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Abstract: Initial alignment is critical and indispensable for the inertial navigation system (INS), which
determines the initial attitude matrix between the reference navigation frame and the body frame.
The conventional initial alignment methods based on the Kalman-like filter require an accurate noise
covariance matrix of state and measurement to guarantee the high estimation accuracy. However,
in a real-life practical environment, the uncertain noise covariance matrices are often induced by the
motion of the carrier and external disturbance. To solve the problem of initial alignment with uncertain
noise covariance matrices and a large initial misalignment angle in practical environment, an improved
initial alignment method based on an adaptive cubature Kalman filter (ACKF) is proposed in this paper.
By virtue of the idea of the variational Bayesian (VB) method, the system state, one step predicted
error covariance matrix, and measurement noise covariance matrix of initial alignment are adaptively
estimated together. Simulation and vehicle experiment results demonstrate that the proposed method
can improve the accuracy of initial alignment compared with existing methods.

Keywords: adaptive Kalman filter; initial alignment; cubature Kalman filter; variational Bayesian method

1. Introduction

The strapdown inertial navigation system (SINS), which is based on a numerical integration
procedure, can provide consecutive navigation parameters, including the attitude, velocity, and position
for carriers [1,2]. For the dead-reckoning navigation stage, the performance of SINS heavily depends on
the accuracy of initial navigation information [3]. The large initial errors (especially the attitude error) will
seriously degrade the navigation accuracy. Thus, it is important to estimate the initial attitude of SINS
and reduce the initial attitude error. The procedure of determining the initial attitude is named as initial
alignment [4–6].

Traditional initial alignment methods can be divided into two stages: coarse alignment and fine
alignment [7,8]. Coarse alignment, which mainly includes analytic coarse alignment [9], inertial frame
coarse alignment [10], and Davenport’s q method based coarse alignment [11–13], is to decrease the large
misalignment angles into a small range to ensure that the fine alignment has a linear model. However,
the average coarse alignment time is hundreds of seconds. When the required time of initial alignment
has a stringent restriction, it is difficult to ensure that the misalignment angles have converged to a small
range in the coarse alignment stage [4,14]. The condition of a fine alignment with a large misalignment
angle may occur. Furthermore, this alignment process needs to switch from coarse alignment to fine
alignment at a suitable point of time, which increases the complexity and uncertainty of the alignment
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process [15]. Therefore, nonlinear filtering algorithm based initial alignment, such as the extended Kalman
filter (EKF) [16] and unscented Kalman filter (UKF) [17], has been subsequently developed for decades,
to solve the problem of moving state initial alignment with large initial misalignment angles directly.
EKF is widely used to solve the nonlinear estimation problem. However, it has low accuracy for a
high-dimensional system and a high calculation cost of the Jacobian matrix. UKF was proposed by Julier
and Uhlmann in [18]. Based on unscented transformation (UT), UKF can capture the posterior mean and
covariance as the second order of the Taylor series of any nonlinearity. Its extensions include marginalized
UKF [19] and high order UKF [20]. The cubature Kalman filter (CKF), which is based on the third degree
spherical–radial cubature rule, was proposed in [21] and has been used in initial alignment [14]. CKF not
only guarantees the accuracy, but also has better stability in a high-dimensional system.

However, the performance of CKF heavily depends on precise prior knowledge of noise. When
the carrier is in the motion state, due to the influence of vibration and severe maneuvers, it is difficult
to determine the accurate noise covariance value of sensors [22–24]. Inaccurate or time varying noise
statistical information will degrade the accuracy of initial alignment dramatically. Therefore, there is a
great demand to use the adaptive Kalman filter to solve this problem. In [25], an adaptive Kalman filter
based on the expectation maximization (EM) method was proposed. However, it met the restriction of
needed large windows of data to guarantee reliable estimations. Therefore, it was not suitable in a practical
experiment. In [26], the Sage–Husa adaptive Kalman filter based on the maximum a posteriori criterion
was used to estimate the statistical properties of noises. Through the introduction of a fading parameter
to adjust the filter parameter, it could theoretically estimate the state and measurement noise covariance
matrices simultaneously. However, the stability of this filter was critically influenced by the non-positive
definiteness of noise covariance matrices, and the capacity of the fading adaptive adjustment factor was
limited. Due to the flaws inherent in these adaptive estimation methods, it is urged to adopt the advanced
adaptive Kalman filter to meet the requirement. The variational Bayesian (VB) based adaptive Kalman
filter was proposed in [27] to further improve the estimation accuracy of unknown noise covariance and
has been used in target tracking and cooperative navigation. However, it is not suitable for the initial
alignment when the state equation is nonlinear.

Concerning the alignment problem with large misalignment angles and uncertain noise covariance
matrices, this paper proposes an adaptive CKF (ACKF) based on the VB method to further improve the
accuracy of initial alignment. In this work, the one step predicted covariance matrix and measurement
noise covariance matrix are modeled by the inverse Wishart (IW) distribution. The VB method based
CKF is then used to approximate the joint posterior probability density function (PDF) of the state,
one step predicted error covariance matrix, and measurement noise covariance matrix. The proposed
method and existing adaptive filter method are tested based on the vehicle experiment of SINS aided
by GPS. Experimental results show that proposed method has better performance than the well known
methodologies when the carrier has a severe maneuver.

The outline of this paper is shown as follows. The mathematical model of initial alignment is
given in Section 2. In Section 3, the ACKF algorithm is designed for the application of initial alignment.
The simulation and vehicle experiment are conducted to verify the effectiveness of the proposed ACKF in
Section 4. The conclusions are drawn in Section 5.

2. Nonlinear Model of Initial Alignment

Firstly, the definitions of the frame are given in this section. The inertial non-rotating frame is denoted
by i. The Earth-fixed frame is denoted by e. The geographic frame is denoted by t. The body frame of
SINS is denoted as b, which is the right-forward-up (R-F-U) orientation. n and n′ represent the navigation
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frame and the calculated navigation frame, respectively, which are the east-north-up (E-N-U) orientation.
The schematic diagram of these frames is shown in Figure 1.

Figure 1. The schematic diagram of the frames.

