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Significance

Nonmedical substance use 
surveillance via social media has 
the potential to provide low-cost 
and more timely insights than 
traditional approaches. However, 
current social media-based 
approaches lack the capability to 
provide fine-grained, 
subpopulation-level statistics. We 
attempted to fill the gap by 
developing natural language 
processing methods to estimate 
the demographic distribution 
(gender, age, and race) of a large 
cohort (N = 288,562) of people 
who reported nonmedical 
prescription medication use on 
Twitter. Automatically derived 
distributions for opioids, 
stimulants, and tranquilizers were 
largely consistent, often with very 
strong correlations, with statistics 
reported in traditional sources 
such as the National Survey on 
Drug Use and Health. Our work 
represents an important stride in 
establishing social media as a 
complementary resource for 
substance use surveillance.
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Traditional substance use (SU) surveillance methods, such as surveys, incur substantial 
lags. Due to the continuously evolving trends in SU, insights obtained via such methods 
are often outdated. Social media-based sources have been proposed for obtaining 
timely insights, but methods leveraging such data cannot typically provide fine-grained 
statistics about subpopulations, unlike traditional approaches. We address this gap 
by developing methods for automatically characterizing a large Twitter nonmedical 
prescription medication use (NPMU) cohort (n = 288,562) in terms of age-group, 
race, and gender. Our natural language processing and machine learning methods for 
automated cohort characterization achieved 0.88 precision (95% CI:0.84 to 0.92) for 
age-group, 0.90 (95% CI: 0.85 to 0.95) for race, and 94% accuracy (95% CI: 92 to 
97) for gender, when evaluated against manually annotated gold-standard data. We 
compared automatically derived statistics for NPMU of tranquilizers, stimulants, and 
opioids from Twitter with statistics reported in the National Survey on Drug Use 
and Health (NSDUH) and the National Emergency Department Sample (NEDS). 
Distributions automatically estimated from Twitter were mostly consistent with the 
NSDUH [Spearman r: race: 0.98 (P < 0.005); age-group: 0.67 (P < 0.005); gender: 
0.66 (P = 0.27)] and NEDS, with 34/65 (52.3%) of the Twitter-based estimates lying 
within 95% CIs of estimates from the traditional sources. Explainable differences 
(e.g., overrepresentation of younger people) were found for age-group-related 
statistics. Our study demonstrates that accurate subpopulation-specific estimates 
about SU, particularly NPMU, may be automatically derived from Twitter to obtain 
earlier insights about targeted subpopulations compared to traditional surveillance 
approaches.

natural language processing | machine learning | Twitter | substance use | toxicovigilance

Substance use (SU), including nonmedical prescription medication use (NPMU), has 
been a major public health problem in the United States (US) for decades. Overdose 
deaths due to SU have steadily increased over the years, regardless of prevention measures 
(1). In 2020, the SU-related overdose death rate increased by 31% from 2019 to 28.3 per 
100,000 population (2), over 20 times higher than the recorded rate in 1980 (1). In the 
12 mo preceding March 2022, over 100,000 SU-related deaths are expected, as per pro-
visional estimates, among the highest ever recorded in a 12-mo period (3). Due to the 
enormity of the SU epidemic, the US government and the White House have announced 
the deployment of unprecedented resources (4).

There are also significant disparities related to SU disorder (SUD) and the associated 
health outcomes. Many recent studies have highlighted the disparities depending on 
socioeconomic status, race/ethnicity, gender identity/biological sex, community, criminal 
history, and healthcare coverage (5–12). For example, studies have shown that non-His-
panic Blacks and Hispanics are less likely to receive buprenorphine treatment compared 
with Whites, and women are less likely than men (11, 13–15). Moreover, non-Hispanic 
Blacks and American Indians and Alaska Natives (AIAN) experienced the highest 
increases in the drug overdose mortality rates in 2019 and 2020 (16), while non-Hispanic 
Blacks experienced a much higher increase in mortality rates due to the coingestion of 
stimulants and opioids compared with non-Hispanic Whites (17). It has also been 
reported that people with lower income, living in non-metro urbanized regions, or who 
are uninsured are more likely to suffer from SUD (18). Multiple disparities may coexist, 
and exacerbate the likelihood of SU/SUD. Consequently, non-Hispanic Blacks, Hispanic/
Latino persons, AIAN, and Native Hawaiian and Other Pacific Islanders (NHOPI), who 
also have low insurance coverage rates, face substantial SUD-related disparities (19). 
Distinct demographic groups may also have their own unique cultural and historical 
contexts and norms, consequently increasing the challenges associated with targeted 
surveillance and response.
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An important aspect of effectively tackling the drug overdose 
epidemic and alleviating disparities is to improve surveillance, 
specifically to accelerate the data curation process to provide 
timely, accurate, and actionable insights (20, 21). Traditional sur-
veillance approaches and/or sources of data include surveys, such 
as those conducted by the National Survey on Drug Use and 
Health (NSDUH) (22), poison control centers (23), hospital data 
about treatment admissions and discharge (24), overdose-related 
emergency department visits (EDV) (25, 26), and overdose death 
records (27). Such traditional surveillance systems have consider-
able lags associated with the cycle of data collection, organization, 
and release. For example, the 2020 NSDUH Annual National 
Report was not available until the end of October 2021. Due to 
such lags, trends in SU/overdose are only detected and understood 
retrospectively, often after considerable damage has already been 
done and/or SU patterns have shifted. The lag is particularly prob-
lematic since the SU/overdose epidemic has been continuously 
evolving over the years. For example, the primary contributor to 
overdose-related deaths in the early 2000s (US) was cocaine, which 
was later taken over by prescription opioids followed by heroin 
(1). Also, in recent years, there have been notable increases in 
deaths due to synthetic opioids (e.g., fentanyl) and psychostimu-
lants (e.g., methamphetamine) (27–30). Reliance on traditional 
surveillance approaches means that the exact current trajectory of 
the epidemic will only be known months from now. Therefore, 
there is an urgent need for accurate, close-to-real-time surveillance 
systems for SU.

