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Abstract
Disease spreads as a result of people moving and coming in contact with each other. Thus

the mobility patterns of individuals are crucial in understanding disease dynamics. Here we

study the impact of human mobility on HIV transmission in different parts of Kenya. We

build an SIR metapopulation model that incorporates the different regions within the coun-

try. We parameterise the model using census data, HIV data and mobile phone data

adopted to track human mobility. We found that movement between different regions

appears to have a relatively small overall effect on the total increase in HIV cases in Kenya.

However, the most important consequence of movement patterns was transmission of the

disease from high infection to low prevalence areas. Mobility slightly increases HIV inci-

dence rates in regions with initially low HIV prevalences and slightly decreases incidences

in regions with initially high HIV prevalence. We discuss how regional HIV models could be

used in public-health planning. This paper is a first attempt to model spread of HIV using

mobile phone data, and we also discuss limitations to the approach.

Introduction
Since the emergence of HIV/AIDS, modelling its dynamics has been dealt with extensively by
many researchers. The basic approach is to describe the population in terms of three states:
those who have not contracted HIV, susceptible, those who have HIV and remain sexually
active, infectious and those individuals who are no longer engaged in spreading the disease,
removed. This style of SIR model has been widely used to capture the dynamics of diseases, by
for example [1–5] and in many other articles. For HIV, the SIR model is also applied, but with
the assumption that infected individuals do not recover from the disease but rather stop being
infectious [6–10]. SIR models consider the dynamics of diseases to depend only on the individ-
ual status like susceptible, infected or removed.

Under the standard SIR model, the transmission rates, infection periods, contact patterns
and removed rates do not account for the spatial spread of the diseases. In this standard ver-
sion, they ignore variations in demographic, social, cultural, economic and geographic factors
[4, 11]. In reality, however, the spread of HIV is highly associated with geographic factors, such
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as population mobility, as well as the accessibility of and the proximity between infected areas
[12]. Human mobility can be seasonal, short term and long term [13, 14]. Several studies have
shown that migrant workers in urban areas can spread HIV to rural areas [15, 16]. For exam-
ple, in South Africa, men who had moved away from a rural area to an urban area were twice
as likely to have HIV than those still living in the rural area [12]. These migrant workers would
regularly return to the rural area, potentially spreading the virus. Likewise, areas associated
with high human mobility such as commercial farms and agricultural estates, mining areas,
business centres and residential areas along busy roads have been connected to an increase in
HIV infections [17–21]. Not all migrations appear to increase HIV transmission, and other
studies have reported that the rural-urban migrations have little or no link to HIV risk [22, 23].
Overall, however, it appears that short-term human mobility, for example return visits from
work to home town, are associated with high-risk behaviour. The migration to urban areas
leads to an increased chance of interacting with individuals who are at higher-risk of being
HIV infected, like sex workers [13, 14, 24]. Return visits to a home town then provide further
spread of the disease.

Mathematical models that capture spatial scale for the spread of diseases dynamics are usu-
ally referred to as metapopulation models. In metapopulation models, the area under study is
divided into different regions according to geographic positions. The distinct regions could be
cities, towns or villages. The regions are connected by people travelling between them. Various
studies have incorporated metapopulations in disease dynamics [25–30]. For example, Satten-
spiel and Dietz [31], used a metapopulation model to show that increase in human mobility
was associated with an increase of the spread of measles in the West Indian island of Dominica.
Travel networks have very complex influence on disease dynamics, since they may fuel or may
help disease extinction [29]. For example, Arino et al [32] used a two-region metapopulation
model to study the influence of travel rates with respect to the stability of influenza. They
observed that, for isolated regions, the disease in one of the regions approached the disease-free
equilibrium while in the other region it approached the endemic. Introducing very small move-
ments between the regions, the disease in all regions approached the endemic state. On increas-
ing the movements rates, influenza died out in all the regions.

There have been a few earlier metapopulation models of the impact of human mobility on
spread of HIV/AIDS. In one example, Coffee et al [13] looked at the impact of migration on
the HIV epidemic in South Africa. They reported that, migrations when coupled to increased
risk behaviour, have a causal effect on the increase of HIV. In a modelling study, Smith? et al
[33] reported that, in order to globally eradicate HIV/AIDS, the money spent and other
resources must aim at eradicating HIV/AIDS in all regions, since human mobility has an effect
of sustaining the infections. However, the extent to which human mobility impacts the trans-
mission of HIV infections still needs to be studied further. For example, one counterintuitive
finding by Xiao et al [34], is that an increase in mobility rates among HIV/AIDS-infected indi-
viduals on mainland China decreased HIV infections in the country. Once again, it appears
that there is a need to develop metapopulation models that are well-designed in order to clearly
explain the impact of human mobility.

