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Abstract

Background: Trichinella spiralis is a zoonotic parasitic nematode that causes trichinellosis, a disease that has been identified
on all continents except Antarctica. During chronic infection, T. spiralis larvae infect skeletal myofibres, severely disrupting
their differentiation state.

Methodology and Results: An activity-based probe, HA-Ub-VME, was used to identify deubiquitinating enzyme (DUB)
activity in lysate of T. spiralis L1 larvae. Results were analysed by immuno-blot and immuno-precipitation, identifying a
number of potential DUBs. Immuno-precipitated proteins were subjected to LC/MS/MS, yielding peptides with sequence
homology to 5 conserved human DUBs: UCH-L5, UCH-L3, HAUSP, OTU 6B and Ataxin-3. The predicted gene encoding the
putative UCH-L5 homologue, TsUCH37, was cloned and recombinant protein was expressed and purified. The
deubiquitinating activity of this enzyme was verified by Ub-AMC assay. Co-precipitation of recombinant TsUCH37 showed
that the protein associates with putative T. spiralis proteasome components, including the yeast Rpn13 homologue ADRM1.
In addition, the UCH inhibitor LDN-57444 exhibited specific inhibition of recombinant TsUCH37 and reduced the viability of
cultured L1 larvae.

Conclusions: This study reports the identification of the first T. spiralis DUB, a cysteine protease that is putatively
orthologous to the human protein, hUCH-L5. Results suggest that the interaction of this protein with the proteasome has
been conserved throughout evolution. We show potential for the use of inhibitor compounds to elucidate the role of UCH
enzymes in T. spiralis infection and their investigation as therapeutic targets for trichinellosis.
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Introduction

Trichinella spiralis is a parasitic nematode that infects mammals

indiscriminately. Human infection is found on all continents

except Antarctica, contributing globally to helminth related

morbidity and disability adjusted life years [1]. Perhaps more

importantly, this zoonotic, food-born parasite has been implicated

as a serious agricultural problem, as even with current screening

methods of livestock for market, transmission commonly occurs

from sylvatic animals [2]. Unlike the majority of parasitic helminths,

T. spiralis parasites will only survive a direct host-to-host trans-

mission, modulating host immunity and normal cellular function at

all stages of infection [3,4].

L1 larvae are ingested in contaminated meat and released from

infected muscle tissue following digestion. The parasites mature

and reproduce in the small intestine, causing symptoms similar to

more common intestinal infections, leading to the frequent

misdiagnosis of the condition [5]. Female adult worms release

newborn larvae that cross the intestinal epithelia and enter the

circulation, in which they are transported to skeletal muscle. The

number of larvae ingested and their path taken en route to the

skeletal muscle tissues determines the potential for acute illness,

whereby infection and inflammation of the eyes, heart or CNS

may result in myalgia, vasculitis, myocarditis and encephalitis,

occasionally leading to fatality [6,7]. In order to establish chronic

infection, parasites invade fully differentiated skeletal myofibres.

Here, the phenotype of the host cell is dramatically modified,

undergoing de-differentiation, cell cycle arrest and the formation

of a surrounding collagen capsule [8]. This parasite infected,

multinucleated cell has been termed the nurse cell complex, a

structure in which the worm may reside for decades. The

disruption of host cell signalling during this process is most likely

mediated by T. spiralis surface proteins and proteins secreted from

the parasite secretory organelle, the stichosome. Only a small

proportion of these proteins have been fully characterised [9]. In

order to enhance our understanding of this unique process,
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identifying proteins expressed by T. spiralis, and the systems in

which they function, is crucial if we are to highlight potential new

targets for treatment of the associated pathogenesis.

Current treatment of trichinellosis largely involves the use of

wide-spectrum anthelmintics that are effective on parasitic worms

whose infection is confined to the intestine of the host [10]. The

success of these drugs in trichinellosis is therefore restricted to the

early stages of infection during the maturation and reproduction of

adult parasites in the gut. As early as 5-7 days after ingestion, the

newborn T. spiralis larvae enter the circulation where successful

treatment now relies on intestinal absorption of the drug. General

anthelmintics such as benzimidazole and its derivatives show poor

solubility and therefore low efficacy in treatment of migratory

stage and muscle stage T. spiralis [11,12]. The prevention or

treatment of acute host inflammatory responses to migrating

larvae, and the inhibition of nurse cell formation, requires the

investigation of new drugs that show improved efficacy, reducing

the risk of transmission to a subsequent host.