To address the shortcomings of traditional approaches, social 
media have been proposed as potential complementary resources 
for timely surveillance (31–33). Over 220 million Americans 
(~70% of the population) use social media, and many discuss 
health-related topics. Discussions of health-related topics 
include self-reported SU and SUD. Theoretically, these publicly 
available discussions can be mined in close to real-time using 
natural language processing (NLP) methods. However, NLP 
of health-related chatter, including SU-related chatter, is hard 
due to various characteristics of the data, such as the presence 
of colloquial expressions, misspellings, and noise. In the space 
of SU/SUD research from social media, researchers have devel-
oped and applied progressively sophisticated methods over the 
last decade. Early research attempted to leverage data from 
online health communities that had dedicated forums for dis-
cussions about nonmedical use (NMU). For example, MacLean 
et al. studied data from an online health community named 
Forum77 to investigate the efficacy of online mutual help 
groups for NPMU associated with opioids (34). Relying on 
online health communities with dedicated forums ensures that 
studies have access to rich data, although the volume of infor-
mation may be low since the subscriber bases of such commu-
nities are not very large. Studies utilizing data from generic 
social networks such as Twitter initially focused primarily on 
deriving insights based on the volume of chatter about specific 
substances. Hanson et al. (35), for example, collected posts 
mentioning “adderall” from Twitter, and demonstrated that the 
volume of posts substantially increases during months when 
college students have their examinations since many such stu-
dents nonmedically use stimulants to enhance performance. 
Graves et al. (36) and Chary et al. (37) combined volume-re-
lated statistics with geolocation metadata on Twitter to demon-
strate that the volumes of opioid-related chatter had some 
correlations with statistics derived from traditional sources such 
as overdose death rates. Sarker et al. (38), showed that only a 
minority of NPMU chatter on social media are first-person 
reports, and they proposed a supervised classification strategy 

to filter out noise and build cohorts of people who report 
NPMU. Correlations with geolocation-specific metrics from 
traditional sources have been shown to be stronger once a super-
vised classification filter is applied (39). While a number of 
studies have been able to leverage metadata accompanying 
social media posts, such as those from Twitter, to obtain geo-
location-specific insights, it has not been possible to group 
insights based on other demographic characteristics. This poses 
a barrier to conducting fine-grained, subpopulation-specific 
research using such data—a clear disadvantage compared with 
the NSDUH and other traditional sources. Ideally, SU surveil-
lance data need to cover the full range of demographics (e.g., 
race, age, gender, and geographical area), and contain sufficient 
granularity to observe subtle differences among different demo-
graphic groups. Methods for accurately and automatically esti-
mating the distributions of key demographic features in social 
media subscriber cohorts can enable fine-grained subpopula-
tion-level analyses and comparisons—a gap we attempt to 
address in this paper.

We describe the development and validation of methods for 
automatically estimating demographic distributions (age-group, 
gender, and race) in a Twitter cohort consisting of subscribers 
who self-reported NPMU. We integrated the methods that we 
developed to establish an end-to-end data-centric cohort char-
acterization pipeline and applied it to the Twitter NPMU 
cohort. To validate our pipeline, we compared the distributions 
estimated from Twitter with those reported in traditional 
sources [NSDUH 2019 (18) and Nationwide Emergency 
Department Sample (NEDS) (40)] for prescription stimulants, 
tranquilizers, and opioid pain relievers. Due to the absence of 
any prior work on this specific topic, our objectives were to 
discover the trends in a purely data-centric manner. That is, we 
attempted to understand the similarities and differences between 
our findings and the statistics reported in traditional sources, 
rather than testing the hypothesis that our system can reproduce 
the same results in the traditional sources or replace the tradi-
tional methods.