The purpose of this work is to develop a metapopulation model of the impact of human
mobility to the transmission of HIV/AIDS. We modify the metapopulation model of Keeling
and Rohani [35]. This model does not include a removed class, as is typical in HIV models. We
thus introduce the removed class, which incorporates individuals who are in AIDS status and
are no longer transmitting the disease. The model is parametrised using demographic data
from Kenya at the time of the 2009 census [36] and the world bank data [37]. The rates of mov-
ing between regions is estimated from mobile phone data collected by Wesolowski et al [38].
Infection rate is estimated from Kenya HIV data KAIS 2007 [39] and the disease progression
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rate is adopted from the work of Baryama et al [9]. These data allow us to set up a full metapo-
pulation HIV model for Kenya.

Our study builds on the work of Wesolowski et al [38], in analysing the impact of human
mobility on malaria in Kenya. They used mobile phone data to track the regional travel of peo-
ple between June 2008 and June 2009. Every call or message made by each user was mapped to
one of 11,920 cell towers located in different regions in the country. From the call, an individual
was assigned a primary settlement where they spent the majority of their night time. Using the
primary settlements, they estimated the average monthly regional travel. We use their monthly
mobility rate to study the impact of human mobility on HIV infections in Kenya.

Methods
We now present a SIR metapopulation model for the dynamics of HIV/AIDS, following closely
a model presented by Keeling and Rohani [35]. The adult population in region i is divided into
susceptible Si, Infectious Ii and Removed Ri, so that the total adult population in the region i is
Ni = Si + Ii + Ri. The exposed period from time of HIV infection to a stage when infected indi-
vidual becomes infectious is very short, so that when an individual acquires infections, immedi-
ately becomes infectious [40–43]. For this reason, we use the SIR model. The dynamics of each
sub-population includes only individuals aged 15–64 years only, because this is the group of
individuals who are sexually active, hence susceptible to HIV infections.

To include different regions in our model, we define Sij, Iij, Rij and Nij to be respectively the
number of Susceptible, Infectious, Removed and total adult individuals currently visiting
region i but who live in region j. For example, infected individuals working and spending most
of their time in region j and going back to visit their family in region i are denoted Iij. We
assume a homogeneous mixing of individuals within the regions, meaning that any infectious
individual has the same probability of transmitting the disease to any susceptible individual in
the population. We define lji to be the per individual rate per year of moving from region i to
region j. We assume that r is the rate of return from visits to another region, which is assumed
to be independent of the regions travelled between. We define Ni ¼

P
j

Nij ¼
P
j

Sij þ
P
j

Iij þP
j

Rij ¼ Si þ Ii þ Ri to be the total adult population who are currently in region i.

We assume that the basic parameters governing the effects of the disease and population
demographics are the same in all regions. We further assume that individuals return to their
home region before departing for another region and there is no permanent migration and
emigration between the sub-populations, so that individuals travel to other sub-population
occasionally. In addition, we assume that the recruitment into classes occurs within home
regions; i.e., Sii is the only term that increases through population growth.

The susceptible class in region i are those newly-recruited into the sexually active cohort at
the rate νi = ν × pi individuals per year and the total susceptible individuals returning in region
i from region j at the rate

P
j

rSji individuals per year, where ν is the countrywide population

growth rate and pi is the proportion of the total adult population living in region i. Susceptibles

are lost by becoming HIV infected at the rate Siibi

P
j
IijP

j
Nij
, by dying of natural causes at the rate

μSii and the total Susceptible individuals moving from region i to region j at a rate
P
j

ljiSii indi-

viduals per year respectively. Here βi is the HIV transmission parameter or transmission proba-
bility for region i.
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The equation describing the dynamics of the susceptible individuals Sii in region i is given
by

dSii
dt

¼ ni � biSii

P
jIijP
jNij

� Sii
X

j

lji þ
X

j

rSji � mSii: ð1Þ

Susceptible individuals from region j who are current in region i are recruited by the rate
which is governed by the number of people who move out from region j, at the rate lij Sjj and
those returning to regional j at the rate rSij individuals per year respectively. The susceptible are

lost by natural death at the rate μSij and those acquiring HIV infections at the rate biSij