The ubiquitin pathway is necessary throughout all stages of

eukaryotic cell development. The dynamic modification of a

substrate protein with ubiquitin (Ub) can modify its function,

localization and fate in the cell [13]. Ub conjugation relies on a

cascade of enzymes, and its removal is mediated by deubiquitinat-

ing enzymes (DUBs), the majority of which are cysteine proteases.

Understanding the function of Ub hydrolases in immunology and

infection has become of increasing interest due, in part, to their

discovery in systems that lack endogenous Ub/proteasome

machinery [14–16] and in parasitic eukaryotes [17,18]. This has

led to a number of interesting hypotheses regarding the function of

these proteins in pathogen-host interactions. It has been shown

that viral proteins are able to disrupt the host Ub pathway in a

number of ways [19]. For example, the Epstein Barr virus protein

EBNA1 directly interacts with the human DUB HAUSP, which

plays a role in p53 stability and therefore cell cycle regulation [20].

In most cases there is not yet evidence to show whether or not

these interactions extend to pathogen-derived DUBs recognising

host proteins as substrates.

In this study, we describe the use of activity-based probes to

identify DUBs in T. spiralis worm extract of L1 larvae collected

from nurse cell complexes. We identify and clone the predicted

gene encoding TsUCH37, the putative UCH-L5 homologue, and

find evidence that the association of this protein with the

proteasome has been conserved throughout evolution. We show

that recombinant TsUCH37 activity can be specifically inhibited

by a UCH inhibitor, LDN-57444, and that the same drug causes a

reduction in viability of parasites in culture. This family of

enzymes in T. spiralis may be important for the survival of the

parasite and similar inhibitory compounds may provide useful

tools for further investigating the role of the Ub/proteasome

system in T. spiralis infection.

Materials and Methods

Ethics statement
All procedures involving care and maintenance of animals were

approved by the Imperial College Ethical Review Committee and

performed under license from the UK Home Office.

Parasite isolation and culture
T. spiralis parasites were maintained in female Sprague-Dawley

rats and muscle larvae were isolated from infected rats by digestion

of skeletal muscle with acidified pepsin. Parasites were cultured in

sterile RPMI (Gibco) supplemented with 1% w/v glucose, 100 U/

ml penicillin, 100 mg/ml gentamycin, 20 U/ml nystatin and

2 mM glutamine.

Parasite lysis
T. spiralis parasites were lysed using NP-40 lysis buffer (50 mM

Tris-HCl pH 7.4, 150 mM NaCl, and 1% NP-40) and dounce

homogenisation. Lysate was cleared by centrifugation at 16000 xg

and supernatant protein concentration was determined by BCA

assay (Pierce). The reducing agent dithiothreitol (DTT) was added

(1 mM) to lysates used in probe reactions.

Probes
N-ethylmalemide (NEM, an irreversible cysteine protease

inhibitor) was added (2 mM) to the control lysate sample and

incubated at room temperature for 20 minutes. HA-Ub-VME

probe, generated as previously described [21], was then added to

all lysate samples at 0.3 mg per 20 mg parasite protein and allowed

to react for 1.5–2 hours at room temperature. Samples were

boiled in SDS-PAGE loading buffer and separated by reducing gel

electrophoresis.

Immuno-blot analysis
Proteins were transferred onto PVDF membrane and blocked

for 1 hour at room temperature in 5% w/v non-fat milk with PBS-

Tween (0.1% v/v). Membranes were then incubated in anti-HA-

HRP (Roche) in 2% non-fat milk with PBS-Tween (0.1%).

Membranes were washed in PBS-Tween (0.1%) before being

visualised using enhanced chemiluminescence substrate (PerkinEl-

mer).