Results

Twitter NPMU Cohort. We collected tweets mentioning prescription 
medications and detected self-reported NPMU using a supervised 
classification system that we developed and optimized in our 
prior work (41). Posts were collected from March 6, 2018 to 
April 30, 2021. Our system detected 482,902 NPMU-indicating 
tweets that were posted publicly and extracted their authors’ 
metadata, including post history, if available. In this manner, 
we collected the metadata of 288,562 Twitter subscribers who 
posted the NPMU-indicating tweets, and their past posts (over 
1 billion tweets). We refer to this cohort-level dataset as the 
Twitter NPMU cohort.

Gender, Age, and Race Distribution. The gender, age, and race 
proportions for Twitter subscribers, estimated from the 2018 
Twitter Survey conducted by the Pew Research Center (42), and 
those reported in the US Census (18) are shown in Fig. 1. The 
estimated gender and race proportions from the two sources are 
comparable, while the age proportions are substantially different. 
Compared with the US Census data, Twitter has marginally 
lower proportions of females (4% less) and Whites (1.5% less), 
and more Hispanics (1.5% more) (43). The closeness of the 
proportions from the two sources suggests that Twitter-based 
estimates specific to gender and race may be representative of the 
country’s population. In contrast, in terms of age, Twitter has an 
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overrepresentation of younger people compared with the census 
estimates. Specifically, the proportion of people in the 18 to 25 
group is approximately 10% higher, and the proportion for the 
55+ group is 20% lower on Twitter compared with the census 
estimates. The overrepresentation of younger people on Twitter, 
and social media in general, is a well-known phenomenon. In 
terms of NPMU, the distributions automatically estimated from 
Twitter were mostly consistent with the statistics from NSDUH 
and NEDS, with 34 out of 65 (52.3%) estimates falling within 
the 95% CIs of the metrics reported in the latter sources. We 
provide further details below.

Gender Distribution Estimates. The estimated gender 
proportions from Twitter data and the gender proportions from 
traditional sources, including NSDUH and NEDS, are given 
in Fig. 2 (further details in SI Appendix, Table S1). The three 
categories of medications included were opioid pain relievers, 
tranquilizers, and stimulants. For NPMU of tranquilizers, 
the estimated Twitter proportions are within the 95% CIs 
of the proportions reported in the NSDUH. For stimulants, 
the Twitter proportion estimate for females is slightly higher 
than the NSDUH reported number (~5%). For opioids, the 
estimated proportions are significantly different between Twitter 
and the NSDUH (~10%). Specifically, the proportion of females 
on Twitter is lower than the NSDUH estimates. Interestingly, 
however, we found that the numbers reported by the NSDUH 
also differ in terms of proportions from the opioid-related EDVs 
reported in NEDS, but the estimates from the latter are very 
close to the Twitter proportions (no significant difference). 
This suggests that estimates derived from Twitter may be more 
reflective of overdose-related events rather than NMU for this 
category. Statistical significance in correlation between Twitter 
and NSDUH could not be established because of small N 
(Spearman r: 0.66; P = 0.27).

Race Distribution Estimates. The estimated race proportions 
from Twitter and the proportions from the NSDUH are shown 
in Fig. 3 (further details in SI Appendix, Table S2). The estimated 
distributions are similar between the two data sources, and each 
proportion from Twitter is either within or close to the 95% CI 
of the corresponding proportion reported in the NSDUH. For 
all medication categories, the majority of people who reported 
NMU are White, followed by Hispanic and Black. Asians who 
reported NMU only represent about 4% or less of the cohort; 
AIAN and NHOPI groups each represents less than 1% of the 
cohort. Importantly, the Twitter data had representation from all 
of the minority races. The most prominent differences between 
Twitter and the NSDUH are for the White and Hispanic 
stimulant groups, and for Blacks across all medications (Twitter 
estimates are higher than NSDUH). Overall, the Twitter estimates 
are very strongly correlated with the NSDUH statistics (Spearman 
r: 0.978; P < 0.005).