P
j
IijP

j
Nij

individuals per year respectively. Similarly, the equation describing the dynamics of the suscep-
tible individuals Sij in region i is given by

dSij
dt

¼ �biSij

P
jIijP
jNij

þ lijSjj � rSij � mSij: ð2Þ

The infectious population Iii is recruited at a rate biSii

P
j
IijP

j
Nij
and those returning at a rate

P
j

rIji individuals per year respectively. Infectious are respectively reduced by those who die

naturally at the rate μIii, those who die due to the disease at the rate δii Iii, those who progress
to the removed class at the rate γii Iii and those travelling out the region at the rate

P
j

ljiIii indi-

viduals per year. Together this gives

dIii
dt

¼ biSii

P
jIijP
jNij

� gIii � Iii
X

j

lji þ
X

j

rIji � mIii � dIii: ð3Þ

The infectious population Iij is recruited by those acquiring HIV infections in region i at the

rate biSij

P
j
IijP

j
Nij
and from those coming for a visit at the rate lij Ijj individuals per year respec-

tively. They are lost due to those who progress to the removed class at a rate γIij, return to
region i at a rate rIij, die naturally at the rate μIij and die due to the disease at the rate δIij indi-
viduals per year respectively. The non-linear ordinary differential equation describing the
dynamics of the infectious individuals Iij in region i is given by

dIij
dt

¼ biSij

P
jIijP
jNij

� gIij þ lijIjj � rIij � mIij � dIij: ð4Þ

The removed individuals Rii are respectively recruited by infectious individuals Iii who prog-
ress to the removed class at a rate γIii and those returning from visits from different regions a
the rate r∑j Rji individuals per year. They are decreased due to those who visit other regions at
the rate lji Rii, die due to the disease at the rate δRi and die naturally at a rate μRi individuals per
year respectively. The non-linear ordinary differential equation describing the dynamics of the
removed individuals Ri in region i is given by

dRii

dt
¼ gIii �

X
j

ljiRii þ r
X

j

Rji � mRii � dRii: ð5Þ
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The removed individuals Rij are respectively recruited by infectious individuals Iij who prog-
ress to the removed class at the rate γIij and those coming for a visit at the rate lij Rjj individuals
per year. They are decreased due to those who return to region j at a rate rRij, die due to the dis-
ease at the rate δii Rij and die naturally at a rate μRij individuals per year respectively. The non-
linear ordinary differential equation describing the dynamics of the infectious individuals Rij in
region i is given by

dRij

dt
¼ gIij þ lijRjj � rRij � mRij � dRij: ð6Þ

The model is summarised in Fig 1.
To compute the basic reproduction number R0 of the system of equations from Eqs (1)–(6),

we only consider equations of the states that include the infected individuals. These equations
are referred to as the infected system [44]. In our model, we have assumed that the susceptible
and the removed classes do not contribute to the transmission of HIV. The only class involved
in the disease transmission is the infectious class. We therefore write the the system that repre-
sents the infectious individuals in a given region and those commuting between these regions

Fig 1. Flow diagram between regions for the SIRmodel with n-patches. For clarity, we consider individuals travelling to another region after returning
home first.

doi:10.1371/journal.pone.0142805.g001
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as follows:

dIii
dt

¼ biSii

P
jIijP
jNij

� giiIii �
X

j

ljiIii þ
X

j

rjiIji � miiIii � diiIii;

dIij
dt

¼ biSij

P
jIijP
jNij

� gijIij þ lijIjj � rijIij � mijIij � dijIij;

dIji
dt

¼ bjSji

P
iIjiP
iNji

� gjiIji þ ljiIii � rjiIji � mjiIji � djiIji;

dIjj
dt

¼ bjSjj

P
iIjiP
iNji

� gjjIjj �
X

i

lijIjj þ
X

i

rijIij � mjjIjj � djjIjj:

ð7Þ

The computation of R0 by the next-generation operator begins with equations of the system
that involve the transmission part describing the production of new infections and then with
those involve transition part, describing changes in state among the infected individuals [45].