The standard state equation of initial alignment is the same as the error model of SINS [4].
Considering the application of carborne or shipborne equipment, the height error of the carrier is neglected.
The nonlinear error equation for the moving state of SINS is given as follows:

φ̇ = C−1
φ

[
(I − Cn′

n )ω̃n
in + Cn′

n δωn
in − Cn′

b (εb + ηb
g)
]

δv̇n =
[

I − (Cn′
n )T

]
Cn′

b f̃ b
ib − (2ω̃n

ie + ω̃n
en)× δvn

−(2δωn
ie + δωn

en)× (ṽn − δvn) + (Cn′
n )TCn′

b (∇b + ηb
a)

δL̇ =
δvn

N
Re

δϕ̇ = sec L̃
Re

δvn
E +

ṽn
E sec L̃ tan L̃

Re
δL

ε̇b = 0, ∇̇b = 0

(1)

with:

C−1
φ =

1
cos φx

cos φx cos φy 0 cos φx sin φy

sin φx sin φy cos φx − sin φx cos φy

− sin φy 0 cos φy

 (2)

where the misalignment angles φ = [φx; φy; φz] are the attitude error angle between frame n and frame n′.
δvn = [δvn

E; δvn
N ] is the error of calculated velocity ṽn. δL and δϕ are the errors of calculated latitude L̃ and

longitude ϕ̃. εb is the gyro constant drift. ηb
g is the gyroscope random noise. ∇b is the accelerometer bias.

ηb
a is the accelerometer random noise. Re is the radius of the Earth. (·)× denotes the 3× 3 skew symmetric

matrix. [·]T denotes the transposition of the matrix. The attitude error matrix Cn′
n is formulated as follows:

Cn′
n =

cos φy 0 − sin φy

0 1 0
sin φy 0 cos φy


1 0 0

0 cos φx sin φx

0 − sin φx cos φx


 cos φz sin φz 0
− sin φz cos φz 0

0 0 1

 (3)

The erroneous ω̃n
ie and ω̃n

en are given as follows:

ω̃n
ie =

[
0; ωie cos L̃; ωie sin L̃

]
(4)
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ω̃n
en =

[
− ṽn

N
Re

; ṽn
E

Re
; ṽn

E
Re

tan L̃
]

(5)

where ωie is the Earth’s rotation angular velocity. The errors of ω̃n
ie and ω̃n

en are given as follows:

δωn
ie =

[
0;−ωie sin L̃δL; ωie cos L̃δL

]
(6)

δωn
en =

[
− δvn

N
Re

; δvn
E

Re
; δvn

E tan L+ṽn
E sec2 LδL

Re

]
(7)

Therefore, ω̃n
in and δωn

in are given as follows:

ω̃n
in = ω̃n

ie + ω̃n
en (8)

δωn
in = δωn

ie + δωn
en (9)

The velocity and position differences between SINS and aiding equipment such as GPS are selected
as the measurement, which is formulated as: zv =

[
δvn

E; δvn
N

]
+ νv

zP =
[
δL; δλ

]
+ νP

(10)

where νv and νP are velocity measurement noise and position measurement noise, respectively.
The state vector is defined as x = [φx; φy; φz; δvn

E; δvn
N ; δL; δλ; εs

x; εs
y; εs

z;∇s
x;∇s

y]. The state noise vector
is defined as w = [ηs

g; ηs
a; 07×1]. The measurement vector and noise vector are defined as z = [zv; zP]

and ν = [νv; νP], respectively. By discretizing the continuous equations, the standard discrete state error
equation and measurement equation are formulated as:{

xk = f (xk−1) + g(xk−1)wk−1
zk = h(xk) + νk

(11)

where f (·) and g(·) are the nonlinear functions, which are formulated based on (1), and the measurement
model is a linear function,

h(xk) = Hxk = [04×3, I4×4, 04×5]xk (12)

wk and νk are uncorrelated Gaussian white noises with mean value 0 and covariance Qk and Rk,
respectively. For the sake of simplification in the next sections, we assume that the dimensions of xk and
wk are nx and the dimensions of zk and νk are nz.

The standard nonlinear initial alignment model can be obtained by Equation (11). It can be seen that
the initial alignment state model has high dimensions and that the states are coupling strongly. Generally,
the state noise and measurement noise of initial alignment are set as Gaussian white noise. However,
the severe maneuver and the external disturbance will induce the uncertain noise covariance matrices
of SINS, which will degrade the accuracy of initial alignment. In the next section, the adaptive CKF is
proposed to solve the problem mentioned above.

3. Adaptive Cubature Kalman Filter

In this section, a novel adaptive CKF is proposed to solve the estimation problem with the uncertain
noise covariance matrix. Without loss of generality, we introduce this method based on the standard
nonlinear model with the nonlinear state and measurement functions.
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3.1. Gaussian Kalman Filter and Cubature Kalman Filter

The Gaussian filter is the main method to solve the nonlinear estimation, which has two key
assumptions, that the one step predicted PDFs of the state and measurement are Gaussian, i.e.,

p (xk|z1:k−1) = N(xk; x̂k|k−1, Pk|k−1) (13)

where x̂k|k−1 and Pk|k−1 denote the mean and variance of p (xk|z1:k−1).

p (zk|z1:k−1) = N(zk; ẑk|k−1, Pzz
k|k−1) (14)

where ẑk|k−1 and Pzz
k|k−1 denote the mean and variance of p (zk|z1:k−1).

Obviously, the joint one step predicted PDF of the state and measurement p (xk, zk|z1:k−1) is also
Gaussian, i.e.,

p (xk, zk|z1:k−1) = N

([
xk
zk

]
;

[
x̂k|k−1
ẑk|k−1

]
,

[
Pk|k−1 Pxz

k|k−1
(Pxz

k|k−1)
T Pzz

k|k−1

])
(15)

where Pxz
k|k−1 is the covariance of xk and zk. Based on (14) and (15), in the Bayesian theorem, the posterior

PDF of xk is also Gaussian, i.e.,

p (xk|z1:k) =
p (xk, zk|z1:k−1)

p (zk|z1:k−1)
= N(xk; x̂k|k, Pk|k) (16)

where x̂k|k and Pk|k denote the mean and variance of p (xk|z1:k). x̂k|k and Pk|k are derived as follows:

Kk = Pzz
k|k−1(P

xz
k|k−1)

−1 (17)

x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1) (18)

Pk|k = Pk|k−1 − KkPzz
k|k−1KT

k (19)

where Kk is the filter gain, and the other parameters are calculated as follows:

x̂k|k−1 = E [ f (xk−1)|z1:k−1] =
∫

f (xk−1)N(xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1 (20)

Pk|k−1 =E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)

T |z1:k−1

]
=
∫
( f (xk−1)− x̂k|k−1)( f (xk−1)− x̂k|k−1)

