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Abstract

Alternative pigment sources that are harmless to human health and can be produced in an

eco-responsible way are of great research interest. The experiments undertaken in this

study were conducted using autumn leaves of Aesculus hippocastanum as potential novel

colorant sources. This study focused on improving the Gauss-peak spectra method (a less

expensive alternative to high-pressure liquid chromatography) in combination with thin-layer

chromatography, leading to the development of a new methodology. The collected leaves

were stored at two different temperatures: 20˚C and −20˚C. The data obtained by spectro-

photometric scanning of the samples were analyzed using the Gauss-peak spectra method

in the R program with three wavelength ranges: 350–750 nm, 390–710 nm, and 400–700

nm. The results were then assessed for statistically significant differences in the estimated

concentrations for the different wavelength ranges regarding (1) total pigment, carotenoid,

and chlorophyll concentration (two-sample t-test) and (2) concentration of each indicated

pigment (two-way analysis of variance). The results were also tested for differences

between the estimated concentrations of samples stored under the different conditions. The

Gauss-peak spectra results with and without thin-layer chromatography were statistically

compared using a paired t-test. The results showed that thin-layer chromatography greatly

enhanced the efficiency of the Gauss-peak spectra method for estimating the major and

minor pigment composition without generating high additional costs. A wavelength range of

400–700 nm was optimal for all Gauss-peak spectra methods. In conclusion, the proposed

method is a more successful, inexpensive alternative to high-pressure liquid

chromatography.

Introduction

Current studies have shown that artificial food dyes used in the food industry negatively affect

human health [1–4]. The experiments undertaken in the present study were conducted using

Aesculus hippocastanum autumn leaves, which are potential colorant sources as they consist of
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various chlorophylls [5], carotenoids [6], and anthocyanins [7]. Their processing is advanta-

geous as some fallen leaf disposal methods have harmful effects on human health and the envi-

ronment [8–10].

High-pressure liquid chromatography (HPLC) is a typically used method for pigment anal-

ysis; however, it requires complex equipment, careful maintenance, expensive solvents, and

advanced operational skills [11, 12]. The Gauss-peak spectra (GPS) method is an inexpensive

alternative proposed by Küpper et al. [13, 14] and modified by Thrane et al. [15]. However,

one of the concerns in both these studies was the close similarity of carotenoid absorbance

spectra creating a challenge for spectral techniques, making it difficult to distinguish between

certain pigments when using the GPS method [15]. The aim of the present study was to suggest

an effective solution to this issue and propose an optimal wavelength range for spectrophoto-

metric scanning experiments that must be conducted prior to pigment quantification in inves-

tigated leaves using the GPS method. The new method described here is a hybrid between

chromatographic and photometric analyses based on the addition of a thin-layer chromatogra-

phy (TLC) step to the GPS method. It allowed for an inexpensive and more reliable estimation

of pigments present in A. hippocastanum autumn leaves.

Materials and methods

The pigment content estimation processes are outlined in Fig 1.

Leaf collection

A. hippocastanum leaves were collected from trees in Little Ness, Shrewsbury, Shropshire (52˚

4609@ N 2˚51048@ W) in November 2020.

Fig 1. Flow chart of the pigment quantification processes.

https://doi.org/10.1371/journal.pone.0251491.g001
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Leaf preparation

The collected leaves were initially weighed. Next, they were evenly distributed on a flat surface

and allowed to dry for 3 h at 20˚C in the dark. Then, the leaves were weighed again and left to

dry. The steps were repeated until a constant mass of total leaves was achieved after 15 h.

Storage conditions

The collected leaves were split in half, with one part stored in the dark at room temperature

(20˚C) and the other part placed in a freezer (−20˚C) to prevent pigment degradation [16, 17].

The samples obtained from these leaves were named Group 1 (G1) and Group 2 (G2), respec-

tively. After storage for 10 days, petioles were removed, and the leaves were cut into 5 mm

sized pieces for extraction.

Extraction

Exactly 1 g of leaves from three separate bags of each group (six samples in total) were placed

in separate mortar and pestle and supplemented with 15 mL of absolute acetone (acetone for

analysis EMSUREACS, ISO, Reag. Ph Eur). Thorough grinding was performed until the vena-

tion was white. The acetone was then evaporated, and 5 mL of 96% ethanol (96% Ethanol,

EMSURE, Reag. Ph Eur) was used to wash the mortar and pestle and elute the extracted pig-

ments into 15 mL centrifuge tubes. After centrifugation for 10 min at 20˚C and 4200 × g, the

supernatants were collected into clean centrifuge tubes and evaporated until 1 mL of extract

was obtained.