The transmission part is represented by

fi ¼

biSii

P
jIijP
jNij

biSij

P
jIijP
jNij

bjSji

P
iIjiP
iNji

bjSjj

P
iIjiP
iNji

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

F ¼ @fi
@X

ðDFEÞ ¼
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�
iiPn

j¼1 Nij
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�
iiPn
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�
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�
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: : : : : 0 0 0 0 0
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biS

�
inPn

j¼1 Nij
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biS

�
inPn

j¼1 Nij
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bjS

�
jiPn

i¼1 Nji
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bjS

�
jiPn

i¼1 Nji
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0 0 0 0 0 : : : : :
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bjS

�
jnPn

i¼1 Nji

: : :
bjS

�
jnPn

i¼1 Nji
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bjS

�
jjPn
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: : :
bjS

�
jjPn

i¼1 Nji

2
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3
7777777777777777777777777777777777777775

:
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Here S� represents the susceptible population at a disease free equilibrium point. Therefore F =
F1 � F2 � . . .� Fn.

The transition part, describing changes in state, is obtained from

vi ¼

giiIii þ
Pn

j¼1 ljiIii �
Pn

j¼1 rjiIji þ miiIii þ diiIii

gijIij � lijIjj þ rijIij þ mijIij þ dijIij

gjiIji � ljiIii þ rjiIji þ mjiIji þ djiIji

gjjIjj þ
Pn

i¼1 lijIjj �
Pn

i¼1 rijIij þ mjjIjj þ djjIjj

0
BBBBBBB@

1
CCCCCCCA
:

V ¼ @vi
@X

ðDFEÞ ¼

kii þ
Pn

j¼1 lji 0 0 �rji : : 0 �rni 0 0

0 kij þ rij 0 0 : : 0 0 0 �lij

: : : : : : : : : :

: : : : : : : : : :

: : : : : : : : : :

0 0 kin þ rin 0 : 0 0 0 �lin

�lji 0 0 kji þ rji : : 0 0 0 0

: : : : : : : : : :

: : : : : : : : : :

: : : : : : : : : :

�ljn 0 0 0 : : 0 0 kjn þ rjn 0

0 0 �rij 0 : : �rnj 0 0 kjj þ
Pn

i¼1 lij

2
66666666666666666666666666666666666664

3
77777777777777777777777777777777777775

:

Here κii = γii + μii + δii, κij = γij + μij + δij, κin = γin + μin + δin, κji = γji + μji + δji, κjn = γjn + μjn +
δjn, and κjj = γjj + μjj + δjj.

Theorem 1: Let A ¼ ½aij� 2 R
n�n have aij � 0 for i 6¼ j. If the sum of the entries in each col-

umn is positive, then A is non-singular m-matrix [46, 47].
By Theorem 1, it can be observed that the matrix V is a non-singular m-matrix; hence V−1

exists.
The basic reproduction number R0 as proposed by van den Driesche andWhatmough [45],

is the the spectral radius of the matrix G = FV−1 = (F1�. . .�Fn)V
−1. So that R0 = max{|λ1, λ2,

. . .λk|, λ1, λ2, . . .λk 2 σ(G)} = σ(G).
In this case, the basic reproduction numbers can not be written explicitly. However, it can

be observed that the basic reproduction number depends on the travel rates, demographic and
the epidemic parameters. Therefore, given the set of parameter values and the travel rates, R0
can be computed numerically.
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Note that, in the absence of mobility and regions (with βi = β, lij = 0 and r = 0), the model is
reduced to the standard SIR model

dS
dt

¼ n� bS
I
N
� mS;

dI
dt

¼ bS
I
N
� ðgþ mþ dÞI;

dR
dt

¼ gI � ðmþ dÞR;
dN
dt

¼ n� mN � dI � dR:

ð8Þ

which has R0 ¼ b
dþmþ g as the basic reproduction number.

Model Parameters
We start with the disease-related parameters, which are assumed to be the same for all regions.
The progression rate from HIV to AIDS denoted by γ is 0.06897< γ< 0.3846; this is because
the HIV incubation period is between 2.6 to 14.5 years; [48]. The life expectancy in the AIDS
class is about 8 years, so the HIV/AIDS-induced death rate δ is�0.125 [9]. The average life
expectancy at birth of Kenya from 1960 to 2011 is about 57.9 years (see S1 Table), so the natu-
ral death rate μ is approximated to be 0.01727 per year and the average growth rate ν of Kenya
from 1960 to 2011 is estimated to be 0.031648 [37].