Age-Group Distribution Estimates. The estimated age-group 
proportions from Twitter data and the proportions from the 
NSDUH are shown in Fig. 4 (details in SI Appendix, Table S3). 
For most age groups, the Twitter and the NSDUH estimates are 
similar, and the overall correlation is strong (Spearman r: 0.673; 
P < 0.005). The most prominent differences are for young adults 
(18 to 20 and 21 to 25) and the elderly (65+). The estimated 
proportions from Twitter are consistently lower for the 18 to 20 
group and higher for the 21 to 25 group. For the 65+ group, 
the estimated Twitter proportion is higher for stimulants, similar 
for tranquilizers, and lower for pain relievers compared with the 
NSDUH numbers. For opioid pain relievers, the estimated Twitter 
proportion for the 21 to 25 group is approximately 10% higher, 
and for the 65+ group, 6% lower compared with the NSDUH. 
For tranquilizers, the estimated Twitter proportion for the 18 to 
20 group is approximately 6% lower compared with the NSDUH, 

Fig. 1. Gender, age, and race proportions estimated from Twitter and those reported in US census.

Fig. 2. Gender distributions for NPMU estimated from Twitter and those reported in the NSDUH. For opioid pain relievers, the gender distribution of overdose-
related emergency medicine visits is also provided. 95% CIs are provided for each bar.

http://www.pnas.org/lookup/doi/10.1073/pnas.2207391120#supplementary-materials
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but the proportions for the 65+ group are not significantly 
different. For simulants, the estimated Twitter proportion for the 
18 to 20 group is approximately 10% lower, and for the 65+ group 
6% higher compared with the NSDUH. We have also compared 
the age-group proportions from Twitter data for the NPMU of 
pain relievers with the proportions from the opioid-related EDVs 
reported in NEDS. The proportions are shown in SI Appendix, 
Fig. S1 and Table S4. We found that the Twitter and the EDV 
estimates are mostly similar (Spearman r: 0.943; P = 0.005), with 
prominent differences for young adults (20 to 24).

Discussion

Our current work automatically estimates the distribution of 
demographic characteristics in a large Twitter cohort—in this case, 
a cohort of subscribers who self-reported NPMU—and compares 
the automatically obtained distributions with those reported in 
traditional sources. Our experiments validate that most of the 
estimates derived from Twitter are consistent with those reported 
in traditional sources, such as the NSDUH and NEDS. The major 
differences were in the age-group-based estimates, specifically for 
young adults (18 to 20, and 21 to 25) and the elderly (65+).

The NSDUH is conducted as a survey among the noninstitu-
tionalized population in the US and thus is limited by the respond-
ents’ truthfulness and exclusion of individuals in hospitals, prisons, 
or even treatment centers (44). It is reported that the respondents 
tend to underreport or overreport on surveys, and this tendency 
is influenced by their demographics including gender, race, or age 
(45–49). For example, among surveyed cocaine users, African 
American, young adults (18–30), and females were found to be 
more inclined to underreport (45). Though Twitter data also rely 
on individual subscribers’ truthfulness and willingness to share, 
we suspect that the default anonymity of Twitter accounts partially 
mitigates demography-specific underreporting than the NSDUH 

and, thus, might even be better suited for analyzing subpopulation 
differences than the NSDUH. We speculate that the closeness of 
the gender and race distributions for Twitter subscribers and the 
US population, as depicted in Fig. 1, is a key reason for the 
Twitter-based estimates to be very close to the NSDUH, while 
the differences might be explained by the under/overreporting 
tendencies. For example, the underreporting tendency of females 
for cocaine might help explain the apparent overestimation of 
female stimulant users on Twitter, and the underreporting ten-
dency of African Americans might be crucial to understand the 
overestimation of African American users for all three medication 
categories on Twitter (45). Similarly, the different tendencies of 
under/overreporting and Twitter usage among distinct age groups 
might contribute to the differences in the age-wise estimates. Also, 
though Twitter data are limited to those who have internet access, 
it may capture a certain portion of the institutionalized or before/
after their institutionalized periods. It is even possible that Twitter 
is less biased against the incarcerated Black population than the 
NSDUH.

Evaluation of Performance as a Surveillance System. Our 
pipeline  is advantageous in its timeliness, flexibility, simplicity, 
and stability. The data collection can be done continuously and 
in near real-time on a personal desktop with internet connection 
while requiring minimal human supervision. Instead of structured 
answers to questionnaires, our collected data contain salient 
unstructured text information, allowing data mining with research 
questions evolving over time. For example, the collected tweets 
contain information regarding how and why the authors are 
using the substances. Collecting similar information from surveys 
usually requires incorporating prior knowledge into question 
design, but that is not necessary for our pipeline. However, since 
the data are usually massive, the data analysis is typically done 
using NLP and machine-learning methods. The advantage is that, 

Fig. 3. Race distributions for NPMU estimated from Twitter and those reported in the NSDUH. 95% CIs are provided for each bar.

