acc 86%

Gadermayr
et al. (2015)

2015 standard Control: 306 image patches
from 131 patients
Celiac: 306 images from 40
patients

SH-LBP acc 91%

(Continued)
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TABLE 1 | Continued

Reference Published
Year

Type of
endoscopic

images

Number of subjects
(Database)

Method OCR

Gadermayr
et al. (2016a)

2016 standard Control: 679 image patches
from 215 patients (children)
Celiac: 479 image patches
from 75 patients (children)

MR-LBP acc 92.8%
hybrid system with expert increased acc to
98.9%

Gadermayr
et al. (2016b)

2016 standard Control: 840 image patches
Celiac: 840 image patches

LBP
LTP
SCH

acc 93% (hybrid system)

Gadermayr
et al. (2016)

2016 standard Training: image patches
(306 celiac, 306 control)
Testing: 172 images from
72 patients

LBP
ELBP
SCH

acc 86%

Transform domain features

Vécsei et al.
(2008)

2008 standard Control: 312 image patches
Celiac: 79 image patches

WPC
WT-BBC
WT-LDB

WPC: 90.1%
WT-BBC: 98.5%
WT-LDB: 91.1%

Hegenbart
et al. (2009)

2009 standard Control: 612 image patches
Celiac: 387 image patches

DT-CWT
DT-CWT-Weibull
WPC
WT-Gabor
WT-GMRF
FFT-Evolved

DT-CWT: 91.2%
DT-CWT-Weibull: 86.7%
WPC: 86.0%
WT-Gabor: 89.3%
WT-GMRF: 89.8%
FFT-Evolved: 93.2%

Vécsei et al.
(2011)

2009 standard Control: 312 image patches
Celiac: 79 image patches

FFT- Evolved (multiple
ring-shape filters)

sens 83%, spc 99%, acc 97%

Gschwandtner
et al. (2010)

2010 standard Control: 153 image patches
Celiac: 120 image patches

CWT- Weibull
WT-Gabor
WT-BBC
WT-GMRF
FFT-Evolved

CWT-Weibull: 97.6%
WT-Gabor: 95.5%
WT-BBC: 90.8%
WT-GMRF: 91.6%
FFT-Evolved: 96.6%

Vécsei et al.
(2011)

2011 standard Control: 306 image patches
from 131 patients
Celiac: 306 images patches
from 40 patients

DT-CWT
DT-CWT-Weibull
WT-Gabor
WT-BBC
WT-GMRF
WT-LDB

DT-CWT: sens 81%, spec 83%, acc 82%
DT-CWT-W: sens 77%, spec 87%, acc 82%
WT-Gabor: sens 81%, spec 80%, acc 80%
WT-BBC: sens 85%, spec 80%, acc 83%
WT-GMRF: sens 85%, spec 75%, acc 80%
WT-LDB: sens 87%, spec 79%, acc 83%

Liedlgruber
et al. (2011)

2011 standard Control: 125 image patches
Celiac: 111 image patches

WT-DWT
WT-BBC
WT-LDB
WT-GMRF
FFT-Evolved

WT-DWT: 86.4%
WT-BBC: 89.8%
WT-LDB: 91.9%
WT-GMRF: 91.5%
FFT-Evolved: 97.0%

Gadermayr
et al. (2013a)

2013 standard Control: 163 image patches
from 100 images from 59
patients
Celiac: 124 image patches
from 67 images from 23
patients

WPC
WT-BBC
WT-LDB
WT-GMRF
WT-GMRF-CNH

WPC: 72.8%
WT-BBC: 77.0%
WT-LDB: 79.8%
WT-GMRF: 84.7%
WT-GMRF-CNH: 88.5%

Kwitt et al.
(2014)

2014 standard Control: 592 image patches
from 240 patients
Celiac: 458 image patches
from 80 patients

DT-CWT acc 85%

Gadermayr
et al. (2016b)

2016 standard Control: 840 image patches
Celiac: 840 image patches

DT-CWT acc 93% (hybrid system)

Gadermayr
et al. (2016)

2016 standard Training: image patches
(306 celiac, 360 control)
Testing:172 images from 72
patients

Fourier Power Spectra
Rings

acc 86%

Koh et al.
(2019)

2019 video-
capsule

Control: 13 patients
Celiac: 13 patients

DWT sens 89.8%, spec 82.3%, acc 85.9%

(Continued)
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LBP in wavelet subbands (WT-LBP), rotation-invariant LBP
(RLBP), LBP combined with a contrast measure (LBP/C), soft
histogram LBP (SH-LBP), and multiresolution LBP (MR-LBP).