We then look at the population and movement parameters. S2 Table gives the adult popula-
tion for 2009 [36] and the estimate of people infected with HIV in 20 regions of Kenya for 2007
[39]. The rate at which individuals from region j visit region i, denoted by lij individuals per
year, is estimated from the monthly average number of trips per 1000 individuals over the
course of the year (see S3 Table). The data is then divided by 1000 to get the average number of
trips for an individual per year. We assume that visits last on average one week, so r = 52.
Mobile phone data does not allow us to estimate this parameter more accurately, so we take
this estimate as a starting point.

A challenge is to estimate the spread of the infection in various regions. In the absence of
regional variation, this can be estimated from the basic reproduction number R0. Specifically, if
we assume that Eqs (1)–(6) have no regions and movement terms (i.e. lij = r = 0) we then have
βi = β and

b ¼ R0ðgþ dþ mÞ:

The estimates of the HIV basic reproduction number R0 worldwide is not clearly set. How-
ever, the available estimates varies much from country to country. In some countries, their esti-
mates are very small and are even below one. For example, the HIV basic reproduction
number for men having sex with men in Denmark is reported to be between 0.44 and 0.6, in
Norway it is between 0.57 and 1.27, and in Sweden it is between 0.36 and 0.95 [49]. But in
other countries, the estimates are above one. For example, in West Germany, the HIV R0 is
reported to lie between 3.43 and 4.08, in France it is between 3.38 and 3.381, and in the UK it is
between 3.38 and 3.96 [50]. At the moment, we do not have good estimates of the basic repro-
duction number of HIV in Kenya. However, a study by Williams and Gouws [51] has reported
that the R0 for HIV for some African countries ranges between 1.94 and 8.93, and Kenya hav-
ing 6.3 as an estimate of the HIV R0 and the median value being 4.6 for sub-Saharan African
countries. This shows that much work is needed to decrease the basic reproduction number
below one.
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The absence of good estimates for R0 for both regions and Kenya as a whole limits the analy-
sis we can do. However, we are interested in the role of space in determining the spread of the
disease and to account for differences between regions (i.e. βi 6¼ β). We therefore investigate
two different scenarios, one in which R0 for Kenya as a whole is slightly below one, and the
other where R0 is slightly greater than one. The aim of looking at these two scenarios is to get
an overall understanding of the role of how regional (HIV/AIDS) differences influence the
spread of disease under these scenarios, rather than to give exact predictions of how many peo-
ple will have HIV in the future.

With this background, we set a parameter RB that gives the baseline R0 for Kenya. We then
set the βi for the individual regions to be

bi ¼ RBðgþ dþ mÞ exp Iið0Þ
H

� �
:

where Ii(0) is the initial infectious individuals in region i and H is chosen to be the population
mean of the most populated region, and in this case Nairobi is the most populated region as
shown in S4 Table. The idea here is that those regions that currently have higher levels of infec-
tion have a higher value of disease transmission βi. The choice of H as a rate conversion con-
stant is arbitrary, but it ensures that the βi’s do not become too large.

In order to set the baseline RB for Kenya from the metapopulation model, we plot the bifur-
cation diagram for the SIR model in the absence of movements (i.e., Eq (8)). From Fig 2, we
remark that β� 0.2623 is the threshold value for the existence or nonexistence of the disease
for all regions. Choosing β = 0.22 gives R0 = 0.8388 and choosing β = 0.42 gives R0 = 1.6014.
We therefore set the RB = 0.8388 for R0 < 1 and RB = 1.6014 for R0 > 1.

The prevalence of HIV infections in Kenya is distributed as shown in Fig 3a. Nyanza region,
which includes Homa Bay, Kisumu and Siaya, has the highest percentage (15.5%); followed by
Nairobi with 9.0%; coast region, which includes Lamu, Mombasa, Taita Taveta and Kilifi with
7.9%; rift valley, which includes West Pokot, Laikipia, Trans Nzoia, Narok and Nakuru with
7.0%; western region, which includes Kakamega, Busia with 5.1%; eastern region, which
includes Marsabit, Embu, and Kitui with 4.7%; central region, which includes Nyeri and Kili-
nyaga with 3.8%; and the north Eastern region, which includes Wajir with the lowest adult
HIV prevalences of 1.0% (S4 Table).