Thin-layer chromatography (TLC)

Silica gel plates (20 cm × 20 cm, TLC Silica gel 60; 20 × 20 cm aluminum sheets, Merck) with a

solvent system of 0.8% n-propanol (1-Propanol for analysis EMSUREACS, Reag. Ph Eur) in

light petroleum (60–80˚C) (petroleum benzene boiling range 60–80˚C for analysis EMSURE)

(v/v) were used [18, 19]. The entire volume of each sample was transferred onto a silica gel

plate with a pipette. The TLC plates were developed at room temperature in the dark for

approximately 30 min until the distance of the solvent front reached 17 cm from the origin

and were left to dry for 5 min. The bands were visualized under ultraviolet (UV) light (hand-

held ultraviolet lamp 6-Watt, model 28191 B, Daigger Scientific Inc.) and isolated from the sil-

ica plates by scraping off the silica and transferring each band into a separate 1.5 mL

Eppendorf tube. Next, the samples were suspended in 1 mL of 96% ethanol, mixed using a

Vibromix, and centrifuged for 10 min at 20˚C and 12000 × g. The obtained supernatants were

separated from the remaining silica gel particles, transferred into clean Eppendorf tubes, and

centrifuged again under the previously described conditions. All extraction steps were per-

formed in the dark to avoid cis-trans photoisomerization and photodestruction because chlo-

rophylls and carotenoids are light- and heat-sensitive [20, 21].

Spectrophotometric assay

UV-Vis spectrophotometry (JENWAY 7315, Bibby Scientific Ltd.) was performed in the wave-

length range of 350–750 nm and a spectral bandwidth of 1 nm was selected [14, 15]. The

scanned samples contained 1 mL of the G1 and G2 leaf pigment extracts and 1 mL of each dis-

solved pigment band. The obtained spectra were used for subsequent investigations.
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Indication and quantitative evaluation of the pigments

Spectrophotometric data were processed using the GPS method for the qualitative and quanti-

tative analysis of undefined mixtures, first described by Küpper et al. [13] and developed by

Thrane et al. [15] using the R program. Calculations were performed using R version 3.6.1. of

the RStudio interface version 1.2.5019 (R Core Team 2019) and R-functions provided by

Thrane et al. [15] in the “nnls” library. Briefly, the background component spectra over wave-

length range 350–750 nm [14], 390–710 nm, and 400–700 nm [15] were generated, and the

absorption spectra were fitted using a non-negative least-squares approximation.

Statistical analysis

Initial calculations. The compositions of the samples that had been separated by TLC

were calculated using the Microsoft Excel (2019) software program. The pigment concentra-

tions identified using the GPS method in every band were pooled, and each pigment propor-

tion in the samples was obtained.

Mean values. Mean values of the number of indicated pigments and estimated concentra-

tions in each wavelength range were calculated using SPSS ver. 26.

Variances. Variances in the concentrations of total pigments, chlorophylls and deriva-

tives, and carotenoids in different wavelength ranges were calculated using the VAR.P function

of the Microsoft Excel (2019) software program [22].

Levene’s test of variance homogeneity. Levene’s test [23] was performed in RStudio (R

version 4.0.2) using the “leveneTest” function from the “car” package with an alfa level of 0.05

[24]. The variances in the results of the total pigment concentrations and concentrations of

each pigment in each sample group and wavelength range, obtained before and after TLC anal-

ysis, were evaluated for homogeneity.

T-test. A two-sample t-test was used to assess whether the calculated total concentration,

chlorophylls and derivatives, and carotenoids were significantly different depending on the

storage conditions (G1 and G2) in each wavelength range.

Differences in these three concentrations, and each of the pigments calculated before and

after TLC based on the different storage groups, were examined using a paired t-test [25].

Each test was performed in RStudio (R version 4.0.2) using the “t.test” function from the

“psych” package.

Analysis of variance (ANOVA). A one-way ANOVA was applied to each group to inves-

tigate whether a change in the wavelength range had a significant effect on the calculated total

pigment, chlorophyll, and carotenoid content before and after TLC application [26, 27].

A two-way ANOVA was used to determine differences in calculated concentrations of each

pigment between wavelength ranges, and between pigment concentrations in each Group for

TLC separated and unseparated samples [28].

The calculations were performed in RStudio (R version 3.6.1) using “aov” [29] with an

alpha level of 0.05 [30].

Interactive data visualization. Interactive visualization of the obtained data provides

effective and efficient communication of the results [31]. All graphs were created using Python

(version 3.7.0).

Results

GPS results of the unseparated samples

A change in the wavelength range resulted in varying indications and concentration estima-

tions of the present pigments in the samples, for which the TLC step was omitted. The changes
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included the number of determined pigments, and their type and concentration (Table 1). The

highest number of pigments was identified in the range of 400–700 nm, whereas the range of

350–750 nm failed to recognize any pigments and was therefore excluded from the further

analysis.

Variances in the three calculated concentrations (total concentration, chlorophylls and

derivatives, and carotenoids) (Table 2) determined in every range for each sample group

(Table 3) were found to be homogenous (p> 0.05) using Levene’s test (Table 6). The one-way

ANOVA analysis showed no statistically significant difference (p> 0.05) in the total concen-

tration means in each wavelength range for the G1 and G2 samples, except for the total carot-

enoid content in samples stored at room temperature that were different (Table 4).