Transform domain features used in studies were pyramidal
Wavelet transform (WPC), best-basis centroids base (WT-BBC),
local discriminant basis (WT-LDB), Wavelet-based Gaussian
Markov random fields (WT-GMRF), WT-GMRF with custom
Frontiers in Pharmacology | www.frontiersin.org 6
neighborhoods (WT-GMRF-CNH), dual-tree complex Wavelet
transform correlation signature (DT-CWT), DT-CWT-Weibull,
Gabor Wavelet transform (GWT), best-basis decomposition of
Wavelet transform (WT-BBC), Fourier power spectra rings, and
DAISY descriptors.

Common scale-invariant features are scale invariant wavelet
based features (SI-WTF), scale invariant methods based on fractal
TABLE 1 | Continued

Reference Published
Year

Type of
endoscopic

images

Number of subjects
(Database)

Method OCR

Vicnesh et al.
(2019)

2019 video-
capsule

Control: 702 image patches
from 16 patients
Celiac: 1027 image patches
from 21 patients

DAISY descriptors sens 94.4%, spec 83.2%, acc 89.8%

Scale-invariant features
Uhl et al.
(2011)

2011 standard Control: 285 image patches
Celiac: 284 image patches

SI Wavelet acc 95.2%

Hegenbart
et al. (2013)

2013 standard Control: 306 image patches
from 131 patients
Celiac: 306 image patches
from 40 patients

SI Wavelet
SI fractal analysis
SIFT
Pulse-coupled NN
Multiscale blob
Affine invariant LTP

Fractal analysis 91.7%
(best result)

Kwitt et al.
(2014)

2014 standard Control: 592 images from
240 patients
Celiac: 458 images from 80
patients

SIFT acc 86%

Gadermayr
et al. (2016)

2016 standard Training: image patches
(306 celiac, 306 control)
Testing: 172 images from
72 patients

MFS acc 86%

Gadermayr
et al. (2016a)

2016 standard Control: 676 image patches
from 215 patients (children)
Celiac: 479 image patches
from 75 patients (children)

MFS
SIFT Fisher vectors

MFS: 96.8%
SIFT Fisher vectors: 98.1% (hybrid system
with expert increased acc to 98.9%)

Gadermayr
et al. (2016b)

2016 standard Control: 840 images
patches
Celiac: 840 image patches

MFS
SIFT Fisher vectors

acc 93% (hybrid system)

Spatio-temporal features
Ciaccio et al.
(2010a)

2010 video-
capsule

Control: 10 patients
Celiac: 11 patients

Pixel brightness Threshold class.: sens 80%, spec 96%
Incremental class.: sens 88%, spec 80%

Ciaccio et al.
(2010b)

2010 video-
capsule

Control: 10 patients
Celiac: 11 patients

Pixel brightness sens 92.7%, spec 93.5%

Ciaccio et al.
(2012b)

2012 video-
capsule

Control: 10 patients
Celiac: 11 patients

Dynamic estimation of wall
motility (standard deviation)

sens 98.2%, spec 96.0%

Ciaccio et al.
(2012a)

2012 video-
capsule

Control: 11 patients
Celiac: 12 patients

The tallest peak in the
ensemble average power
spectrum

71%

Ciaccio et al.
(2013a)

2013 video-
capsule

Control: 10 patients
Celiac: 10 patients

Shape-from-shading 64%

Ciaccio et al.
(2013b)