TN(xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1

+ g(x̂k|k−1)Qk−1g(x̂k|k−1)
T

(21)

ẑk|k−1 = E [h(xk)|z1:k−1] =
∫

h(xk)N(xk; x̂k|k−1, Pk|k−1)dxk (22)

Pzz
k|k−1 =E

[
(zk − ẑk|k−1)(zk − ẑk|k−1)

T |z1:k−1

]
=
∫
(h(xk)− ẑk|k−1)(h(xk)− ẑk|k−1)

TN(xk; x̂k|k−1, Pk|k−1)dxk + Rk

(23)

Pxz
k|k−1 =E

[
(xk − x̂k|k−1)(zk − ẑk|k−1)

T |z1:k−1

]
=
∫
(xk − x̂k|k−1)(h(xk)− ẑk|k−1)

TN(xk; x̂k|k−1, Pk|k−1)dxk

(24)
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where E[·] means the expectation operation.
From (20) to (24), the general framework of the Gaussian filter is established, and the core idea of

the Gaussian filter is to calculate Gaussian weighted integrals. Due to the nonlinearity of f (·) and h(·),
it is difficult to obtain the accurate numerical solution of (20)–(24), and the approximation solution is
necessary, i.e., ∫

f (x)N(x; a, b)dx ≈
N

∑
j=1

Wj f (xj) (25)

where xj and Wj are the sampling points and corresponding weights of x.
CKF, which is a typical Gaussian filter, uses the third degree spherical–radial cubature rule to obtain

these weighted samples. In (20), the cubature points of xk−1 are selected based on x̂k−1|k−1 and Pk−1|k−1.
These cubature points are defined as follows:

χ
(j)
k−1 = x̂k−1|k−1 +

√
nx

(√
Pk−1|k−1

)
(j)

, (j = 1, 2, · · · , nx)

χ
(j)
k−1 = x̂k−1|k−1 −

√
nx

(√
Pk−1|k−1

)
(j)

, (j = nx + 1, nx + 2, · · · , 2nx)
(26)

where (A)(j) denotes the jth column of A. Propagating the cubature points of xk−1 by f (·), the state one
step predicted mean x̂k|k−1 and covariance Pk|k−1 can be obtained as follows based on (20) and (21):

χ
x(j)
k|k−1 = f (χ(j)

k−1), (j = 1, 2, · · · , 2nx) (27)

x̂k|k−1 =
1

2nx

2nx

∑
j=1

χ
x(j)
k|k−1 (28)

Pk|k−1 =
1

2nx

2nx

∑
j=1

[
(χ

x(j)
k|k−1 − x̂k|k−1)(χ

x(j)
k|k−1 − x̂k|k−1)

T
]
+ g(x̂k|k−1)Qk−1g(x̂k|k−1)

T (29)

Furthermore, the cubature points of xk based on x̂k|k−1 and Pk|k−1 are selected as follows:
χ
(j)
k|k−1 = x̂k|k−1 +

√
nx

(√
Pk|k−1

)
(j)

, (j = 1, 2, · · · , nx)

χ
(j)
k|k−1 = x̂k|k−1 −

√
nx

(√
Pk|k−1

)
(j)

, (j = nx + 1, nx + 2, · · · , 2nx)
(30)

Propagating the cubature points of xk by h(·), the measurement one step predicted mean and
covariance can be obtained as follows:

Z(j)
k|k−1 = h(χ(j)

k|k−1), (j = 1, 2, · · · , 2nx) (31)

ẑk|k−1 =
1

2nx

2nx

∑
j=1

Z(j)
k|k−1 (32)

Pzz
k|k−1 =

1
2nx

2nx

∑
j=1

[
(Z(j)

k|k−1 − ẑk|k−1)(Z
(j)
k|k−1 − ẑk|k−1)

T
]
+ Rk (33)

Pxz
k|k−1 =

1
2nx

2nx

∑
j=1

[
(χ

(j)
k|k−1 − x̂k|k−1)(Z

(j)
k|k−1 − ẑk|k−1)

T
]

(34)
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Filter gain Kk and measurement update are given as follows:

Kk = Pxz
k|k−1(P

zz
k|k−1)

−1 (35)

x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1) (36)

Pk|k = Pk|k−1 − KkPzz
k|k−1KT

k (37)

3.2. The Proposed Adaptive Cubature Kalman Filter

When the state noise covariance Qk and measurement noise covariance Rk are unknown or inaccurate,
the estimation accuracy of CKF may degrade or diverge. Because the one step predicted state error
covariance Pk|k−1 is influenced by the inaccurate Qk, it is easier to estimate Pk|k−1 than Qk. Therefore,
in our works, the state, one step predicted state error covariance Pk|k−1 and Rk are jointly estimated to
improve the accuracy of CKF with inaccurate noise statistical properties.

In the frame of Bayesian probability theory, the conjugate prior distribution is selected to guarantee
the unified form of the prior and posterior distribution. For the Gaussian distribution with known mean,
the standard inverse Wishart (IW) PDF is always used as the conjugate prior distribution. The IW PDF is
formulated as follows:

IW(B; ζ, Ψ) =
|Ψ|ζ/2|B|−(ζ+d+1)/2e− tr(ΨB−1)/2

2dζ/2Γd(ζ/2)
(38)

where B is positive definite random matrix, Ψ is the inverse scale matrix, ζ is the degrees of freedom (dof)
parameter, d is the dimension of B, tr(·) is the trace calculation, and Γd(·) is the d-variate Gamma function.
When ζ > d + 1, the mean of B is shown as follows:

E [B] =
Ψ

(ζ − d− 1)−1 (39)

Therefore, the prior distribution p(Pk|k−1|z1:k−1) and p(Rk|z1:k−1) are modeled as follows:

p
(

Pk|k−1|z1:k−1

)
= IW(Pk|k−1; t̂k|k−1, T̂k|k−1) (40)

p (Rk|z1:k−1) = IW(Rk; ûk|k−1, Ûk|k−1) (41)

where t̂k|k−1 and ûk|k−1 are dof parameters and T̂k|k−1 and Ûk|k−1 are inverse scale matrices.
The mean value of Pk|k−1 is set as nominal P̃k|k−1, determined by:

P̃k|k−1 =
1

2nx

2nx

∑
j=1

[
(χ

x(j)
k|k−1 − x̂k|k−1)(χ

x(j)
k|k−1 − x̂k|k−1)

T
]
+ g(x̂k|k−1)Q̃k−1g(x̂k|k−1)