The estimated concentrations of each identified pigment in each group sample showed

homogenous variances (Table 3) in all wavelength ranges (Tables 5 and 6). However, the two-

way ANOVA showed that the mean contents of the majority of the compounds in each group

were statistically different between wavelength ranges, with alloxanthin and pheophytin a
being identical (Table 7).

GPS results of the separated samples

The combination of the GPS method with TLC indicated the presence of pigments in all wave-

length ranges (Tables 8 and 9). The variances in the total pigment, chlorophyll and derivatives,

and carotenoid concentrations (Table 10) in all wavelength ranges were homogenous for the

G1 and G2 samples (Table 6). When the concentrations were paired, the lowest variances, and

thus differences between results, were observed in the 390–710 nm and 400–700 nm ranges for

each group and all categories (Table 3). Variances in every pigment concentrations in each

wavelength range based on the groups (Table 3) were found to be homogenous (Tables 5 and

6). The two-way ANOVA showed no statistically significant difference in the mean concentra-

tions of each pigment calculated in all ranges and for each group (Table 7).

Differences in concentrations due to storage conditions

The results of the two-sample t-test showed that the G2 samples not separated by TLC in the

400–700 nm range contained total pigment, chlorophyll, and carotenoid concentrations that

were not significantly greater than those in the G1 samples. In the 390–710 nm range, a signifi-

cantly greater concentration in the G2 samples was only calculated for chlorophyll (Table 11).

The two-way ANOVA concluded that none of the mean pigment concentrations belonging

to the carotene group or pheophytin a were statistically different in the G2 samples compared

to the G1 samples for both wavelength ranges of the TLC unseparated samples. A significant

difference was observed only between chlorophyll b concentrations. Each pigment concentra-

tion calculated after TLC in all wavelength ranges was the same for the chlorophylls and deriv-

atives groups. For carotenes, a significant difference was observed in neoxanthin and

diatoxanthin concentrations (Table 7).

Comparison between unseparated and separated samples

Differences between the concentrations of every identified pigment and total concentrations

when TLC was or was not performed for each group are shown in the graphs in Figs 2–5.

Every pigment identified without TLC application was identified in the samples with TLC, the

concentrations of which were statistically identical (Table 12). However, the calculated con-

centrations of total pigment, chlorophyll and derivatives, and carotenoid concentrations in the

390–710 nm and 400–700 nm ranges from the spectrophotometric results of unseparated sam-

ples were significantly lower (p< 0.05) than those of the separated samples (Table 13).
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Table 1. Concentrations of pigments in samples stored at different temperatures estimated using the GPS method in various wavelength ranges.

Pigment Wavelength range (nm) Sample size 20˚C -20˚C

Mean±SE (mg L−1) Mean±SE (mg L−1)

Allo 350–750 3 0.00 0.00

390–710 3 0.00 0.0106±0.0106

400–700 3 0.00663±0.00509 0.00

ββ.Car 350–750 3 0.00 0.00

390–710 3 0.00 0.00

400–700 3 0.00 0.00

C.Neo 350–750 3 0.00 0.00

390–710 3 0.00 0.00

400–700 3 0.00 0.00

Chl.a 350–750 3 0.00 0.00

390–710 3 0.00 0.00

400–700 3 0.00 0.00

Chl.b 350–750 3 0.00 0.00

390–710 3 0.163±0.0543 0.460±0.112

400–700 3 0.0758±0.0122 0.189±0.0486

Chl.c1 350–750 3 0.00 0.00

390–710 3 0.00 0.00

400–700 3 0.00 0.00

Chl.c2 350–750 3 0.00 0.00

390–710 3 0.00 0.00

400–700 3 0.00 0.00

Diadino 350–750 3 0.00 0.00

390–710 3 0.00 0.00

400–700 3 0.120±0.0304 0.257±0.0564

Diato 350–750 3 0.00 0.00

390–710 3 0.00 0.00

400–700 3 0.00 0.00

Dino 350–750 3 0.00 0.00

390–710 3 0.00 0.00

400–700 3 0.00 0.00

Echin 350–750 3 0.00 0.00

390–710 3 0.00 0.00

400–700 3 0.00 0.00

Fuco 350–750 3 0.00 0.00

390–710 3 0.00 0.00

400–700 3 0.00 0.00

Lut 350–750 3 0.00 0.00

390–710 3 0.00 0.00

400–700 3 0.00 0.00

Myxo 350–750 3 0.00 0.00

390–710 3 0.105±0.00662 0.165±0.0464

400–700 3 0.00 0.00

Peri 350–750 3 0.00 0.00

390–710 3 0.0261±0.0171 0.00

400–700 3 0.147±0.0155 0.139±0.0682

(Continued)
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Table 1. (Continued)

Pigment Wavelength range (nm) Sample size 20˚C -20˚C

Mean±SE (mg L−1) Mean±SE (mg L−1)