Fig. 4. Age-group distributions for NPMU estimated from Twitter and those reported in the NSDUH. 95% CIs are provided for each bar.

http://www.pnas.org/lookup/doi/10.1073/pnas.2207391120#supplementary-materials
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once the tailored scripts are developed, they can often be run 
automatically and on the fly. Expanding the pipeline (e.g., to 
collect cohorts of targeted illicit substances) would only require a 
university informatics team to dedicate a few months from initial 
exploration to operational prototypes. These advantages of our 
system fit perfectly into the CDC’s Data Modernization Initiative, 
Priority 2—Accelerate Data into Action to Improve Decision-Making 
and Protect Health.

Data quality, acceptability, sensitivity, positive predictive value 
(precision), and representativeness of our pipeline are inevitably 
limited by Twitter’s subscriber base and the subscribers’ willingness 
to share their information publicly and truthfully. Demographic 
information is often not disclosed, and we have no method to 
validate the users’ claims. Notably, our data do not rely on memory 
as much as surveys, as the time leap is limited to the time of 
NPMU to the time of posting. Also, we speculate that the Twitter 
subscribers might be more truthful in their self-disclosures because 
they have more power to choose what they are willing to share 
publicly. Therefore, though our method of social media listening 
does have disadvantages, we believe it is an important comple-
mentary surveillance system with high potential.

Related Work. Earlier, we provided a chronological review of related 
literature focusing on social media mining for SU surveillance, so in 
this subsection, we focus our review on demographic information 
detection and analyses from social media data. Our work is not 
the first that aims to detect demographic information from 
social media, although it develops and applies such methods for 
characterizing a specific large cohort. Past studies have proposed 
cohort characterization methods, including gender (50–53), 
age (52, 54–56), and race (57–60). Typically, these pipelines 
comprised supervised classification methods and used subscribers’ 
metadata including names, usernames, bio, past tweets, or even 
images as features. Among these, the gender detection methods 
were reported to be the most accurate, with classifiers achieving 
accuracies above 94% (61). In contrast, race and age estimation 
pipelines proposed in past research had not obtained high 
accuracies. They also often do not provide sufficient granularity. 
The race/ethnicity estimation pipelines reported in the literature 
usually focus only on four categories (White, Black, Asian, and 
Hispanic/Latino) or less, leaving out AIAN and NHOPI (57–60), 
although AIAN has the highest overdose mortality rate among all 
race groups (16, 62). For age detection, the groupings often do 
not match those defined in the NSDUH, making comparative 
evaluations impossible (54–56). Though regrouping is possible for 
a few methods, they were not developed based on Twitter and thus 
may have limited applicability (52). In our work, we developed 
age and race estimation pipelines with high precision and fine 
granularity (11 for age and six for race) based on our Twitter data. 
Due to the paucity of annotated datasets, we applied a search-
based approach that employs text pattern matching for detecting 
self-disclosed age and race. Because there is no gold standard for 
the negative case (i.e., subscribers who have not self-disclosed their 
age or race using the specified pattern), we focused on improving 
precision while maintaining an acceptable retrieval rate. Precision 
is preferred over recall (i.e., some cohort members will be missed) 
since the number of Twitter cohort members is large and growing 
over time, so obtaining sufficient numbers of people from each 
category is not a bottleneck. Specific details about our developed 
algorithms are provided in the Materials and Methods section.

Potential Applications and Future Work. There are several 
aspects of our automatic pipeline that can be improved in the 
future. First, we may be able to improve the performance of 

the classifier that detects the self-disclosures of NPMU. One 
potential route is to examine if the classifier underperforms for 
any demographic group due to different self-disclosure behaviors, 
and then fine-tune the classifier accordingly. Second, we may make 
our findings more reliable by further improving the age group 
and race characterization methods. Three potential directions 
include i) annotating more tweets matched by the text patterns 
(i.e., creating a larger gold standard), ii) enriching the set of the 
text patterns, and/or iii) replacing the rule-based method with 
a machine learning-based classifier. Third, the pipeline can be 
extended to illicit substances, including opioids such as heroin, 
and stimulants such as methamphetamine, enabling its use as a 
more comprehensive surveillance system.