T (42)

where Q̃k−1 is the nominal state noise covariance matrix, which means an inaccurate value.
Let:

T̂k|k−1

t̂k|k−1 − nx − 1
= P̃k|k−1 (43)

and set t̂k|k−1 = nx + τ + 1, where τ is a tuning parameter. We can obtain:

T̂k|k−1 = τP̃k|k−1 (44)
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According to the Bayesian theorem, p (Rk|z1:k−1) is formulated as:

p (Rk|z1:k−1) =
∫

p (Rk|Rk−1) p (Rk−1|z1:k−1)dRk−1 (45)

where p (Rk−1|z1:k−1) is the posterior PDF of Rk−1. Because the posterior and prior PDF of Rk−1 has
the same distribution, the posterior PDF of Rk−1 is also formulated as the inverse Wishart distribution,
as follows:

p (Rk−1|z1:k−1) = IW(Rk−1; ûk|k−1, Ûk|k−1) (46)

Because of the unknown dynamic model of p (Rk|Rk−1), we selected a forgetting factor ξ ∈ (0, 1] to
spread the previous posterior to the current prior, and the prior parameters in (41) are written as follows:

ûk|k−1 = ξ
(

ûk−1|k−1 − nz − 1
)
+ nz + 1 (47)

Ûk|k−1 = ξÛk−1|k−1 (48)

The initial R0 is also assumed as an inverse Wishart PDF, i.e., p (R0) = IW(R0; û0|0, Û0|0), where the
mean value of R0 is set as the initial nominal R̃0:

Û0|0
û0|0 − nz − 1

= R̃0 (49)

In order to estimate the state xk, one step predicted state error covariance Pk|k−1 and Rk, their joint

posterior PDF p
(

xk, Pk|k−1, Rk|z1:k

)
is calculated. Due to the coupling of these parameters, the analytical

solution cannot be obtained. Therefore, the VB method is used to solve the estimation problem in coupling.

p(xk, Pk|k−1, Rk|z1:k) ≈ q(xk)q(Pk|k−1)q(Rk) (50){
q(xk), q(Pk|k−1), q(Rk)

}
are calculated by minimizing the Kullback–Leibler divergence (KLD):

{
q(xk), q(Pk|k−1), q(Rk)

}
= arg min KLD

(
q(xk), q(Pk|k−1), q(Rk)‖p(xk, Pk|k−1, Rk|z1:k)

)
(51)

The optimal solution of (51) is given by:

log q(α) = EΞ(−α) [log p (Ξ, z1:k)] + cα (52)

Ξ ,
{

xk, Pk|k−1, Rk

}
(53)

where log(·) means the logarithmic function, α is the arbitrary element of Ξ, Ξ(−α) contains all elements in
Ξ except for α, and cα means the constant dependent on α. According to the Bayesian theorem, the joint
PDF p(Ξ, z1:k) is factored as:

p(Ξ, z1:k) = p(zk|xk, Rk)p(xk|z1:k−1, Pk|k−1)p(Pk|k−1|z1:k−1)p(Rk|z1:k−1)p(z1:k−1) (54)

where likelihood PDF p (zk|xk) is assumed as a normal distribution.

p(zk|xk) = N(zk; h (xk) , Rk) (55)
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Substituting (13), (38), (41), and (55) into (54), we have:

p(Ξ, z1:k) =N(zk; h(xk), Rk)N(xk; x̂k|k−1, Pk|k−1)IW(Pk|k−1; t̂k|k−1, T̂k|k−1)

× IW(Rk; ûk|k−1, Ûk|k−1)p(z1:k−1)
(56)

Taking the logarithm on both sides of (56), the normal distribution N(A; a, Σ) and IW distribution
IW(B; ζ, Ψ) are formulated as follows:

log(N(A; a, Σ)) = log

{
1

√
2π|Σ| 12

e−
1
2 (A−a)TΣ−1(A−a)

}

= −1
2

log |Σ| − 1
2
(A− a)TΣ−1(A− a) + log

1√
2π

= −1
2

log |Σ| − 1
2
(A− a)TΣ−1(A− a) + cA

(57)

log(IW(B; ζ, Ψ)) = log

{
|Ψ|ζ/2|B|−(ζ+d+1)/2e− tr(ΨB−1)/2

2dζ/2Γd(ζ/2)

}

=− (ζ + d + 1)
2

log |B| − 1
2

tr
(

ΨB−1
)
+

ζ

2
log |Ψ|

− dζ

2
log 2− log Γd(ζ/2)

=− (ζ + d + 1)
2

log |B| − 1
2

tr
(

ΨB−1
)
+ cB

(58)

According to (57) and (58), log(p (Ξ, z1:k)) is formulated as:

log(p (Ξ, z1:k)) =−
1
2
(zk − h(xk))

T R−1
k (zk − h(xk))

− 1
2
(ûk|k−1 + nz + 2) log |Rk| −

1
2

tr(Uk|k−1R−1
k )

− 1
2
(t̂k|k−1 + nx + 2) log |Pk|k−1| −

1
2

tr(Tk|k−1P−1
k|k−1)

− 1
2
(xk − x̂k|k−1)

TP−1
k|k−1(xk − x̂k|k−1) + cΞ

(59)

Using (59) in (52) and letting α = Pk|k−1, we have:

log q(i+1)(Pk|k−1) =−
1
2

E(i)[tr(Uk|k−1R−1
k )]− 1

2
E(i)[(zk − h(xk))

T R−1
k (zk − h(xk))]

− 1
2
(ûk|k−1 + nz + 2)E(i)[log |Rk|]−

1
2
(t̂k|k−1 + nx + 2) log |Pk|k−1|

− 1
2

tr[(A(i)
k + T̂k|k−1)P

−1
k|k−1] + cPk|k−1

=− 1
2
(t̂k|k−1 + nx + 2) log |Pk|k−1| −

1
2

tr[(A(i)
k + T̂k|k−1)P

−1
k|k−1] + cPk|k−1

(60)
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where q(i+1)(·) is the approximation of PDF q(·) at the iteration i + 1, and A(i)
k is given as follows:

A(i)
k =E(i)[(xk − x̂k|k−1)(xk − x̂k|k−1)

T ]

=E(i)[(xk − x̂(i)k|k + x̂(i)k|k − x̂k|k−1)(xk − x̂(i)k|k + x̂(i)k|k − x̂k|k−1)
T ]

=P(i)
k|k + (x̂(i)k|k − x̂k|k−1)(x̂(i)k|k − x̂k|k−1)