Phe.a 350–750 3 0.00 0.00

390–710 3 0.00 0.00

400–700 3 0.0127±0.0127 0.00

Phe.b 350–750 3 0.00 0.00

390–710 3 0.00 0.00

400–700 3 0.00 0.00

Viola 350–750 3 0.00 0.00

390–710 3 0.00 0.00

400–700 3 0.00 0.00

Note: Allo = Alloxanthin; ββ.car = β,β-Carotene; C.neo = 9’-cis-Neoxanthin; Cantha = trans-Canthaxanthin; Chl.a = Chlorophyll a; Chl.b = Chlorophyll b; Chl.

c1 = Chlorophyll c2; Chl.c2 = Chlorophyll c2; Diadino = trans-Diadinoxanthin; Diato = Diatoxanthin; Dino = Dinoxanthin; Echin = trans-Echinenone;

Fuco = Fucoxanthin; Lut = Lutein; Myxo = Myxoxanthophyll; Peri = Peridinin; Phe.a = Pheophytin a; Phe.b = Pheophytin b; Viola = Violaxanthin.

https://doi.org/10.1371/journal.pone.0251491.t001

Table 2. Calculated concentrations of total pigment in samples stored at different temperatures estimated using the GPS method in various wavelength ranges.

Pigment Wavelength range (nm) Sample size 20˚C -20˚C

Mean±SE (mg L−1) Mean±SE (mg L−1)

Total 350–750 3 0.00 0.00

390–710 3 0.636±0.161 0.295±0.0640

400–700 3 0.611±0.177 0.361±0.0106

Chlorophylls and derivatives 350–750 3 0.00 0.00

390–710 3 0.460±0.112 0.163±0.0543

400–700 3 0.189±0.0486 0.0885±0.0249

Carotenoids 350–750 3 0.00 0.00

390–710 3 0.176±0.0489 0.131±0.0106

400–700 3 0.422±0.129 0.273±0.0181

https://doi.org/10.1371/journal.pone.0251491.t002

Table 3. Variances in the estimated total pigment concentrations in samples stored at different temperatures according to different wavelength ranges.

Pigment Wavelength ranges (nm) GPS GPS with TLC

20˚C -20˚C 20˚C -20˚C

Total (mg2L) All wavelength ranges - - 10.7 1.13

350–750 and 390–710 - - 12.8 1.25

390–710 and 400–700 0.0572 < 0.0100 6.91 0.173

350–750 and 400–700 - - 12.4 1.52

Chlorophylls and derivatives (mg2L) All wavelength ranges - - 3.54 3.89

350–750 and 390–710 - - 5.38 4.27

390–710 and 400–700 0.0332 < 0.0100 1.89 0.476

350–750 and 400–700 - - 4.50 4.59

Carotenoids (mg2L) All wavelength ranges - - 2.10 0.881

350–750 and 390–710 - - 2.29 1.08

390–710 and 400–700 0.0342 < 0.0100 1.90 0.345

350–750 and 400–700 - - 2.10 1.11

https://doi.org/10.1371/journal.pone.0251491.t003
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Table 4. P-values of the one-way ANOVA for differences in estimated total pigment concentrations between all wavelength ranges according to the storage

temperature.

Pigment GPS GPS with TLC

20˚C -20˚C 20˚C -20˚C

Total 0.363 0.922 0.969 0.0768

Chlorophylls and derivatives 0.279 0.0903 0.923 0.215

Carotenoids < 0.0100 0.150 0.972 0.589

https://doi.org/10.1371/journal.pone.0251491.t004

Table 5. P-values of Levene’s test for homogeneity of variances in the estimated pigment concentrations (Allo to

Dino) in all wavelength ranges according to the storage temperature.

Pigment GPS GPS with TLC

20˚C -20˚C 20˚C -20˚C

Allo 0.242 0.374 0.998 0.602

ββ.car - - 0.909 0.606

C.neo - - 0.116 0.541

Cantha - - - -

Chl.a - - 0.478 0.709

Chl.b 0.393 0.557 0.415 0.956

Chl.c1 - - 0.817 0.740

Chl.c2 - - 0.541 0.411

Diadino 0.247 0.117 0.977 0.580

Diato - - 0.891 0.831

Dino - - 0.422 0.347

Note: Allo = Alloxanthin; ββ.car = β,β-Carotene; C.neo = 9’-cis-Neoxanthin; Cantha = trans-Canthaxanthin; Chl.

a = Chlorophyll a; Chl.b = Chlorophyll b; Chl.c1 = Chlorophyll c2; Chl.c2 = Chlorophyll c2; Diadino = trans-
Diadinoxanthin; Diato = Diatoxanthin; Dino = Dinoxanthin.

https://doi.org/10.1371/journal.pone.0251491.t005

Table 6. P-values of Levene’s test for homogeneity of variances in the estimated pigment concentrations (Echin to

Viola) and total concentrations in all wavelength ranges according to the storage temperature.