HA immuno-precipitation
Probe reactions were carried out as described with T. spiralis L1

larvae lysate (DTT free). SDS was added (0.4% w/v) and each

sample was vortexed before diluting out the SDS to 0.1% w/v

with wash buffer containing 0.1% v/v NP-40, 50 mM Tris-HCl

pH 7.4, 150 mM NaCl. Wash buffer-equilibrated Protein G

sepharose beads (SIGMA) were used to pre-clear samples at 4uC

Author Summary

Trichinella spiralis is a parasitic nematode that infects
mammals indiscriminately. Although the biggest impact of
trichinellosis is observed in developing countries, the
parasite is found on all continents except Antarctica. In
humans, Trichinella infection contributes globally to
helminth related morbidity and disability adjusted life
years. In animals, infection is implicated as a serious
agricultural problem and drug treatment is largely
ineffective. During chronic infection, larvae invade skeletal
muscle cells, forming a nurse cell complex in which they
become encysted. The nurse cell is a product of the severe
disruption of the host cell homeostasis. Proteins of the Ub/
proteasome pathway are highly conserved throughout
evolution, and considering their importance in the
regulation of cell homeostasis, provide interesting and
novel therapeutic targets for various diseases. In order to
target this system in parasites, pathogen proteins that play
a role in this pathway must be identified. We report the
identification of the first T. spiralis deubiquitinating
enzyme, and show evidence that the function of this
protein as a proteasome interaction partner has been
evolutionarily conserved. We show that members of this
enzyme family are important for T. spiralis survival and that
the use of inhibitor compounds may help elucidate their
role in infection.
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for 2 hours. Anti-HA affinity matrix (Roche) was then added to

each sample (30 ml beads per ml of lysate) and incubated at 4uC
overnight. Beads containing bound enzyme-probe complexes were

isolated and washed in wash buffer before being boiled in SDS

page loading buffer (buffer: beads, 2:1 volume ratio) to elute

protein. Samples were resolved using SDS-PAGE gel electropho-

resis and visualised using colloidal Coomassie staining.

Protein gel extraction and LC/MS/MS analysis
Protein bands were manually excised from colloidal Coomassie-

stained SDS-PAGE gels. Each band was digested with trypsin into

polypeptide fragments of approximately 8 to 20 amino acids in

length. These were submitted to LC/MS/MS analysis. Spectra

obtained were analysed using two independent algorithms, Mascot

[22] and Sequest [23], and matched against protein or nucleotide

sequences from three different databases: a non-redundant peptide

sequence database, an EST invertebrate database and an EST

nematodes database. EST matches were analysed further by

BLASTx homology searches (nr_FASTA protein database, NCBI).

Cloning
Pelleted T. spiralis L1 larvae were frozen in liquid nitrogen

before being shattered in a percussive disruptor. Samples were

thawed and total RNA was extracted using the RNeasy kit

(Qiagen). The AUGUSTUS [24] algorithm predicted ORF of

TsUCH37 (modelled on the sequence of the T. spiralis contig 1.2

from bases 35557 to 36904) was amplified using the One Step RT-

PCR kit (Qiagen). Primers (59-tgcaGGATCCatggctgaaggaaattg-

gtgtttaa and 39-acagtGCGGCCGCttattcaaagacgaaatcatgtgcaa)

ending with BamHI and NotI linkers (shown in capitals)

respectively, were used to amplify a 931 bp fragment correspond-

ing to the predicted TsUCH37 ORF. The resulting PCR product

was cloned between BamHI and NotI sites in pGEM-Teasy

(Promega) and sequence verified (Beckman-Coulter). The insert

was moved from pGEM-Teasy to pPET28a(+) (Novagen) expres-

sion vector between BamHI and NotI sites to ensure TsUCH37 was

in-frame with an N-terminal HIS (x6) tag. Amplification of a 313 bp

fragment (121-434, primers: 59-cgactgggtcctatgcctct and 39-

tttcggtgtggttgtgtcgg) of T. spiralis GM2 activator protein from total

T. spiralis RNA was carried out as a control [25].

Recombinant protein expression and purification
pPET28a(+) vector containing the TsUCH37 insert was

transformed into E. coli Rosetta-2 (BL21 derivatives, Novagen)

and protein expression was induced by 0.5 mM IPTG for 3 hours

at 37uC before being harvested. Cell pellets were lysed using

BugBusterTM protein extraction reagent (Novagen) supplemented

with lysozyme and DNase I and cleared by centrifugation for 20

minutes at 16000 xg at 4uC. Soluble and insoluble fractions were

separated and analysed by SDS-PAGE. HIS-tagged recombinant

protein was purified from inclusion bodies on Ni-NTA resin

(QIAGEN) under denaturing conditions according to the manu-

facturers protocol. Recombinant protein was refolded in wash

buffer.