In Fig 3b, we see that Nairobi is the main hub of the movements of people from all regions
in Kenya. We also observe that the regions that are less connected seem to have low HIV preva-
lence rates. For example, Wajir region has 1.0% of HIV prevalence and is the list-connected
region.

Results
We first look at our model for the four regions in Kenya with the highest HIV/AIDS preva-
lences: Nairobi, Kisumu, Homa Bay and Siaya [39]. Fig 4 shows the case where RB < 1 so that
the disease is decreasing overall. When human mobility is included, the infectious and the
removed individuals decrease even more rapidly than in the case where no mobility is included
in the model. Homa Bay has a higher percentage of infectious individuals compared to the
other regions, followed by Nairobi and Kisumu. For regions with higher prevalence, the mobil-
ity has a observable but relatively small effect on the disease dynamics. For example, after 8
years if mobility is not included Siaya region has 68,910 infectious individuals, while including
mobility it has 67,790 infectious individuals. This is approximately a 1.6% decrease.

In Fig 5, we plot the results when RB < 1 for the four regions with the smallest initial HIV/
AIDS prevalences: Wajir, Laikipia, Kirinyaga and Marsabit [39]. For these regions, including
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human mobility in the model dynamics slightly increases the number of infectious individuals
in all the selected regions. For example, after 8 years without human mobility, Wajir region has
2,217 infectious individuals, while including human mobility gives 2,334 infectious individuals.
This is approximately a 5% increase. It seems that human mobility tends to increase infectious
individuals in regions with initially low HIV prevalences.

In Fig 6, we plot the results for the regions with the highest HIV prevalence when RB> 1.
Once again, it seems that human mobility tends to slightly decrease the number of infectious
individuals in these regions. For example, if the mobility is not included between the regions,
after 8 years we see that Nairobi has an 567,500 infectious individuals, but if we introduce
mobility in the model, it has an approximate of 536,300 infectious individuals; this is almost a
5.5% decrease. Fig 7 shows the dynamics of the four regions with the lowest initial HIV preva-
lences. It can also be observed that human mobility tends to increase the infectious individuals
in regions with initially low HIV prevalences. For example, after 8 years without mobility,

Fig 2. Bifurcation diagram of the of the system in Eq (8). The solid and dotted lines show the values at which the disease-free equilibrium point is stable
and unstable respectively. The solid curves show the values at which the endemic equilibrium point is stable.

doi:10.1371/journal.pone.0142805.g002
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Marsabit region has 38,550 infectious individuals, while including human mobility gives
39,320 infectious individuals; this is approximately a 2% increase.

Based on the results for the regions above, we see that human mobility decreases new HIV
infections in the regions whose initial HIV prevalence is high and it increases new HIV infec-
tions in regions with low HIV prevalence. To summarise the effect of infections across regions,
we look at the incidence rate. We define the incidence rate as estimated from the log of the gra-
dient of the growth of the infectious class [52, 53]. First we find the increases of Ii for each
region. The solutions follow exponential growth, and we thus transform the solutions by taking
the log. The region with the biggest positive slope corresponds to the region with highest
increase in incidence rate of HIV infectious. The region with biggest negative slope corre-
sponds to the one with the biggest decrease in incidence rate of the HIV infections.

In Fig 8, we plot the incidence rate against the HIV prevalence rate, when there is no mobil-
ity and when there is mobility for RB < 1. It can be seen that human mobility tends to increase
the HIV incidences for the regions with initially low HIV prevalence; at the same time it tends
to decrease the incidence rate of most of the regions with initially high HIV prevalence. Specifi-
cally, with the exception of Narok and Nairobi, it can also be observed that 7% is a threshold
value of initial HIV prevalence above which human mobility decreases the HIV infection rate;
below this value, human mobility tend to increase the HIV infections rate in a region.

In Fig 9, we plot the incidence rate against the HIV prevalence rate for RB> 1. In this case,
mobility increases the incidence rates in regions with low HIV prevalence and also slightly
increases the incidence rates in the regions with high HIV prevalences, but the increase is very
small compared to regions with low HIV prevalences.