T

(61)

q(i+1)(Pk|k−1) is updated as an IW PDF with dof parameter t̂(i+1)
k and inverse scale matrix T̂(i+1)

k :

q(i+1)(Pk|k−1) = IW(Pk|k−1; t̂(i+1)
k , T̂(i+1)

k ) (62)

where:
t̂(i+1)
k = t̂k|k−1 + 1 (63)

T̂(i+1)
k = A(i)

k + T̂k|k−1 (64)

Let α = Rk; we have:

log q(i+1)(Rk) = −0.5
(

ûk|k−1 + Lz + 2
)

log |Rk| −
1
2

tr[(B(i)
k + Ûk|k−1)R−1

k ] + cRk (65)

where B(i)
k is given by:

B(i)
k = E(i)[(zk − h(xk))(zk − h(xk))

T ]

=
∫
(zk − h(xk))(zk − h(xk))

TN(xk; x̂(i)k|k, P(i)
k|k)dxk

=
1

2nx

2nx

∑
j=1

[
(zk − h(χ(i)(j)

k ))(zk − h(χ(i)(j)
k ))T

] (66)

where χ
(i)
k are cubature points based on x̂(i)k|k and P(i)

k|k .


χ
(i)(j)
k = x̂(i)k|k +

√
nx

(√
P(i)

k|k

)
(j)

, (j = 1, 2, · · · , nx)

χ
(i)(j)
k = x̂(i)k|k −

√
nx

(√
P(i)

k|k

)
(j−nx)

, (j = nx + 1, nx + 2, · · · , 2nx)
(67)

q(i+1)(Rk) is updated as an IW PDF with dof parameter û(i+1)
k and inverse scale matrix Û(i+1)

k :

q(i+1)(Rk) = IW(Rk; û(i+1)
k , Û(i+1)

k ) (68)

where:
û(i+1)

k = ûk|k−1 + 1 (69)

Û(i+1)
k = B(i)

k + Ûk|k−1 (70)
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Let α = xk; we have:

log q(i+1)(xk) =−
1
2

(
xk − x̂k|k−1

)T
E(i+1)[P−1

k|k−1]
(

xk − x̂k|k−1

)
− 1

2
(zk − h (xk))

T E(i+1)[R−1
k ] (zk − h (xk)) + cx

(71)

where:
E(i+1)[R−1

k ] = (û(i+1)
k − nx − 1)(Û(i+1)

k )−1 (72)

E(i+1)[P−1
k|k−1] = (t̂(i+1)

k − nz − 1)(T̂(i+1)
k )−1 (73)

The one step predicted PDF p(i+1)(xk|z1:k−1) and likelihood PDF p(i+1)(zk|xk) at iteration i + 1 are
defined as follows:

p(i+1)(xk|z1:k−1) = N(xk; x̂k|k−1, P̂(i+1)
k|k−1) (74)

p(i+1)(zk|xk) = N(zk; h(xk), R̂(i+1)
k ) (75)

where:
P̂(i+1)

k|k−1 =
{

E(i+1)[P−1
k|k−1]

}−1
(76)

R̂(i+1)
k =

{
E(i+1)[R−1

k ]
}−1

(77)

Employing (74)–(77) in (71), we have:

q(i+1) (xk) =
1

c(i+1)
k

p(i+1) (zk|xk) p(i+1) (xk|z1:k−1) (78)

where the normalization constant c(i+1)
k is given as:

c(i+1)
k =

∫
p(i+1) (zk|xk) p(i+1) (xk|z1:k−1)dxk (79)

q(i+1) (xk) is updated as the normal distribution with mean x̂(i+1)
k|k and variance P̂(i+1)

k|k :

q(i+1) (xk) = N(xk; x̂(i+1)
k|k , P̂(i+1)

k|k ) (80)

where x̂(i+1)
k|k and P̂(i+1)

k|k at iteration i + 1 are calculated similarly to (31)–(37).

The cubature points of xk based on x̂k|k−1 and modified P̂(i+1)
k|k−1 are given as:


χ
(i+1)(j)
k|k−1 = x̂k|k−1 +

√
nx

(√
P̂(i+1)

k|k−1

)
(j)

, (j = 1, 2, · · · , nx)

χ
(i+1)(j)
k|k−1 = x̂k|k−1 −

√
nx

(√
P̂(i+1)

k|k−1

)
(j−nx)

, (j = nx + 1, nx + 2, · · · , 2nx)
(81)

Z(i+1)(j)
k|k−1 = h(χ(i+1)(j)

k|k−1 ), (j = 1, 2, · · · , 2nx) (82)

ẑ(i+1)
k|k−1 =

1
2nx

2nx

∑
j=1

Z(i+1)(j)
k|k−1 (83)
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Pzz(i+1)
k|k−1 =

1
2nx

2nx

∑
j=1

[
(Z(i+1)(j)

k|k−1 − ẑ(i+1)
k|k−1)(Z

(i+1)(j)
k|k−1 − ẑ(i+1)

k|k−1)
T
]
+ R̂(i+1)

k (84)

Pxz(i+1)
k|k−1 =

1
2nx

2nx

∑
j=1

[
(χ

(i+1)(j)
k|k−1 − x̂k|k−1)(Z

(i+1)(j)
k|k−1 − ẑ(i+1)

k|k−1)
T
]

(85)

K(i+1)
k = Pxz(i+1)

k|k−1 (Pzz(i+1)
k|k−1 )−1 (86)

x̂(i+1)
k|k = x̂k|k−1 + K(i+1)

k (zk − ẑ(i+1)
k|k−1) (87)

P̂(i+1)
k|k = P(i+1)

k|k−1 − K(i+1)
k Pzz(i+1)

k|k−1 (K(i+1)
k )T (88)

After N fixed point iterations, we can obtain the approximate solution of q(xk), q(Pk|k−1) and q(Rk):

q(xk) ≈ q(N)(xk) = N(xk; x̂(N)
k|k , P̂(N)

k|k ) (89)

q(Pk|k−1) ≈ q(N)(Pk|k−1) = IW(Pk|k−1; t̂(N)
k , T̂(N)

k ) (90)

q(Rk) ≈ q(N)(Rk) = IW(Rk; û(N)
k , Û(N)

k ) (91)

When the measurement model is linear, such as the initial alignment measurement model in (12),
we can obtain the simplified algorithm, where (66) and (81)–(89) are formulated as follows:

B(i)
k =E(i)[(zk − Hxk)(zk − Hxk)

T ]

=E(i)[(zk − Hx̂(i)k|k + Hx̂(i)k|k − Hxk)(zk − Hx̂(i)k|k + Hx̂(i)k|k − Hxk)
T ]

=(zk − Hx̂(i)k|k)(zk − Hx̂(i)k|k)
T + HP(i)

k|k HT

(92)

K(i+1)
k = P̂(i+1)

k|k−1 HT(HP̂(i+1)
k|k−1 HT + R̂(i+1)

k )−1 (93)

x̂(i+1)
k|k = x̂k|k−1 + K(i+1)

k (zk − Hx̂k|k−1) (94)

P̂(i+1)
k|k = P̂(i+1)

k|k−1 − K(i+1)
k HP̂(i+1)

k|k−1 (95)

The implementation pseudocode of the proposed adaptive cubature Kalman filter is shown in
Algorithm 1.