Ub-AMC activity assays
Recombinant T. spiralis TsUCH37 was used at between

12.5 nM and 2 mM and Ub C-terminal 7-amido-4-methylcou-

marin (Ub-AMC, Boston Biochem) was used at 250 nM, both in

reaction buffer (150 mM NaCl, 50 mM Tris/HCl pH 7.5, 2 mM

EDTA, 2 mM DTT supplemented with 1 mg/ml bovine serum

albumin) at room temperature. Negative control samples were

incubated with 2 mM NEM for 20 minutes before addition of

Ub-AMC substrate. Purified PfUCHL3 (74 nM) was used as a

positive control for Ub-AMC hydrolysis [17]. AMC cleavage was

measured by fluorescence at 368 nm excitation and 467 emission

wavelengths on a FLUOstar microplate reader (BMG LAB-

TECH). All measurements were made in a 384 well plate (Nunc,

black, Thermo Scientific) in a time dependent manner. Reactions

were carried out in a total volume of 20 ml in triplicate and all

protein concentrations were measured using the BCA assay.

Co-precipitation
T. spiralis L1 larvae were lysed in NP-40 lysis buffer and

concentrations were determined by BCA assay. Lysate (3 mg per

sample) was pre-cleared using wash buffer-equilibrated-Protein G

sepharose beads (SIGMA) at 4uC for 2 hours. Recombinant native

TsUCH37 (500 mg) was bound to Ni-NTA resin in binding buffer

(1xPBS pH 8.0, 300 mM NaCl, 0.1% NP40, 50 mM imidazole

and 2 mM 2-mercaptoethanol) for 2 hours at 4uC. Pre-cleared T.

spiralis lysate was incubated with either TsUCH37-bound Ni-NTA

resin or native Ni-NTA (control) overnight at 4uC. Beads were

washed 3 times in binding buffer and proteins that were bound to

the beads were separated by SDS-PAGE and analysed by LC/

MS/MS as described.

UCH inhibitor
LDN-57444 (SIGMA) was solubilised in DMSO and used at

concentrations between 10 mM and 1 mM as indicated in the

results.

MTT viability assay
Parasite viability was measured by a quantitative colorimetric

assay with the tetrazolium salt 3-[4,5-diethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide, MTT (SIGMA) [26–28]. Following

drug treatment in culture, 1000 T. spiralis L1 larvae were

incubated in 5 mg/ml MTT in phenol red free RPMI 1640

(SIGMA) for 4 hours at 37uC. Formazan crystals formed in viable

larvae were solubilised by shaking in 200 ml of 100% DMSO for

1 hour at room temperature. Parasites were removed and the

absorbance of the supernatant at 575 nm was determined.

Parasites that had been killed by heat treatment (65uC for 10

minutes) were used as a negative control for absorbance at

575 nm. All measurements were made in triplicate. Data was

statistically analysed by a two-way ANOVA test.

Results

Deubiquitinating activity is present in T. spiralis L1 larvae
HA-Ub-VME is a haemmaglutinin-tagged probe whose C-

terminal electrophilic group (VME) forms a covalent thioether

bond with the active site cysteine of a DUB [21]. DUB enzymes

specifically recognise the Ub moiety as their substrate, and in an

attempt to cleave it, become irreversibly bound to the probe. In

order to identify DUB activity in proteins expressed by T. spiralis,

lysate of L1 larvae (containing proteins from both the secretory

organelle, the stichosome, and non-secreted proteins) was reacted

with the HA-Ub-VME probe that was derived from human Ub,

which shows 97.4% identity to the putative T. spiralis Ub.