While our work is a significant stride toward moving social 
media from a fringe resource to an important one for SU surveil-
lance, there are further opportunities for future work. As men-
tioned, extending our methods for including illicit substances can 
be an important step. The literature suggests that people who 
report NPMU may also be more likely to be exposed to illicit 
substances (63). The ability to detect self-reported illicit SU com-
bined with our ability to collect and analyze longitudinal data 
about cohort members may enable us to detect common trends 
in the transition from prescription to illicit substances (e.g., from 
oxycodone to fentanyl) and vice versa. Longitudinal data collec-
tion and analysis from the automatically curated cohort may also 
enable us to detect novel psychoactive substances that infiltrate 
these communities (e.g., designer benzodiazepines) faster. 
Compared with the cross-sectional nature of NSDUH, our 
approach enables longitudinal analyses of targeted subpopulations 
that have often been underrepresented in traditional studies. 
Exacerbated by the war on drugs and inequalities in enforcement 
and incarceration, some of these groups are extremely hard to 
reach by traditional means, and consequently, there is now great 
interest in studying data from such groups (64–66). The ability 
to reach these hard-to-reach subpopulations and longitudinally 
track them may also open up opportunities for targeted interven-
tions, an area that has not been explored in past research. 
Interventions, for example, could focus on actively discouraging 
high-risk cohort members from engaging in life-threatening 
behavior or connecting them to their local harm reduction services 
proactively, rather than waiting for them to initiate contact.

Limitations. Our work is largely limited by the data source. The 
demographic distribution of Twitter subscribers is different than 
the US population, especially for certain age groups. Though we 
adjust the estimates according to the 2018 Twitter survey, it only 
partially solves the issue. For people who do not use Twitter or 
do not discuss their NMU, we have no other means to collect 
their data and, thus, there may be groups of people that are not 
represented in our analyses. Also, social media data are noisy and 
may contain false information (e.g., fake races or genders), which 
we have no alternative approach to verify. The reliance on a large 
number of cohort members, however, somewhat mitigates this 
limitation as the impact of small amounts of fake information is 
likely to be minimized or removed. Additionally, tweets are short 
(limited by 280 characters) and consist of colloquial words, posing 
significant limitations on the classifier development, and thus the 
performance of the overall pipeline.

Our proposed methods cannot and should not be used for 
identifying the age group, race, or gender identity of individual 
Twitter subscribers. Their performances are not perfect; so there 
is no guarantee that they will not incorrectly characterize a single 
subscriber. Our methods essentially estimate the distributions of 
demographic information within a given cohort. Due to the large 
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size of the cohort, we anticipate that the small numbers of incor-
rect characterizations are eclipsed.

Finally, an important limitation of our current work is that it 
excludes certain segments of the population who have been under-
represented in past research—such as those with nonbinary gender 
identities. Our current work could not achieve such level of gran-
ularity due to lack of available data. The promising findings from 
our current work is the first step and our planned future work 
includes improving the inclusivity of our analysis (e.g., by inclu-
sion of nonbinary population, the uninsured, and those unreach-
able via traditional means).

Materials and Methods

Twitter NPMU Cohort. Twitter data were collected through a data processing 
pipeline that we have described in past research (41, 67). The components of 
the pipeline include collecting publicly available streaming data about prescrip-
tion medications, classifying the data, and then retrospectively collecting the 
metadata of subscribers who are detected to self-report NPMU. We collected 
English tweets mentioning at least one of over 20 PMs (including generic and 
trade names, and common misspellings) (68) that have the potential for NPMU 
(see SI Appendix, Table S5 and “Note on keywords used for data collection”). The 
full set of keywords used for data collection includes about 600 terms and are 
given in Supplementary Files, “keywords-1.json” and “keywords-2.json” (67) We 
developed annotation guidelines with our domain expert (J.P.), and annotated a 
large subset of 16,443 tweets into four categories: NPMU (tweets indicating that 
the subscribers have nonmedically used the medications or intended to do so), 
consumption (tweets indicating that the subscribers have used the medications 
and containing no sign of NPMU), information (tweets that only mention the 
medications but do not indicate any use), or nonrelevant (usually tweets that 
mention the search keywords but refer to things other than the medications) 
(67). Please see SI Appendix, Tables S6 and S7 for a more detailed description of 
the NPMU class and examples. Please also see our previous articles dedicated 
to the annotations, O’Connor et al. (2020), for more details (67). We used the 
annotated data to train machine-learning classifiers (including SVM, Random 
Forest, Bidirectional Long-Short Term Memory, and several transformer-based 
models), and the best performing classifier is based on RoBERTa-Large (69), a 
transformer-based model, with an accuracy of 82.3% (41). We then deployed the 
best-performing classifier to classify the steaming data into the four categories 
(including NPMU). For the subscribers whose tweets were classified as NPMU 
by the machine-learning classifier, we extracted all their available Twitter data, 
including subscriber profiles and past tweets (excluding retweets). We continued 
to collect their past tweets every 2 wk up to the date of data extraction for this 
study. These subscribers make up our NPMU cohort.