To implement the proposed ACKF method, we need to select the tuning parameter τ, the forgetting
factor ξ, and the iteration number N. Tuning parameter τ can be seen as an adjustment parameter of P̃k|k−1.
If τ is too large, the prior uncertainties induced by nominal Q̃k will influence the measurement update.
If τ is too small, the information of the process model will be also lost. According to the research result
of [27], the optimal range of the turning parameter is τ ∈ [2, 6], which has better estimation performance
and estimation accuracy. The forgetting factor ξ also adjusts the influence of R̂k−1. Note that ξ = 1 means
the stationary measurement noise covariance. A large iteration number N will improve the estimation
accuracy, but also increase the computational cost. According to our experience, N > 5 will have good
performance in the alignment.
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Algorithm 1: One-step of the proposed adaptive cubature Kalman filter.

Inputs: x̂k−1|k−1, Pk−1|k−1, zk, ûk−1|k−1, Ûk−1|k−1, Q̃k−1, τ, ξ, N.
Time update
1. Calculate cubature points based on x̂k−1|k−1 and Pk−1|k−1.

2. χ
x(j)
k|k−1 = f (χ(j)

k−1), (j = 1, 2, · · · , 2nx).

3. x̂k|k−1 = 1
2nx

∑2nx
j=1 χ

x(j)
k|k−1.

4. P̃k|k−1 = 1
2nx

∑2nx
j=1

[
(χ

x(j)
k|k−1 − x̂k|k−1)(χ

x(j)
k|k−1 − x̂k|k−1)

T
]
+ g(x̂k|k−1)Q̃k−1g(x̂k|k−1)

T .
Iterated measurement update
5. Initialization: x̂(0)k|k = x̂k|k−1, P̂(0)

k|k = P̃k|k−1, T̂k|k−1 = τP̃k|k−1,t̂k|k−1 = nx + τ + 1,

ûk|k−1 = ξ
(

ûk−1|k−1 − nz − 1
)
+ nz + 1, Ûk|k−1 = ξÛk−1|k−1.

For i = 0 : N − 1
6. Update q(i+1)(Pk|k−1) = IW

(
Pk|k−1; t̂(i+1)

k , T̂(i+1)
k

)
,

t̂(i+1)
k = t̂k|k−1 + 1, T̂(i+1)

k = A(i)
k + T̂k|k−1, where A(i)

k = P(i)
k|k + (x̂(i)k|k − x̂k|k−1)(x̂(i)k|k − x̂k|k−1)

T .

7. Update q(i+1)(Rk) = IW
(

Rk; û(i+1)
k , Û(i+1)

k

)
,

û(i+1)
k = ûk|k−1 + 1, Û(i+1)

k = B(i)
k + Ûk|k−1, where B(i)

k = (zk − Hx̂(i)k|k)(zk − Hx̂(i)k|k)
T + HP(i)

k|k HT .

8. Update q(i+1) (xk) = N(xk; x̂(i+1)
k|k , P̂(i+1)

k|k ),

P̂(i+1)
k|k−1 =

(
(t̂(i+1)

k − nx − 1)(T̂(i+1)
k )−1

)−1
, R̂(i+1)

k =
(
(û(i+1)

k − nz − 1)(Û(i+1)
k )−1

)−1
.

9. Calculate the mean and variance of posterior PDF,
K(i+1)

k = P̂(i+1)
k|k−1 HT(HP̂(i+1)

k|k−1 HT + R̂(i+1)
k )−1,

x̂(i+1)
k|k = x̂k|k−1 + K(i+1)

k (zk − Hx̂k|k−1),

P̂(i+1)
k|k = P̂(i+1)

k|k−1 − K(i+1)
k HP̂(i+1)

k|k−1 .
End for
10. x̂k|k = x̂(N)

k|k ,Pk|k = P̂(N)
k|k , ûk|k = û(N)

k , Ûk|k = Û(N)
k .

Outputs: x̂k|k, Pk|k, ûk|k, Ûk|k.

4. Simulation and Vehicle Experiment of SINS

4.1. Simulation

Firstly, the simulation is given as follows. Through the designed trajectory of the carrier, the outputs
of the gyroscope and accelerometer with errors could be obtained according to their mathematic models.
In addition, by adding errors into the true velocity and position of the trajectory, the measurements
for initial alignment were built as the output of a virtual GPS receiver. The simulation process can be
summarized as the following block diagram which is shown in Figure 2.

The initial latitude and longitude of the carrier were set as 45.776 ◦N and 126.446 ◦E, respectively.
The constant velocity was set as 10 m/s. The motion of the carrier was set as the typical swing process
based on the sine function:

pitch = pitchm sin(2πkTs/Tp + pitch0) + pitchI
roll = rollm sin(2πkTs/TR + roll0) + roll I
heading = headingm sin(2πkTs/TH + heading0) + headingI

 (96)

where pitchm, rollm, and headingm are swing amplitudes, which were selected as pitchm = 5◦, rollm = 6◦,
and headingm = 7◦; Tp, TR, and TH are swing periods, which were selected as Tp = 7 s, TR = 8 s,
and TH = 9 s; pitch0, roll0, and heading0 are initial swing phases, which were selected as pitch0 = 0◦,
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roll0 = 0◦, and heading0 = 0◦; pitchI, roll I, and headingI are initial attitude angles, which were selected
as pitchI = 0◦, roll I = 0◦, and headingI = 45◦; Ts = 0.01 s is the discrete time of the system. The initial
misalignment angles were set as φ = [5◦; 5◦; 15◦]. The nominal sensor specifications of SINS in the
simulation were set as the practical SINS, which are shown in Table 1.