Reactivity was analysed by immuno-blot (anti-HA, Figure 1A)

either in the presence or absence of NEM. HA-Ub-VME probe

alone was found to yield a band at its expected size of 10 kDa and

a second, less prominent band at 20 kDa that may correlate with

probe aggregation. A number of reactive bands were observed

after incubation of T. spiralis lysate with the Ub probe and

immuno-blotting with anti-HA-HRP. This reactivity was elimi-

nated by pre-incubation with NEM, denoting cysteine dependent

Characterisation of TsUCH37
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activity. The most prominent cysteine specific bands showed

electrophoretic mobility corresponding to proteins with molecular

weights within the 30–150 kDa range. No non-specific reactivity

was observed in samples containing lysate alone.

Putative DUB homologues are expressed by T. spiralis L1
larvae

In order to further characterise proteins with DUB activity

expressed by T. spiralis, lysate of L1 larvae was reacted on a

preparative scale with HA-Ub-VME in the presence or absence of

NEM. Protein-probe complexes were then immuno-precipitated

on immobilised anti-HA affinity matrix and analysed by SDS-

PAGE (Figure 1B). Protein-probe complexes were visualised by

Coomassie staining, revealing 15 bands between 27 and

.250 kDa from the NEM negative sample and five bands

between 27 and 70 kDa from the NEM positive sample. Reducing

conditions caused the dissociation of the anti-HA antibody light

chain from the affinity beads, which showed as expected, a band

corresponding to a protein of approximately 25 kDa. A most

prominent band was observed between 60 and 70 kDa of which

no clear product was seen to correspond in the immuno-blot

analysis of worm lysate protein-probe complexes. 20 bands from

the Coomassie-stained gel were manually excised and peptide

fragments produced by trypsin digestion were analysed using LC/

MS/MS. Spectra were analysed by both Mascot and Sequest

(independently) and matched against protein or nucleotide

sequences from 3 different databases: 1) a non-redundant peptide

sequence database (nr_FASTA: NCBI-All non-redundant Gen-

Bank CDS translations + RefSeq Proteins + PDB + SwissProt +
PIR + PRF), 2) an EST invertebrate database (est Database of

GenBank + EMBL + DDBJ sequences from EST Division:

est_others) and 3) an EST nematodes database (EST Division:

est_nematdoes).

The genome of T. spiralis was only very recently released in a

draft form [29]. Therefore at the time these experiments were

initiated, the most reliable source of data for our spectral matches

was derived from the T. spiralis EST database. Each search

identified a number of putative DUB proteins or EST nucleotide

sequences that matched peptides found in the 15 bands excised

from the NEM negative sample of the gel. No DUB-related

matches were found in the NEM positive samples. Un-annotated

nematode EST sequence matches were further analysed by

BLAST homology searches. In total, sequences homologous to

five human DUBs: UCH-L5, UCH-L3, HAUSP, OTU 6B and

Ataxin-3 were identified. A comprehensive list of DUB-specific

results can be found in Table 1. The significance of a match was

determined based on three criteria: 1) matches that were found in

more than one database search with a large number of unique

peptides, 2) matches that were identified in both Sequest and

Mascot analysis and 3) multiple matches that gave the same

BLAST homology search results. Hits also included a match to the

putative T. spiralis ADRM1 proteasome subunit, putative T. spiralis

Figure 1. Identification of deubiquitinating activity in T. spiralis L1 lysate. (A) Lysate of T. spiralis L1 larvae was reacted with HA-Ub-VME,
separated by 10% SDS-PAGE and analysed by immuno-blot using anti-HA-HRP. Reactions were carried out either in the absence or presence of NEM
in order to determine cysteine specificity. Probe alone and lysate alone were included as controls (left hand lanes). Arrows indicate un-reacted probe
or probe aggregates and molecular weights are shown in kDa. (B) Large-scale immuno-precipitation was carried out to isolate T. spiralis protein-HA-
Ub-VME complexes on an anti-HA affinity matrix. Samples were separated by SDS-PAGE and 20 bands (numbered) were excised and analysed by
tandem mass spectrometry. Arrows indicate the anti-HA antibody light chain (25 kDa) and un-reacted probe (10 kDa).
doi:10.1371/journal.pntd.0001340.g001
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Ub and polyubiquitin and matches to common contaminant

proteins such as keratin and serum albumin, the latter being found

most abundantly in band 9.