We also look at the country-wide impact of human mobility on HIV infections. In Fig 10a,
we plot the difference of the total number of infectious in the country when RB < 1. Mobility
slightly increases the number of infectious individuals in the country as a whole. For example,
without including human mobility between the regions, after 8 years Kenya would have

Fig 3. (a) Map of Kenya showing HIV prevalence distributions. The color bar from blue to red is in the order of
increasing HIV prevalence. For clarity, the names of counties included are the only ones included in this study
(Source of data:ArcGIS.com: shapefile-The 47 counties of Kenya (shapefile by dmuthami S5 Table) and HIV
data from [39]. (b) Human travel networks (S6 Table) as estimated by [38]. Monthly average number of trips
per 1000 individuals between all pairs of regions over the course of the year. For clarity, only trips made per
1000 individuals that are more than 60 trips per year are shown, with arrows indicating the direction of
movements from home region to a visited region. The thickness of the arrow represents the number of trips
made.

doi:10.1371/journal.pone.0142805.g003
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902,300 infectious individuals, while including human mobility between its regions it has 600
additional infectious individuals. This is only a 0.07% increase. For RB > 1, we observe that
human mobility increases the overall number of infectious individuals in the country (Fig 10b).
We observe that, without human mobility in this case, Kenya would have 3,232,000 infectious
individual compared to 3,248,000 infectious individuals with mobility. This gives a difference
of 16,000 infectious individuals, an approximately 0.5% increase.

Discussion
Our results show, using countrywide data, that human mobility can influence to the transmis-
sion of HIV. However, mobility plays a relatively small role. For example, we estimate that,
over an eight year period in Kenya as a whole, it can contribute to about 0.5% additional cases
of HIV. This contribution is even smaller if the disease decreases overall in the population.
These results contrast with some other studies that report a positive correlations between
mobility and the HIV prevalence [19, 54]. For example, a study of east and south Africa long-
distance truck drivers found that mobility is the main contributing factor to the HIV

Fig 4. Time evolution of the metapopulationmodel for (a) Nairobi, (b) Kisumu, (c) Homa Bay and (d) Siaya for RB < 1. The dotted blue lines represent
infectious individuals when there is humanmobility and the solid green lines represent infectious individuals when there is no human mobility between the
regions.

doi:10.1371/journal.pone.0142805.g004
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transmission [55–58]. When a disease first spreads, we also expect mobility to play an impor-
tant role. For example, air-transportation networks have been responsible for the global spread
of severe acute respiratory syndrome (SARS) [59], and, because of the higher mobility in
Europe, pandemic influenza could diffuse rapidly [60]. In our study, in which HIV is already
endemic, overall mobility appears to make only a small difference to the total spread of the dis-
ease in Kenya.

Mobility does play an important role in local dynamics of HIV. Specifically, regions with
initially low HIV prevalences experience an increase in the number of infectious individuals
when mobility is accounted for, while regions with initially high HIV prevalences experience a
slight decrease. Even when the overall trend is for the disease to decrease (i.e RB < 1) human
mobility tends to delay eradication in low prevalence regions, and slightly speed up the eradica-
tion process in regions with high HIV prevalences. When the disease is in an endemic state,
regions with initially low HIV prevalences tend to increase their HIV incidence rates more
than the regions with initially high HIV prevalences. Here our results seem to be in agreement
with other studies, which report that migrant workers in urban areas can spread HIV to rural

Fig 5. Time evolution of the metapopulationmodel for (a) Wajir, (b) Laikipia, (c) Kirinyaga, (d) Marsabit for RB < 1. The dotted blue lines represent
infectious individuals when there is humanmobility and the solid green lines represent infectious individuals when there is no human mobility between the
regions.

doi:10.1371/journal.pone.0142805.g005
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areas on their trips back to their areas of origin [12, 15, 16]. For example, if we compare big cit-
ies, like Nairobi, and small cities, like Kirinyanga, mobility tends to slightly decrease the num-
ber of infectious individuals in the former and slightly increase infections in the latter.
Infectious individuals travel from the most infected, typically urban areas, and infect suscepti-
bles in the least infected, rural areas.

There are also differences between different high prevalence regions. For example, in Nai-
robi, initially infections grow faster than other regions, irrespective of mobility (Fig 6). When
RB< 1, Nairobi converges very slowly to the disease-free equilibrium point compared to other
regions (Fig 4). This can be attributed to the fact that Nairobi is the most populated region in
the country and highly connected to other regions (Fig 3b). This result concurs with other
studies, which associates high HIV infections with high human mobility in areas such as com-
mercial farms and agricultural estates, mining areas, business centres and residential areas
along busy roads [17–21]. It seems that more infectious individuals move from the most
infected areas like Homa Bay, Siaya, Kisumu and other regions to Nairobi.