2013 video-
capsule

Control: 7 patients
Celiac: 9 patients

Pooling protocol sens 83.9%, spec 92.9%, acc 88.1%

Ciaccio et al.
(2014b)

2014 video-
capsule

Control: 13 patients
Celiac: 13 patients

Histogram mean level sens 84.6%, spec 92.3%

Ciaccio et al.
(2014a)

2014 video-
capsule

Control: 7 patients
Celiac: 9 patients

Texture subbands
Motility estimation
Shape-from-shading

sens 80%, spec 80%

Ciaccio et al.
(2017a)

2017 video-
capsule

Control: 8 patients
Celiac: 8 patients

Shape-from-shading
(elevation, standard
deviation, brightness units)

sens 80%, spec 80%
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analysis (SI-FA), scale-invariant feature transform (SIFT),
multiscale blob features (MBF), affine invariant LTP (AILTP),
multifractal spectrum (MFS), and SIFT Fisher vectors.

Among spatio-temporal features one can mention the pixel
brightness, dynamic estimate of wall motility (Bassotti et al., 1994;
Tursi, 2004) (standard deviation), periodicity in brightness,
histogram mean level, shape-from-shading, pooling protocol, and
statistical and syntactical measurements. Ciaccio et al. proposed some
quantitative measurement (statistical and syntactical measurement,
motility estimation) in video capsule endoscopy images in order to
detect and measure the presence of VA in CD patients (Ciaccio et al.,
2016a; Ciaccio et al., 2016b). Also in (Ciaccio et al., 2017b), Ciaccio
et al. described and discussedmethods used for quantitative detection
and analysis of VA in the small intestinal mucosa of CD patients
using video capsule endoscopy images but these remain to be further
validated in larger samples (Ciaccio et al., 2017b).

Best results obtained using spatial domain features were
obtained by Hegenbart et al. (Hegenbart et al., 2011b) by
extracting various LBP from standard endoscopic images. In a
database consisting of 999 image patches (587 control and 412 CD),
overall classification rates varied between 98.04% and 98.93%.

In terms of transform-domain features best results were
obtained by Vécsei et al. (2009) using FFT-evolved multiple
ring-shape filters applied on standard endoscopic images.
Database consisted of 390 image patches (312 control and 79
CD). The algorithm proved 97% accuracy, 83% sensitivity and
99% specificity in diagnosing CD.

Best results for scale-invariant features were obtained by
Gadermayr et al. (2016a) using multifractal spectrum features and
SIFT Fisher vectors extracted from standard endoscopic images.
Database consisted of 676 control image patches and 479 CD
image patches from 290 patients (all children). Performance of
the method was 98.1% for SIFT Fisher vectors and 96.8% for
multifractal spectrum features. When human knowledge was
incorporated, performance increased to 98.9%.

Best results for spatio-temporal features were obtained by
Ciaccio et al. (2012b) using dynamic estimate of wall motility
(standard deviation) computed on video-capsule endoscopic
images. Database consisted of 200 frames per patient extracted
from 10 control patients and 11 CD patients. Diagnostic
performance was high, with 98.2% sensitivity and 96% specificity.

Gadermayr et al. in (2015) compared different endoscopic
image configuration [white-light imaging (WLI) (Gasbarrini
et al., 2003) and narrow-band imaging (NBI) (Emura et al.,
2008; Valitutti et al., 2014)] to find which image data are most
accurate in case of computer aided CD diagnosis but in
(Gadermayr et al., 2016a; Gadermayr et al., 2016b) same
authors et al. showed that an hybrid system which
incorporated expert knowledge in automated CD diagnosis
increased the accuracy with 6% (see Table 1).

Spatial domain features were based on the similarity of
specific features also observed by a human analyst; they are
robust and fast in terms of computation, making them suitable
for real time classification. Transform domain features have the
advantage of analysing endoscopic images on multiscale and
Frontiers in Pharmacology | www.frontiersin.org 7
multiorientation levels. Common tools are based on Wavelet
transform, Fourier transform and Gabor transform. Scale-
invariant features are suitable to analyse characteristics that are
affected by scaling, but are more demanding in terms of
computation than previous features. Spatio-temporal features
have higher robustness to features that are not visible directly on
the acquired images. In terms of computation, the more complex
the feature extraction algorithm is, the more are suitable to an
offline analysis. All extracted features presented herein are
further used as inputs to various classifiers, such as: support
vector machine (SVM), k-nearest neighbors (kNN), Bayes
classifiers, and random forests. All these classifiers are standard
pattern recognition techniques.