Gender Estimation. The genders of the Twitter subscribers were estimated based 
on the meta-1 classifier in our prior work, which is based on an SVM classifier 
trained on subscribers’ past tweets and the M3 classifier trained on subscribers’ 
names, screen names, and descriptions (bios) (53, 61). The genders are treated 
in a binary framework (excluding those with nonbinary gender identities due to 
lack of available data) and should be interpreted as how subscribers represent 
themselves online and thus are closer to the subscriber’s gender identities than 
biological sexes. We developed the classifier based on gender-labeled datasets 
made available by Liu and Ruths (51) and Volkova et al. (70). In total, we were 
able to retrieve the metadata of 67,181 subscribers, consisting of 35,812 (53.3%) 
females and 31,369 (46.7%) males, which we used to develop the pipeline. We 
validated the performance on a set of 412 subscribers in our NPMU cohort whose 
genders were identified using the public gender fields on their linked Facebook 
account profiles. The classifier achieved accuracy of 94.4% (95% CI: 92.0 to 96.6) 
on this set.

Age Estimation. The ages of the Twitter subscribers were estimated based on 
a rule-based approach that optimizes precision (positive predictive value). Our 
pipeline searches for text patterns that are self-disclosures about the subscrib-
ers’ ages. The pattern matching is done using regular expressions. Sample text 
patterns include “(\d\d) birthday to me” or “i’m (\d\d)” where “\d” denotes digits 
(0 to 9). We also constructed a filter to remove irrelevant statements that are 

not associated with ages, such as “I’m 20 weeks pregnant.” For subscribers who 
have multiple tweets matched, we constructed a rule-based module to detect 
potential fraudulent information and infer the subscribers’ ages. The pipeline was 
developed based on a set of 2,000 subscribers, among which 1,540 tweets from 
609 subscribers matched the text patterns and were annotated. The annotation 
agreement based on an overlapping set of 346 subscribers (952 tweets) is 89.3% 
with Cohen’s Κ = 0.89 (95.8% with Cohen’s Κ = 0.96 on tweets). The test accu-
racy is 0.88 (95% CI: 0.84 to 0.92) [0.90 (95% CI: 0.86 to 0.94) when allowing 
a 1-y age discrepancy] on the subscribers who have matched tweets (referred 
to as precision in the text) and 0.93 (95% CI: 0.90 to 0.95) on the matched 
tweets. The age estimation pipeline can be found as ageCharacterization.py in 
Supplementary File “script.rar.”

Race Estimation. The race estimation module is similar to the age estimation 
one and applies rules and patterns. We consider the following race classifica-
tion: White, Black, Asian, Hispanic, American Indian and Alaska Native (AIAN), 
and NHOPI. Relevant expressions indicating race are searched using regular 
expressions. Example text patterns include “i’m (black)” or “i’m (white)”. We also 
constructed a filter to remove irrelevant statements such as “I’m black salmon.” 
For subscribers who have multiple tweets matched, we constructed a rule-based 
function module to detect potential fraudulent information and estimate the 
subscribers’ races. The pipeline was developed based on a set of 4,000 tweets, 
among which 1,124 tweets from 578 subscribers matched the text patterns and 
were annotated. The annotation agreement based on an overlapping set of 293 
subscribers (533 tweets) is 87.7% with Cohen’s K = 0.78 (94.0% with Cohen’s 
K = 0.88 on tweets). The test accuracy of the pipeline is 0.90 (95% CI: 0.85 to 0.95) 
on the subscribers who have matched tweets (referred to as precision in the text) 
[0.94 (95% CI: 0.91 to 0.97) on the matched tweets]. The race estimation pipeline 
can be found as “raceCharacterization.py” in Supplementary File “script.rar.”

Gender, Age, and Race Distribution Estimation. The gender, age, and race 
distribution estimation are performed by applying the gender classifier, the age 
pipeline, or the race pipeline to the NPMU cohort. The gender distributions are 
estimated using 288,562 NPMU subscribers whose genders could be inferred. 
The age distributions are estimated using 63,073 NPMU subscribers whose age 
could be inferred. The race distributions are estimated using 32,784 NPMU sub-
scribers whose race could be inferred. Since the race pipeline is not designed for 
subscribers who have more than one race [“more” in the 2018 Twitter Survey (42) 
and the NSDUH (18)], we did not include those subscribers when reporting the 
results and comparing them with the references.

Baseline for Twitter Subscribers’ Demographics. We established the baseline 
for the US Twitter subscribers based on the 2018 Twitter Survey conducted by Pew 
Research Center (42). The raw data can be obtained as a .sav file by requesting 
the access from the Pew Research Center. We focused on Twitter subscribers who 
have at least used Twitter once a week (the value for field “TWITTER_USE” is four or 
smaller) and calculated the proportions of the targeted demographics (e.g., age, 
gender, and race) among these subscribers. We used the field “PPAGE” for age, 
“PPGENDER” for gender, and “PPETHM” for race. We noted that the survey was 
conducted only among the adults (aged 18+) and the Asian, AIAN, and NHOPI 
races were grouped into “others.” Therefore, all the age groups including age 
below 18 are dropped.