The most significant result, with a large number of peptide

matches (and therefore the greatest percentage coverage equiva-

lent) was found predominantly in bands 11, 12, and 13. Here,

matches were identified as two T. spiralis cDNA EST fragment

sequences with the accession numbers, GenBank gi148305659 and

gi157958881. Each match was analysed by a BLASTx homology

search (translated nucleotide to protein) yielding the mouse Ub C-

terminal hydrolase UCH-L5 protein as the first hit. The Homo

sapiens UCH-L5 protein was observed as being homologous to

gi148305659 and gi157958881 to e-values of 8610263 and 66
10263 respectively. The translated EST sequences contain a

conserved peptidase C12 domain, which is found in UCH-L5

homologues and comprises four conserved specific catalytic amino

acids at its active site, glutamine, cysteine, histidine and aspartic

acid. The central cysteine residue is responsible for the initiation of

the cleavage of Ub from a substrate protein. The predominant

location of peptides matching this protein (in the 35–50 kDa

region) corresponded approximately to the size of the human

UCH-L5 protein (37 kDa) in complex with a 10 kDa probe,

however matches to UCH-L5 were also found in all other bands of

the NEM negative lane except bands 3, 8, and 9 possibly due to

aggregation or oligomerisation.

Recombinant T. spiralis TsUCH37, a putative UCH-L5
homologue, has deubiquitinating activity

Due to its significantly high score, we decided to further

characterise the putative UCH-L5 homologue in T. spiralis. The

complete draft assembly contig database was available from The

Genome Institute at Washington University (accessed August

2010) [30]. The longer of the two T. spiralis ESTs that matched

UCH-L5 sequences, gi157958881, was found to align well with

contig 1.2 between bases 35557 and 36904. Contig 1.2 was

analysed by 4 different gene prediction programmes: AUGUS-

TUS [24], GenemarkHMM [31], SNAP [32] and Fgenesh [33]. In

addition, two of these algorithms were used to analyse the sequence

with extra constraints: AUGUSTUS with the EST gi157958881

and/or the C. elegans nematode UCH-L5 orthologue (UBH-4) as

anchors, Fgenensh_C using the EST as an anchor and Fgenesh+
with UBH-4 as an anchor. This gave 7 potential open reading

frames (ORF) for the gene (Figure S1). When analysed by BLAST

homology searches, all sequences spanned the conserved peptidase

C12 domain. Of the 7 predictions, 5 gave the same start codon, that

which was already present in the EST gi157958881, whereas the

Fgenesh de novo and Fgenesh_C predicted a gene twice as long.

This portion of the T. spiralis draft genome was also annotated using

the Fgenesh algorithm, predicting an open reading frame

containing 2 protein domains, with the peptidase C12 domain

and an additional upstream PRP38 domain [29]. Each predicted

sequence was translated into protein and aligned with a number of

putatively orthologous UCH-L5 coding sequences (data not shown).

This revealed that the AUGUSTUS prediction aligned more closely

with the consensus sequence of a multitude of putative orthologues

(Figure S2). Alignments show that the peptidase C12 domain of

these proteins is located very close to the N-terminus. The

AUGUSTUS prediction, a 930 bp open reading frame of 7 exons,

contained a start codon and peptidase C12 domain that when

translated, aligned closely with the human UCH-L5 protein

sequence (Figure 2). All 4 catalytic residues typical to the UCH

family of DUBs also aligned. Orthologous UCH-L5 proteins,

including that expressed in the C. elegans nematode, do not contain

an additional upstream PRP38 domain and no peptides isolated by

LC/MS/MS matched a PRP38 domain in the nr_FASTA or the

EST databases. For these reasons, primers were designed based on

the AUGUSTUS gene prediction in order to clone the predicted

TsUCH37 sequence from T. spiralis cDNA.