AI Techniques
The AI is the field of computer science that aims to create intelligent
machines by learning and understanding complex concepts. As an
AI branch, ML deals with intelligent machines that learns by
themselves from available data. Moreover, DL refers to a family of
ML methods that uses neural networks for learning (see Figure 2).
These artificial neural networks (ANN) are biological-inspired
computing systems that allows computers to learn.

In field of medical image processing there are some
application that use AI. In Yang and Bang’s review (Yang and
Bang, 2019) about applications of AI in gastroenterology, which
summarizes clinical studies that are using AI in the upper and
lower gastrointestinal field, there is a sole mention of CD. The
review presented only Zhou’s study which has achieved a
sensitivity and specificity of 100%. Seguí et al. in (Seguí et al.,
2016) presented a generic feature descriptor for the classification
of video capsule endoscopy images. In order to build the system
they created a large database containing only color images,
designed a CNN architecture and performed an exhaustive
validation of the proposed method. They achieved very good
results: 96% accuracy. Gadermayr et al. in (Gadermayr et al.,
2018) investigated the capability of state-of-the-art neural
network approaches for diagnosis of CD and proposed
pipelines for fully-automated patient-wise diagnosis as well as
for integrating expert knowledge into the automated
decision process.

The availability of big data and computational power have led to
the use of AI in medical applications on a large scale. Table 2
summarizes AI techniques used in clinical studies for classification
of CD. Common neural networks used in studies made for CD
diagnosis are the AlexNet (Wimmer et al., 2016b; Yang and Bang,
2019), GoogLeNet (Zhou et al., 2017), VGGf net (Wimmer et al.,
2016b; Gadermayr et al., 2017; Wimmer et al., 2017; Wimmer et al.,
2018), and VGG16 net (Wimmer et al., 2016b; Wimmer et al.,
2018). Only a single study used video-capsule images (Zhou et al.,
2017), while all the others researches used standard endoscopic
images. Comparing to the feature extraction, databases used in AI
are based on a much larger number of patients [e.g., 353 patients in
(Wimmer et al., 2016b)].

Best results have been obtained on video-capsule images by
Zhou et al. using GoogLeNet (Zhou et al., 2017). Although the
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database was reduced in terms of number of patients, 400 images
were used for training that led to 100% specificity and 100%
sensitivity. Best results on standard endoscopy images were
obtained by Wiemer et al. using CNN with SVM and principal
component analysis (PCA) (Wimmer et al., 2016a). They
obtained a 97% good classification rate based on 1661 image
patches (986 control and 675 CD).
Frontiers in Pharmacology | www.frontiersin.org 8
DISCUSSION AND LIMITATIONS

Even if the gold standard for the diagnosis of CD is considered to be
the duodenal biopsy, advanced endoscopic techniques such as
chromoendoscopy and water-immersion have been researched as
enhanced tools to detect VA. The most notable techniques include
the modified immersion technique (MIT) (Gasbarrini et al., 2003)
FIGURE 2 | Machine learning as a branch of artificial intelligence.
TABLE 2 | Summary of AI techniques used in clinical studies for classification of celiac disease (CD).