Pigment GPS GPS with TLC

20˚C -20˚C 20˚C -20˚C

Echin - - 0.552 -

Fuco - - 0.995 -

Lut - - 0.381 0.422

Myxo 0.245 0.136 0.458 0.504

Peri 0.878 0.146 0.490 0.228

Phe.a 0.374 - 0.665 0.691

Phe.b - - 0.814 0.619

Viola - - 0.917 0.428

Total 0.891 0.306 0.910 0.318

Chlorophylls and derivatives 0.557 0.564 0.801 0.336

Carotenoids 0.438 0.522 0.989 0.698

Note: Echin = trans-Echinenone; Fuco = Fucoxanthin; Lut = Lutein; Myxo = Myxoxanthophyll; Peri = Peridinin;

Phe.a = Pheophytin a; Phe.b = Pheophytin b; Viola = Violaxanthin.

https://doi.org/10.1371/journal.pone.0251491.t006
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Discussion

Influence of wavelength ranges in spectrophotometry on the GPS

The study showed a weakness of the GPS method that was not mentioned by Thrane et al.

[15]. The choice of wavelength range in which the spectrophotometry was conducted signifi-

cantly influenced the estimated concentrations of most pigments in the unseparated samples.

Furthermore, in the wavelength range of 350–750 nm, no pigments were detected in the

unseparated samples. In the spectrophotometric assay, a large absorption peak was observed

in the UV region below 370 nm, possibly due to the phenolic structures present in the pigment

extracts [32, 33], which might have influenced spectra fitting by non-negative least squares

[34, 35], a crucial part of the GPS method, as Thrane et al. [15] recorded spectral scans only

between 400 and 700 nm. The addition of TLC ensured the separation of phenolic compounds

from the present pigments [36], thereby decreasing the influence of other compounds. When

TLC was applied, the estimated concentrations of each pigment and the calculated total con-

centrations were statistically identical in all investigated wavelength ranges. Therefore, com-

bining TLC with the GPS method overcame the recognized weaknesses by providing results

that were less prone to being significantly different depending on the wavelength range choice.

This advantage becomes crucial when a spectrophotometer with an ultraviolet region is not

available. Moreover, it indicates consistency in the estimated pigment content and concentra-

tions in the samples when the GPS method was combined with TLC, which could not be con-

cluded from the results when this step was omitted.

Table 7. P-values of two-way ANOVA for differences in estimated pigment concentrations between wavelength ranges and storage temperatures respectively.

Pigment Wavelength range Storage temperature

GPS GPS with TLC GPS GPS with TLC

Allo 0.744 0.667 0.744 0.245

ββ.car - 0.712 - 0.384

C.neo - - - -

Cantha - 0.611 - < 0.0100

Chl.a - 0.383 - 0.0757

Chl.b 0.0281 0.792 0.0155 0.471

Chl.c1 - 0.735 - 0.154

Chl.c2 - 0.390 - 0.550

Diadino < 0.0100 0.688 0.0652 0.823

Diato - 0.615 - < 0.0100

Dino - 0.0777 - 0.9955

Echin - 0.536 - 0.219

Fuco - 0.995 - 0.109

Lut - 0.339 - 0.459

Myxo < 0.0100 0.111 0.235 0.290

Peri 0.00687 0.256 0.657 0.330

Phe.a 0.347 0.108 0.347 0.0821

Phe.b - 0.578 - 0.140

Viola - 0.465 - 0.737

Note: Allo = Alloxanthin; ββ.car = β,β-Carotene; C.neo = 9’-cis-Neoxanthin; Cantha = trans-Canthaxanthin; Chl.a = Chlorophyll a; Chl.b = Chlorophyll b; Chl.

c1 = Chlorophyll c2; Chl.c2 = Chlorophyll c2; Diadino = trans-Diadinoxanthin; Diato = Diatoxanthin; Dino = Dinoxanthin; Echin = trans-Echinenone;

Fuco = Fucoxanthin; Lut = Lutein; Myxo = Myxoxanthophyll; Peri = Peridinin; Phe.a = Pheophytin a; Phe.b = Pheophytin b; Viola = Violaxanthin.

https://doi.org/10.1371/journal.pone.0251491.t007
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Differences in estimated pigment concentrations before and after TLC

The application of TLC resulted in the separation of major and minor chlorophyll and carot-

enoid components, leading to a reduced overlap of absorption peaks in the blue-green region

during the spectrophotometric assay [20, 37–39]. Consequently, minor pigment component

Table 8. Concentrations of pigments (Allo to Fuco) in samples stored at different temperatures estimated using the GPS method with TLC in various wavelength

ranges.