The recombinant TsUCH37 protein was expressed with an N-

terminal HIS tag in E. coli. The purified protein from insoluble

fraction was analysed by SDS-PAGE, showing a protein of

approximately 36 kDa in size (Figure 3A). To verify that the

Figure 2. Protein alignment (MUSCLE) of the translated putative T. spiralis TsUCH37 sequence, EST gi157958881 and human UCH-
L5 protein sequence. The translated ORF sequence generated by AUGUSTUS (T.sp AUG) was aligned with the translated EST gi157958881 (T.sp
EST) and human UCH-L5 (hUCH-L5) protein sequence (Drummond AJ et al, www.geneious.com). The full peptidase C12 domain (shaded box) and
catalytic residues (asterisk) of hUCH-L5 are indicated. The TsUCH37 AUGUSTUS sequence displays 45% identity and 16% homology to hUCH-L5 and
has a predicted molecular weight of 35.22 kDa. Conserved residues are highlighted where identical and homologous. Positions of the putative
TsUCH37 start methionine, catalytic residues and the predicted end of the protein are numbered. The KEKE domain of the hUCH-L5 sequence and a
potential KEKE domain of the putative TsUCH37 sequence have been outlined.
doi:10.1371/journal.pntd.0001340.g002
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recombinant TsUCH37 protein possesses true deubiquitinating

activity, Ub conjugated to 7-amino-4-methylcoumarin (Ub-AMC)

was used to measure its enzyme activity. DUB proteins cleave the

Ub-AMC substrate, releasing fluorogenic AMC, the measurement

of which corresponds to enzyme activity. Purified recombinant

TsUCH37 (2 mM) was reacted with Ub-AMC (250 nM) either

with or without pre-incubation with NEM (Figure 3B). Fluores-

cence corresponding to Ub cleavage was measured at two-minute

intervals for a duration of 30 minutes following the addition of the

substrate. Purified Plasmodium falciparum UCHL3 was assayed in

saturating concentrations (74 nM) as a positive control as it has

been previously reported to possess good deubiquitinating activity

[17]. The reaction showed Ub cleavage by recombinant

TsUCH37 within 2 minutes following addition of the substrate,

indicating physiologically relevant activity (rather than end-point

as indicated by reactivity to probe). This activity was silenced by

pre-incubation with NEM, verifying the necessity for a functional

cysteine residue for substrate cleavage.

Recombinant TsUCH37 associates with putative T. spiralis
proteasome components

The human UCH-L5 and yeast UCH37 (YUH1) associate with

the 26S proteasome complex [34,35]. They do so via the

interaction of a KEKE motif, located on the C-terminal tail of

the protein, with the ADRM1 (human) or Rpn13 (yeast) subunit of

the proteasome. To assess whether this may also be the case for

TsUCH37 in T. spiralis, we looked for proteins from lysate of L1

larvae that associated with HIS-tagged recombinant TsUCH37.

TsUCH37-associated proteins were separated by SDS-PAGE and

subjected to LC/MS/MS (Figure 4). A number of proteins were

observed after reaction of lysate with the recombinant TsUCH37.

These proteins were not present in either the sample containing

recombinant TsUCH37 alone or the lysate incubated with Ni-

NTA beads alone. These were manually excised from the gel,

analysed by LC/MS/MS, and data was matched against both the

nr_FASTA protein database and the EST_nematodes database

using Mascot. Peptides matched EST sequences found to be

homologous to 12 different putative T. spiralis proteasome

components of both the 19S and the 20S subunits, including

putative homologues of the regulatory Rpn 1 and 2 subunits, and

components of the proteasome core ATPase. Table 2 shows a list of

all the matches corresponding to T. spiralis proteasome components.

The putative T. spiralis ADRM1 protein sequence (yeast Rpn13

homologue) was also identified, the same sequence identified

previously by HA-Ub-VME immuno-precipitation.