Figure 2. The block diagram of the simulation process.

Table 1. The nominal sensor specifications of the strapdown inertial navigation system (SINS).

Parameters Value

Gyroscope bias stability 0.01◦/h
Gyroscope angular random walk 0.1◦/h(

√
s)

Accelerometer bias stability 10−4g
Accelerometer velocity random walk 10−5g(

√
s)

Based on the parameters in Table 1, the nominal state noise covariance matrix was set as Q̃k =

Tsdiag([0.1◦/h(
√

s)I3×3; 10−5g(
√

s)I2×2; 07×1])
2. The nominal measurement noise covariance matrix was set

as R̃k = diag([0.1m/sI2×2; arctan(10m/Re)I2×2])
2. Considering that the true Qk was always larger than the

nominal value due to the external disturbance such as vibration and the slowly time varying characteristic,
the true Qk was set as Qk = [1 + 0.1 cos(πkTs

Hn
)]Tsdiag([1◦/h(

√
s)I3×3; 10−4g(

√
s)I2×2; 07×1])

2, where

Hn = 100s denotes the simulation time. The true Rk was set as Rk = [1 + 0.1 cos(πkTs
Hn

)]diag
([0.01m/sI2×2; arctan(1m/Re)I2×2])

2. Existing UKF [18], CKF [14], the Sage–Husa adaptive Kalman
filter (SHKF) [26], and CKF with true noise covariance matrices (TCKF) were selected to compare
the performance with the proposed ACKF method. For the proposed ACKF, the tuning parameter,
forgetting factor, and iteration number were set as τ = 5, ξ = 0.98, and N = 10, respectively.
The initial state was set as x̂0|0 = 012×1. The initial state error covariance matrix was set as
P0|0 = diag([5◦; 5◦; 15◦; 0.1m/sI2×2; arctan(10m/Re)I2×2; 0.01◦/hI3×3; 10−4gI2×2])

2. The frequency of
measurement updating was set as 10 Hz. The total number of Monte Carlo runs was set as M = 30.
Furthermore, to evaluate the estimation accuracy of Pk|k−1 and Rk, the square root of normalized Frobenius
norm (SRNFN) was used, which is defined as follows:

SRNFNP =

(
1

n2
x M ∑M

m=1

∥∥∥P̂m
k|k−1 − P̄m

k|k−1

∥∥∥2
) 1

4

SRNFNR =
(

1
n2

z M ∑M
m=1

∥∥R̂m
k − Rm

k

∥∥2
) 1

4

(97)

where P̄k|k−1 means the accurate one step predicted state error covariance matrix provided by TCKF.
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The alignment errors of different methods are shown in Figure 3. The average alignment errors in the
latter 20 s are shown in Table 2. The results of SRNFNs are shown in Figure 4. Note that due to the bad
stability of SHKF, its simulation results are not shown in the following simulation. It was because that
when the error covariance matrices of the state model and measurement model needed to be estimated
simultaneously, the estimation accuracy of SHKF was poor, and its stability was heavily influenced by the
non-positive definite of noise covariance matrices.
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Figure 3. Alignment errors of different methods. TCKF, Kalman filter with true noise covariance matrices;
ACKF, adaptive cubature Kalman filter.
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Figure 4. Square root of normalized Frobenius norms (SRNFNs) of Pk|k−1 and Rk.
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Table 2. Average alignment errors of different methods in the latter 20 s.

Methods Pitch Roll Heading

TCKF 0.0001◦ 0.0001◦ 0.0214◦

UKF −0.0003◦ −0.0003◦ −0.1177◦

CKF 0.0002◦ 0.0010◦ 0.3119◦

ACKF 0.0001◦ 0.0002◦ 0.0283◦

From the results of simulation, it can be seen from Figure 3 that the proposed ACKF had better
alignment accuracy than the existing CKF and UKF, and its alignment error was close to the error from
TCKF. This was because the proposed ACKF could adaptively estimate Pk|k−1 and Rk and eliminate the
influence of the inaccurate noise covariance information. It also can be seen from Figure 4 that the proposed
ACKF had smaller SRNFNs than the existing CKF and UKF. In the conventional Kalman filter, Pk|k−1
represents the predicted error based on the measurement information z1:k−1. Due to the inaccurate noise
covariance matrices of the state and measurement, the conventional filters relied on the wrong information.
Thus, the convergence speed and estimation accuracy of CKF and UKF were lower than those of TCKF
and ACKF.

To further discuss the influence of the parameters used in the proposed ACKF, simulations with
different tuning parameters τ, forgetting factors ξ, and iteration numbers N were conducted.

Tables 3–5 show respectively the estimation errors with different τ, ξ, and N. It can be seen that the
proposed ACKF had a consistent estimation performance when τ ∈ [2, 6], ξ = 0.96, 0.97, 0.98, 0.99 and
N > 5, which also corresponded to the aforementioned analyses.

Table 3. Average alignment errors with different tuning parameters τ (ξ = 0.98 and N = 10).

Parameters Value Pitch Roll Heading

τ

τ = 2 0.0001◦ 0.0001◦ 0.0267◦

τ = 3 0.0001◦ 0.0002◦ 0.0275◦

τ = 4 0.0001◦ 0.0002◦ 0.0279◦

τ = 5 0.0001◦ 0.0002◦ 0.0289◦

τ = 6 0.0002◦ 0.0003◦ 0.0302◦

Table 4. Average alignment errors with different forgetting factors ξ (τ = 5 and N = 10).

Parameters Value Pitch Roll Heading

ξ

ξ = 0.96 0.0001◦ 0.0001◦ 0.0262◦

ξ = 0.97 0.0001◦ 0.0001◦ 0.0266◦

ξ = 0.98 0.0001◦ 0.0002◦ 0.0284◦

ξ = 0.99 0.0002◦ 0.0002◦ 0.0289◦

Table 5. Average alignment errors with different iteration numbers N (τ = 5 and ξ = 0.98).

Parameters Value Pitch Roll Heading

N

N = 5 0.0002◦ 0.0003◦ 0.0463◦

N = 10 0.0001◦ 0.0001◦ 0.0286◦

N = 20 0.0001◦ 0.0001◦ 0.0278◦

N = 30 0.0001◦ 0.0001◦ 0.0263◦
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4.2. Vehicle Experiment

Secondly, a vehicle experiment was performed to validate the performance of the proposed ACKF
method in practice. The photonics inertial navigation system (PHINS) produced by the company IXSEA
France, a self-made SINS, and the antenna of GPS receiver were mounted on the car as shown in Figure 5.