Fig 6. Time evolution of the metapopulationmodel for (a) Nairobi, (b) Kisumu, (c) Homa Bay and (d) Siaya for RB > 1. The dotted blue represent
infectious individuals when there is humanmobility and the solid green lines represent Infectious individuals when there is no humanmobility between the
regions.

doi:10.1371/journal.pone.0142805.g006
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Our study suggests some policies for controlling HIV. For example, policies should concen-
trate on educating people working in urban areas to take care in their sexual relations while in
the urban area by promoting safe sex, encouraging condom use, reducing the number of sex
partners or reducing risky behaviours like having sex with sex workers [12, 15, 61]. Potentially,
if migrants could travel with their partners to urban areas [14], then this would reduce the
growth of the disease in rural areas. Proper education aimed at promoting behaviour changes
and avoiding risk behaviours is crucial [61, 62].

Several improvements to our model are needed if we wanted to make quantitative predic-
tions about HIV spread across regions. First, we did not account for state-dependent move-
ments, where lij differs for infectious and susceptibles. For example, there is stigmatization and
discrimination of people living with HIV, so infected individuals tend to move away or hide
their HIV status after being diagnosed [63, 64]. Secondly, we did not consider intervention in
our model, through education strategies for example, which could lead to behaviour changes of
susceptible and infectious individuals. Similarly, we do not model precautions taken by individ-
uals who might avoid having sexual relationships with people coming from the highly infected

Fig 7. Time evolution of the metapopulationmodel for (a) Wajir, (b) Laikipia, (c) Kirinyaga, (d) Marsabit for RB > 1. The dotted blue lines represent
infectious individuals when there is humanmobility and the solid green lines represent Infectious individuals when there is no humanmobility between the
regions.

doi:10.1371/journal.pone.0142805.g007
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areas [61, 62]. Including preventative measures would reduce the susceptible populations and
hence decrease new infections. Finally, we treat those individuals who travel as being no more
likely to engage in risky sexual behaviour than other people in the regions they live. Given that
many of the visits from urban to rural areas are made by people who might exhibit more risky
behaviour when living alone in the city [13, 14, 24], our original assumptions may not be
justified.

The human mobility data we used were obtained from mobile phones. Such data can only
be collected in areas where there are cell phone towers; as a result, cross-border migrants were
not captured [38, 65]. Mobile phone data tends to under estimate the number of between-area
visits and can lead to incorrect estimates in the number of clinical outcomes compared to offi-
cial census data [66]. For example, in Kenya, in the urbanised area, malaria transmission esti-
mated from mobile data were higher than the clinical cases, while in the peripheral areas,
malaria clinical cases were higher than those estimated from mobile phone data [38]. Mobile
phone data should be used as a substitute in the case of unavailability of higher-resolution data
and as a useful starting point [66].

In our case, these data have helped us analyse the impact of human mobility on the trans-
mission of HIV in Kenya. This provides a first metapopulation model of how human mobility
can influence HIV/AIDS infections within a country based on the region’s initial HIV

Fig 8. Incidence rate versus prevalence rate. A dot represents the dynamics of HIV infections without humanmobility between the regions and a star
represents the dynamics of HIV infections when there is humanmobility between the regions for RB < 1.

doi:10.1371/journal.pone.0142805.g008
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Fig 9. Incidence rate versus prevalence rate. A dot represents the dynamics of HIV infections without humanmobility between the regions and a star
represents the dynamics of HIV infections when there is humanmobility between the regions for RB > 1.

doi:10.1371/journal.pone.0142805.g009

Fig 10. (a) and (b) show the differences between the total number of infectious individuals when there is
humanmobility and when there is no human mobility within the regions in the country for RB < 1 and RB > 1
respectively.

doi:10.1371/journal.pone.0142805.g010
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prevalence and can be improved on as data becomes available. Despite the minor impact of
mobility observed in this study, mobility should not be underestimated and neglected. We sug-
gest that the health practitioners and policy makers incorporate the impact of human mobility
in the HIV/AIDS transmission-control programmes.
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