Pigmenth Wavelength range (nm) Sample size 20˚C -20˚C

Mean±SE (mg L−1) Mean±SE (mg L−1)

Allo 350–750 3 0.560±0.528 0.877±0.272

390–710 3 0.710±0.572 1.57±0.823

400–700 3 0.921±0.525 1.57±0.782

ββ.Car 350–750 3 0.133±0.0665 0.00

390–710 3 0.0619±0.0357 0.313±0.313

400–700 3 0.0650±0.0411 0.390±0.367

C.Neo 350–750 3 0.00 0.0153±0.00815

390–710 3 0.00382±0.00382 0.0154±0.00649

400–700 3 0.00168±0.00108 0.0214±0.00243

Chl.a 350–750 3 0.0471±0.0258 0.0120±0.0106

390–710 3 0.0164±0.00891 0.00213±0.00213

400–700 3 0.0276±0.0149 0.0102±0.0101

Chl.b 350–750 3 0.0276±0.0149 0.954±0.954

390–710 3 0.544±0.224 0.841±0.817

400–700 3 0.971±0.443 0.837±0.568

Chl.c1 350–750 3 0.00161±0.00161 0.178±0.178

390–710 3 0.00667±0.00667 0.0599±0.0599

400–700 3 0.00205±0.00197 0.0719±0.0709

Chl.c2 350–750 3 0.00903±0.00233 0.00360±0.00995

390–710 3 0.00643±0.00116 0.00290±0.00763

400–700 3 0.00735±0.00103 0.0362±0.0322

Diadino 350–750 3 0.514±0.408 0.0395±0.0127

390–710 3 0.556±0.545 0.795±0.700

400–700 3 0.458±0.419 1.01±0.893

Diato 350–750 3 0.583±0.207 4.88±1.06

390–710 3 0.304±0.163 3.61±1.70

400–700 3 0.292±0.147 3.10±1.65

Dino 350–750 3 0.0813±0.0813 0.0808±0.0405

390–710 3 0.00 0.00

400–700 3 0.00 0.00

Echin 350–750 3 0.00 0.00

390–710 3 0.00999±0.00999 0.00

400–700 3 0.00252±0.00252 0.00

Fuco 350–750 3 0.0108±0.0108 0.00

390–710 3 0.0109±0.0109 0.00

400–700 3 0.00951±0.00951 0.00

Note: Allo = Alloxanthin; ββ.car = β,β-Carotene; C.neo = 9’-cis-Neoxanthin; Cantha = trans-Canthaxanthin; Chl.a = Chlorophyll a; Chl.b = Chlorophyll b; Chl.

c1 = Chlorophyll c2; Chl.c2 = Chlorophyll c2; Diadino = trans-Diadinoxanthin; Diato = Diatoxanthin; Dino = Dinoxanthin; Echin = trans-Echinenone;

Fuco = Fucoxanthin.

https://doi.org/10.1371/journal.pone.0251491.t008
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absorption peaks were detected using a UV-Vis spectrophotometer. Hence, the results showed

an increased variety of pigments present in higher plant leaves, as described in the literature

[40]. The total pigment concentrations were estimated to be significantly higher in the samples

separated by TLC due to their increased number detected, which led to a change in the vari-

ance in the results compared to the unseparated samples. The concentrations of each pigment

before and after TLC were statistically identical, proving that the size of pigment recoveries by

TLC [41] had a minor influence on the obtained results. Therefore, adding TLC enhanced the

ability of the GPS method to indicate the present pigments and estimate their concentrations.

Table 9. Concentrations of pigments (Lut to Viola) in samples stored at different temperatures estimated using the GPS method with TLC in various wavelength

ranges.

Pigment Wavelength range (nm) Sample size 20˚C -20˚C

Mean±SE (mg L−1) Mean±SE (mg L−1)

Lut 350–750 3 0.00 0.00

390–710 3 0.0427±0.0365 0.00

400–700 3 0.0657±0.0408 0.473±0.473

Myxo 350–750 3 0.00401±0.00397 0.0124±0.0111

390–710 3 0.179±0.142 0.101±0.0852

400–700 3 0.383±0.196 0.149±0.0961

Peri 350–750 3 0.0326±0.0106 0.0104±0.00669

390–710 3 0.0108±0.00429 0.00197±0.00197

400–700 3 0.00427±0.00427 0.107±0.0694

Phe.a 350–750 3 1.93± 1.92 4.27±0.910

390–710 3 0.698±0.642 2.01±0.607

400–700 3 0.537±0.483 1.43±0.460

Phe.b 350–750 3 0.0125±0.00676 0.0344±0.0107

390–710 3 0.0206±0.0151 0.352±0.312

400–700 3 0.0239±0.0104 0.348±0.295

Viola 350–750 3 0.0574±0.0300 0.00121±0.00121

390–710 3 0.0476±0.0259 0.104±0.104

400–700 3 0.0428±0.0215 0.00126±0.00769

Note: Lut = Lutein; Myxo = Myxoxanthophyll; Peri = Peridinin; Phe.a = Pheophytin a; Phe.b = Pheophytin b; Viola = Violaxanthin.

https://doi.org/10.1371/journal.pone.0251491.t009

Table 10. Calculated concentrations of total pigment in samples stored at different temperatures estimated using the GPS method with TLC in various wavelength

ranges.