Figure 5. The experimental setup of the vehicle experiment.

The self-made SINS had a three axis fiber optic gyroscope and accelerometer to measure body
angular rate and specific force, respectively. The theoretical sensor specifications of SINS were the same
as the simulation in Table 1. The GPS receiver could provide position and Doppler derived velocity
measurements to carry out initial alignment and integrate with PHINS to constitute a high accuracy
attitude reference system for SINS. The lever arm and the installation error angles between SINS and
PHINS were compensated. The output frequency of SINS and PHINS/GPS integrated navigation system
were 100 Hz and 10 Hz, respectively. The root mean square of the attitude accuracy of the PHINS/GPS
integrated navigation system was 0.01◦ for roll and pitch angles and 0.01◦ sec(L) for the heading angle.
Because of the uncertainty of the sensor parameters of SINS and the influence of external disturbance
in motion conditions, we could not obtain the accurate sensor parameters, which determined the state
noise covariance values in the Kalman filter. Therefore, the theoretical sensor parameters were nominal
and inaccurate in the practical environment. The experiment was carried out in an urban area (45.776◦ N,
126.446◦ E), and the running stage continued for 1850 s, including two parts: smooth running stage (0 s
to 735 s) and maneuvering stage (735 s to 1850 s). The running trajectory, attitude, and velocity of the
car provided by the PHINS/GPS integrated navigation system are shown in Figures 6–8, respectively.
It can be seen that the car had frequent turn movements in the severe maneuvering stage, which would
subsequently induce the uncertain sensor parameters of SINS. Therefore, the data of this running stage
could better verify the effectiveness of the proposed ACKF method.

Normally, the initial attitude matrix of SINS was set as the identity matrix. However, this may not
induce the large misalignment angles sometimes. Therefore, the additional large misalignment angles,
which were set as φ = [5◦; 5◦; 15◦], were added into the reference initial attitude matrix of PHINS/GPS
integrated navigation system to make up the initial attitude matrix of SINS. The nominal state noise
covariance matrix Q̃k and nominal measurement noise covariance matrix R̃k were set the same as the
simulation. The tuning parameter, forgetting factor, and iteration number were set as τ = 5, ξ = 0.98,
and N = 10, respectively. Firstly, to compare the performance of the proposed ACKF and the existing
methods, we used the whole data to simulate the initial alignment process. Because the true noise
covariance matrices were unknown in the practical environment, the calibration results of SINS as shown
in Table 1 were selected as the parameters of the filters. The alignment errors of these methods are shown in
Figure 9. From the results of the experiment, it can be seen that the performances of ACKF, UKF, and CKF
were similar in the smooth running stage, which was because the preset nominal values were close to the
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true values for the high accuracy SINS. However, in the maneuvering stage, the performances of UKF and
CKF were worse than the proposed ACKF, especially the heading angle error, which is because the noise
covariance matrices were changing when the carrier was maneuvering, which had a severe influence on
the alignment accuracy.
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Figure 8. Vehicle experiment velocity.
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Figure 9. Alignment errors in the whole test.

Secondly, because the alignment times were very short, we selected six different segments in the
whole test data, including smooth segments (0 s to 100 s, 200 s to 300 s, 500 s to 600 s) and maneuvering
segments (800 s to 900 s, 1300 s to 1400 s, 1700 s to 1800 s). The alignment errors of these methods are
shown in Figures 10–15, where Figures 10–12 are the results in the smooth segment and Figures 13–15
are the results in the maneuvering segment. The average alignment errors in the latter 20 s are shown in
Tables 6 and 7.
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Figure 13. Alignment errors in the maneuvering segment of 800 s to 900 s.
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Figure 14. Alignment errors in the maneuvering segment of 1300 s to 1400 s.
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Table 6. Average alignment errors in the smooth segment.

Segments Methods Pitch Roll Heading

0 s to 100 s
UKF 0.005◦ 0.016◦ −0.015◦

CKF 0.004◦ 0.016◦ −0.040◦

ACKF 0.006◦ 0.015◦ −0.013◦

200 s to 300 s
UKF −0.014◦ 0.022◦ 0.026◦

CKF −0.014◦ 0.021◦ 0.058◦

ACKF −0.013◦ 0.020◦ 0.014◦

500 s to 600 s
UKF −0.010◦ 0.005◦ −0.594◦

CKF −0.010◦ 0.005◦ −0.607◦

ACKF −0.009◦ 0.008◦ −0.303◦

Table 7. Average alignment errors in the maneuvering segment.

Segments Methods Pitch Roll Heading

800 s to 900 s
UKF −0.002◦ 0.006◦ −0.127◦

CKF −0.003◦ 0.006◦ −0.126◦

ACKF −0.002◦ 0.001◦ 0.060◦

1300 s to 1400 s
UKF 0.081◦ 0.011◦ 0.186◦

CKF 0.083◦ 0.011◦ 0.265◦

ACKF 0.075◦ −0.004◦ 0.028◦

1700 s to 1800 s
UKF −0.013◦ 0.006◦ −0.489◦

CKF −0.014◦ 0.005◦ −0.415◦

ACKF −0.012◦ 0.011◦ −0.186◦

According to Figures 10–15 and Tables 6 and 7, it can be seen that the proposed ACKF always had
better performance than UKF and CKF. This was because the proposed ACKF could better estimate the
measurement noise covariance matrix and the one step prediction covariance matrix influenced by the
state noise covariance matrix. Besides, combined with the heading angle curve in Figure 7, we can find
that, when the car was making a turn, the performance of these three methods was becoming worse
simultaneously. That was because the residual scale error and dynamic error of initial sensors in the
turning process were large and would degrade the accuracy of initial alignment. However, the proposed
ACKF could quickly converge when the turning process ended. Therefore, compared with the traditional
methods and existing adaptive methods, we could conclude that the proposed ACKF had better stability
and estimation accuracy, which could eliminate the influence of the uncertain state noise covariance matrix
and measurement noise covariance matrix.

5. Conclusions

This paper proposed a novel adaptive cubature Kalman filter based variational Bayesian method to
solve the alignment problem of SINS with initial large misalignment angles and uncertain noise covariance
matrices. The one step predicted error covariance matrix and measurement noise covariance matrix were
adaptively estimated together. Simulation and vehicle experiment results illustrated that the proposed
ACKF had better stability and estimation accuracy than the existing adaptive filter methods and traditional
nonlinear filter methods.
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