References Published
year

Type of endoscopeic
images

Number of subjects Database Type of AI Outcomes

Tenório et al.,
(2011)

2011 120 control
96 celiac

Decision trees
Bayesian classifiers ANN
SVN
kNN

acc: 84.2%
sens: 92.9%
spec: 79.2%

Wimmer et al.,
(2016b)

2016 standard 353 patients 986 control image patches
675 celiac image patches

CNN (AlexNet, VGG net)
CNN SoftMax
SVM

acc: 90.5%

Wimmer et al.,
(2016a)

2016 standard 353 patients 986 control image patches
675 celiac image patches

CNN with SVM and PCA acc: 97.0%

Wimmer et al.,
(2017)

2017 standard 353 patients 986 control image patches
675 celiac image patches

CNN (VGGf net)
CNN SoftMax
SVM

acc: 91.5%

Gadermayr et al.,
(2017)

2017 standard 73 control
23 celiac

292 control images
92 celiac images
Training and testing set: 72
patches/images

CNN (VGGf net)
Adapted-CNN
Non-adaptet-CNN
Combined-CNN

acc: 90.3%
sens: 92.9%
spec: 87.6%

Zhou et al., (2017) 2017 video-capsule 10 control
12 celiac
(1/2 for training, 1/2
for testing)

200 frames (512x512)x 4
regions/patients

CNN (GoogLeNet) sens: 100% spec:
100%

Wimmer et al.,
(2018)

2018 standard 353 patients 986 control image patches
675 celiac image patches

CNN (AlexNet, VGGf net,
VGG16 net)
SVM

acc: 92.5%
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under traditional white-light illumination (denoted as WLMIT), as
well as MIT under narrow band imaging (Emura et al., 2008;
Valitutti et al., 2014) (denoted as NBIMIT). These endoscopic
techniques were specifically designed for improving the visual
confirmation of CD during endoscopy. Other studies have
proposed the use of video capsule images processing in detecting
CD (Ciaccio et al., 2010a; Ciaccio et al., 2010b; Ciaccio et al., 2012a;
Ciaccio et al., 2012b; Ciaccio et al., 2013b; Ciaccio et al., 2014b;
Ciaccio et al., 2017a). Although it is considered as a noninvasive
technique, its use is relatively low due to high cost and low
resolution of image samples (de Bruaene et al., 2015).

One of the most important issues that are encountered in
endoscopic image analysis is related to degradations such as
noise, reflections, blurring and scaling due by weak illumination
and downsized sensors. Some of the papers proposed some
methods of improving these degradations (Hegenbart et al.,
2011a; Hegenbart et al., 2011b; Gadermayr et al., 2014a).

Database construction is a critical subject in the AI-based
classification of CD using endoscopic imagery. When large
databases are not available, one can use data augmentation to
artificially increase the number of samples of the database
(Wimmer et al., 2017).

A major limitation of using automated-processing of
duodenal images captured during endoscopy for diagnosing
CD is the wide differential diagnosis of VA. Several other
diseases other than CD can manifest as VA in the small
bowel—giardiasis, Helicobacter pylori infection, Whipple’s
disease, tropical sprue, collagenous sprue, eosinophilic
gastroenteritis , common variable immunodeficiency,
intestinal lymphoma, Crohn’s disease, HIV-enteropathy, or
drug-induced enteropathy (Jinga et al., 2017; Schiepatti et al.,
2019). Upon detection of VA by digitally processing of
endoscopy images, CD-specific serology will discriminate
CD from other causes of seronegative VA.

Another limit of using computerized automation methods for
image processing is that of artifacts due to the presence of air
bubbles, residues or secretions in the duodenum. This could
represent an issue for selection of images frames which are
processed for assessment of VA. Not least, selection of point of
interest (POI) regions from the image captured during endoscopy is
yet to be automatized; this could be considered a selection bias in
Frontiers in Pharmacology | www.frontiersin.org 9
current studies, as it was done manually during image processing.
Also, a special concern is to be raised for cases with mild
enteropathy, when changes in the duodenum are subtle, and
those with patchy disease, when selection of the POI could
be nonrepresentative.

Another limitation of the current review is the heterogeneity of
studies with respect to cases analyzed, as some of the studies report
the number of patients included, while others the number of
images processed.
CONCLUSION

In the last decades, there’s been a growing interest in image
processing techniques for detection of VA. Computer-aided
diagnosis of CD by processing images of the small bowel
captured during endoscopy is feasible and warrants further
development for integration into endoscopy consoles.
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