Pigment Wavelength range (nm) Sample size 20˚C -20˚C

Mean± SE (mg L−1) Mean± SE (mg L−1)

Total 350–750 3 4.00±3.02 11.4±0.769

390–710 3 3.21±1.87 9.78±0.160

400–700 3 3.81±1.82 9.56±0.326

Chlorophylls and derivatives 350–750 3 2.03±1.90 5.45±1.644

390–710 3 1.29±0.850 3.27±0.606

400–700 3 1.57±0.910 2.73±0.191

Carotenoids 350–750 3 1.98±1.12 5.92±0.887

390–710 3 1.92±1.02 6.51±0.455

400–700 3 2.24±0.911 6.83±0.337

https://doi.org/10.1371/journal.pone.0251491.t010
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Table 11. P-values of the two-sample t-test for differences in estimated total pigment concentrations between storage temperatures.

Pigment GPS GPS with TLC

390–710 nm 400–700 nm 350–750 nm 390–710 nm 400–700 nm

Total 0.0597 0.115 0.0387 0.0125 0.0180

Chlorophylls and derivatives 0.0376 0.0691 0.122 0.0654 0.125

Carotenoids 0.212 0.159 0.0254 < 0.0100 < 0.0100

https://doi.org/10.1371/journal.pone.0251491.t011

Fig 2. Concentrations of pigments estimated by the GPS method, and GPS method with TLC in samples stored at

20˚C. Interactive visualization of the data has been published online at https://www.ebi.ac.uk/biostudies/studies/

S-BSST642. Allo = Alloxanthin; ββ-Car = β,β-Carotene; C.Neo = 9’-cis-Neoxanthin; Cantha = trans-Canthaxanthin;

Chl.a = Chlorophyll a; Chl.b = Chlorophyll b; Chl.c1 = Chlorophyll c2; Chl.c2 = Chlorophyll c2; Diadino = trans-
Diadinoxanthin; Diato = Diatoxanthin; Dino = Dinoxanthin; Echin = trans-Echinenone; Fuco = Fucoxanthin;

Lut = Lutein; Myxo = Myxoxanthophyll; Peri = Peridinin; Phe.a = Pheophytin a; Phe.b = Pheophytin b;

Viola = Violaxanthin.

https://doi.org/10.1371/journal.pone.0251491.g002

Fig 3. Concentrations of pigments estimated by the GPS method, and GPS method with TLC in samples stored at

-20˚C. Interactive visualization of the data has been published online at https://www.ebi.ac.uk/biostudies/studies/

S-BSST642. Allo = Alloxanthin; ββ-Car = β,β-Carotene; C.Neo = 9’-cis-Neoxanthin; Cantha = trans-Canthaxanthin;

Chl.a = Chlorophyll a; Chl.b = Chlorophyll b; Chl.c1 = Chlorophyll c2; Chl.c2 = Chlorophyll c2; Diadino = trans-
Diadinoxanthin; Diato = Diatoxanthin; Dino = Dinoxanthin; Echin = trans-Echinenone; Fuco = Fucoxanthin;

Lut = Lutein; Myxo = Myxoxanthophyll; Peri = Peridinin; Phe.a = Pheophytin a; Phe.b = Pheophytin b;

Viola = Violaxanthin.

https://doi.org/10.1371/journal.pone.0251491.g003
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Behavior of samples under different conditions

Changes in the 390–710 nm range between the pigment composition of both unseparated

groups were found only for chlorophyll b, and hence total chlorophylls and derivatives. How-

ever, this result is highly improbable, as chlorophylls are stable at both room temperature and

in the freezer [42, 43]. When TLC was added, the estimated total pigment concentrations of

chlorophylls and derivatives, and each pigment belonging to this group remained, according

to the GPS results, the same regardless of the chosen range. A decrease in total carotenoids and

Fig 5. Concentrations of total pigment estimated by the GPS method, and GPS method with TLC in samples

stored at -20˚C. Interactive visualization of the data has been published online at https://www.ebi.ac.uk/biostudies/

studies/S-BSST642. Allo = Alloxanthin; ββ-Car = β,β-Carotene; C.Neo = 9’-cis-Neoxanthin; Cantha = trans-
Canthaxanthin; Chl.a = Chlorophyll a; Chl.b = Chlorophyll b; Chl.c1 = Chlorophyll c2; Chl.c2 = Chlorophyll c2;

Diadino = trans-Diadinoxanthin; Diato = Diatoxanthin; Dino = Dinoxanthin; Echin = trans-Echinenone;

Fuco = Fucoxanthin; Lut = Lutein; Myxo = Myxoxanthophyll; Peri = Peridinin; Phe.a = Pheophytin a; Phe.

b = Pheophytin b; Viola = Violaxanthin.