Baseline for Twitter Age and Race Characterization. We established 
the baseline for Twitter Age and Race characterization based on a dataset of 
156,368 general Twitter subscribers. We first collected streaming tweets with 
the English stopwords in the Natural Language Toolkit (NLTK) as keywords on 
Aug 27, 2021 using Twitter API (71). The NLTK is a widely used python package 
for NLP. Stopwords is a list of words that are commonly used but do not carry 
domain-specific meaning and are often dropped during text mining. Some 
examples in English including “I”, “you,” “is,” ... etc. Since these words appear 
very frequently in text, including Twitter posts, such a data collection scheme 
can collect an approximately random set of Twitter subscribers. We then collected 
the subscribers’ metadata and applied the age and race pipelines. Our objective 
was to calibrate our pipeline by estimating how many of the subscribers within 
certain age or race groups actually self-disclosed their age and race on Twitter and 
were captured by our pipeline. The estimated rates (of detection/self-disclosure) 
were then used as weights to normalize the age/race proportions obtained from 
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the NPMU dataset. The script for collecting the streaming data is included in 
Supplementary File, “data-collector-Random-user.py”.

Calculation of the Proportions for People Who Use Substances Based on 
Twitter Data. For each subscriber’s characteristics (gender, age, and race), we 
used the number of Twitter subscribers in each category, inferred by the corre-
sponding pipelines, to estimate the proportion. For age and race, this calculation 
was limited to the Twitter subscribers whose age or race can be inferred. The 
proportions were further normalized via the rates of detection as:

normalized proportion =
1

normalization factor
×

(raw proportion)
(

rate of detection
) .

For example, if 10% of the Twitter subscribers are Black and only 1% of the 
random Twitter subscribers disclose that they are Black, then we can estimate 
that roughly 1 in 10 Black Twitter subscribers self-disclose their race (rate of 
detection). If then we captured 100 people who reported NPMU of stimulants 
and disclosed that they are Black, we estimate that roughly 1,000 people who 
use stimulants captured in our pipeline are Black and use this number to cal-
culate the normalized proportion. For the race proportions, since AIAN, NHOPI, 
and Asian were combined into others category in the 2018 Twitter Survey, 
we only calibrated for the others category as a whole and assumed that their 
relative proportions are the same as obtained using the race characterization 
pipeline. We note that our normalization procedure was designed based on 
the weighting processing in the survey sampling described in Lavallée and 
Beaumont (72).

Calculation of Proportions for the NSDUH Data. We established the baseline 
for the NSDUH/US Census based on Table 12.1A (age) and Table 12.2A (gender 
and race) in the 2019 NSDUH. We calculated the gender, age, and race propor-
tion through the estimated “Numbers in Thousands.” For age, we used the “Total 
(2019)” column. For the age and gender, we used the “Age 12+ (2019)” column. 
For the gender and race for people who report NPMU, we again used the “Age 
12+ (2019)” column on Table 1.47A (stimulants), Table 1.53A (tranquilizers), and 
table 1.44A (pain relievers). For age, we used the “Misuse in the past Year (2019)” 
column on Table 1.14A (stimulants), Table 1.16A (tranquilizers), and Table 1.13A 
(pain relievers).

Calculation of Proportions for the NEDS Data. We calculated the gender 
and age proportions of the EDVs using the “No.” column for all opioid poisoning 
on Supplemental Table  2C in the Annual Surveillance Report of Drug-related 
Risks and Outcome (40). The weighted estimates provided in the table are from 
the NEDS 2016.

Estimation of 95% CIs. For the Twitter data and the test performance of the pipe-
lines, the CIs are estimated via bootstrapping. For the NSDUH and NEDS data, the 
95% CIs are estimated using simulation. For each category, we approximate the 
distribution as a normal distribution with the reported number as the mean and 
the SE as the SD. We then repeatedly sampled the joint distribution for all the 
categories in the targeted demographics and calculated the proportions, assuming 
each category is independent of each other. The 95% CIs were then constructed 
using the 0.025 and the 0.975 quantiles within the list of proportions of the given 
category. For the NEDS data, the SEs for estimated numbers (“No.” column) were 
estimated through the SEs (“SE” column) for rates (“Rate” column) as (No. ) × (SE)

(Rate)
.

Data, Materials, and Software Availability. Data (IDs of all tweets included in 
this study) have been deposited in Zenodo “Can accurate demographic informa-
tion about people who use prescription medications non-medically be derived 
from Twitter?” URL: https://doi.org/10.5281/zenodo.7401617. The texts for the 
tweets, if they are still publicly available, can be obtained using the IDs via the 
Twitter API (73). Please see SI Appendix for details.
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