https://doi.org/10.1371/journal.pone.0251491.g005

Fig 4. Concentrations of total pigment estimated by the GPS method, and GPS method with TLC in samples

stored at 20˚C. Interactive visualization of the data has been published online at https://www.ebi.ac.uk/biostudies/

studies/S-BSST642. Allo = Alloxanthin; ββ-Car = β,β-Carotene; C.Neo = 9’-cis-Neoxanthin; Cantha = trans-
Canthaxanthin; Chl.a = Chlorophyll a; Chl.b = Chlorophyll b; Chl.c1 = Chlorophyll c2; Chl.c2 = Chlorophyll c2;

Diadino = trans-Diadinoxanthin; Diato = Diatoxanthin; Dino = Dinoxanthin; Echin = trans-Echinenone;

Fuco = Fucoxanthin; Lut = Lutein; Myxo = Myxoxanthophyll; Peri = Peridinin; Phe.a = Pheophytin a; Phe.

b = Pheophytin b; Viola = Violaxanthin.

https://doi.org/10.1371/journal.pone.0251491.g004
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total pigment concentration was observed in the samples stored at room temperature, which is

in good agreement with the literature [44–46]. This was not concluded from the results of the

unseparated samples. Therefore, conducting a spectrophotometric assay of TLC pigment

bands allowed for the recognition of patterns regarding pigment concentration changes due to

storage temperature.

Choice of the wavelength range

The wavelength range of 350–750 nm failed to calculate the pigment concentration in the

unseparated samples, whereas 390–710 nm indicated an improbable change in chlorophyll

content due to the storage temperature of A. hippocastanum autumn leaves. In both unsepa-

rated and separated by TLC samples, the greatest number of pigments was shown for the wave-

length range of 400–700 nm. The smallest variance in the concentrations of separated samples

was recorded in the paired results at 390–710 nm and 400–700 nm. Due to a fairly small sam-

ple size, the calculated standard errors for pigment and total concentrations was relatively

large [47]. However, the smallest standard errors overall were recorded in the range 400–700

nm for the TLC separated samples. Therefore, the present study provided evidence to suggest

that a wavelength range of 400–700 nm is optimal for the GPS method, which has not been

previously shown for this method [14, 15].

Costs of the method

The addition of the TLC step to the GPS method did not introduce high additional costs [48].

Hence, the described method aligns well with the idea of an easy and inexpensive procedure

[14, 15].

Table 13. P-values of the paired t-test for differences in estimated total pigment concentrations at different tem-

peratures before and after TLC was applied to the GPS method.

Pigment 20˚C -20˚C

Total 0.0209 < 0.0100

Chlorophylls and derivatives 0.0342 < 0.0100

Carotenoids 0.0114 < 0.0100

https://doi.org/10.1371/journal.pone.0251491.t013

Table 12. P-values of the paired t-test for differences in estimated pigment concentrations at different tempera-

tures before and after TLC was applied to the GPS method.

Pigment 20˚C -20˚C

390–710 nm 400–700 nm 390–710 nm 400–700 nm

Allo - 0.226 0.201 -

Chl.b 0.222 0.185 0.722 0.403

Diadino - 0.497 - 0.507

Myxo 0.651 - 0.668 -

Peri 0.459 0.2256 - 0.829

Phe.a - 0.397 - -

Note: Allo = Alloxanthin; Chl.b = Chlorophyll b; Diadino = trans-Diadinoxanthin; Myxo = Myxoxanthophyll;

Peri = Peridinin; Phe.a = Pheophytin a.

https://doi.org/10.1371/journal.pone.0251491.t012
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Indicated pigments and future perspectives

The GPS method described by Thrane et al. [15] was reported as a successful alternative to the

HPLC method. However, the results from the present study demonstrated strong evidence

that the addition of the TLC step to the GPS method provided more reliable results in the

investigated aspects. Hence, this new method is expected to be an even more successful alter-

native to HPLC. However, the study revealed a possible weakness of the GPS method whether

combined with TLC or not. In both cases, some of the indicated pigments were not typical

constituents of terrestrial plants [49–51], although such cases were sometimes reported [52].

Therefore, one direction of future research should involve comparing identified pigments in

A. hippocastanum leaves using the GPS method and TLC with the results obtained from

another pigment identifying and quantifying method such as HPLC.

Apart from A. hippocastanum, there are several other trees, such as Betula pendula and Acer
pseudoplatanus L., which could be potential natural pigment sources. Therefore, another direc-

tion of further study should involve these species. As the food industry is seeking stable, non-

toxic colorants, the obtained pigments could be tested for eligibility in the future and, if suc-

cessful, could potentially revolutionize the market.

Conclusions

The present study conducted TLC prior to spectrophotometric analysis to improve the ability

of the GPS method to identify the pigments present. A change in the wavelength range over

which the absorption spectra were generated had an insignificant effect on the determined pig-

ments and their number when the components were separated. The use of the three wave-

length ranges for the data obtained from the unseparated samples led to differences in the

indicated pigments and their estimated concentrations. The concentrations calculated from

the absorption spectra within the wavelength range of 400–700 nm were the most representa-

tive among the sample compounds for both approaches to the GPS method.
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