LDN-57444 specifically inhibits recombinant TsUCH37
deubiquitinating activity and reduces viability of L1
larvae

LDN-57444, otherwise known as compound 30 (C30), is an

isatin o-acyl oxime that exhibits active site-directed inhibition of

hUCH-L3 and, with greater potency, hUCH-L1 [36]. Treatment

of mammalian neuronal cells with LDN-57444 causes an increase

in the levels of highly ubiquitinated proteins [37]. Both hUCH-L1

and hUCH-L3 contain a peptidase C12 domain, utilising the same

catalytic triad of amino acids as hUCH-L5 and TsUCH37 to

hydrolyse Ub. In order to establish if this compound is capable of

TsUCH37 inhibition, recombinant protein (12.5 nM) was incu-

bated with either the drug (solubilised in DMSO) or with DMSO

alone, before a measurement of DUB activity was taken in relative

fluorescence units using Ub-AMC as the substrate. A titration of

the drug concentration (5, 10, 50, 100 and 500 mM) revealed

specific inhibition of recombinant TsUCH37. Figure 5, panel A

shows the effect of 50, 100 and 500 mM of LDN-57444.

The MTT viability test is a quantitative colorimetric assay based

on the tetrazolium salt, 3-[4,5-diethylthiazol-2-yl]-2,5-diphenylte-

trazolium bromide [26,27]. MTT (yellow in colour) is reduced by

dehydrogenase enzymes of metabolically active cells to insoluble

Figure 3. Expression, purification and verification of the deubiquitinating activity of recombinant TsUCH37. (A) HIS-tagged
recombinant TsUCH37 was expressed and purified yielding a protein of approximately 36 kDa when separated by SDS-PAGE. (B) Recombinant
TsUCH37 (2 mM) was reacted with Ub-AMC. Ub-AMC hydrolysis was measured in RFU as fluorogenic AMC was released over time (minutes). All assays
were carried out in triplicate. Points show the mean fluorescence with standard deviation (error bars are indicated). Deubiquitinating activity was fully
inhibited by the pre-incubation of the protein with NEM. Plasmodium falciparum PfUCH-L3 (74 nM) was used as a positive control for
deubiquitinating activity.
doi:10.1371/journal.pntd.0001340.g003
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purple crystals of formazan. Formation of formazan is directly

proportional to cell number and is not observed in dead cells. The

crystals are solubilised in organic solvents and an absorbance

measurement of the culture supernatant is taken, representing cell

viability. Over a period of 96 hours, L1 larvae in culture were

incubated with either 50 mM or 100 mM of LDN-57444

solubilised in DMSO (Figure 5, panels B, C and D). Larvae were

also incubated in DMSO alone giving a control for 100% viability.

Heat-killed larvae, producing no formazan, were cultured as a

negative control. After 24 hours, a decrease in motility and a

change in morphology were observed, with treated larvae

becoming uncoiled and stationary. An absorbance measurement

of the culture supernatants 24 hours post-treatment, confirmed

that larvae incubated with 50 mM LDN-57444 contained 20% less

formazan than those incubated in DMSO alone, showing a

negative effect on viability. After 96 hours, a 75% reduction in the

viability of the parasites treated with 100 mM of the inhibitor was

observed.

Discussion

Only a small number of T. spiralis cysteine proteases have been

identified and until now none of these had been characterised as

Ub hydrolase enzymes [38,39]. Using small molecule inhibitor

probes followed by LC/MS/MS we have identified several

potential T. spiralis DUBs from lysate containing both the secreted

and non-secreted proteins of L1 larvae. Of these, we identified 5

putative protein sequences homologous to the human cysteine

protease DUBs: UCH-L5, UCH-L3, HAUSP, OTU 6B and

Ataxin-3. We cloned the putative gene for the UCH-L5 homologue

and expressed and functionally verified the recombinant protein as

the first parasitic nematode DUB, TsUCH37; a C-terminal Ub

hydrolase enzyme that shows Ub-AMC cleavage activity with

physiological kinetics.

T. spiralis UCH37 is a cysteine-dependent deubiquitinating

enzyme that contains a Ub C-terminal hydrolase (UCH) domain

and is a putative member of the peptidase CA clan. Classification

of DUB enzymes is based on this conserved catalytic peptidase

domain [40]. The human UCH-L1, L3, L5 and BAP1 (BRCA1

associated protein 1) all contain a peptidase C12 domain, which

includes 4 catalytic residues shown to be responsible for cysteine-

dependent deubiquitinating activity. Alignment of the translated

putative TsUCH37 ORF with orthologous sequences shows that

the protein shares 45% amino acid identity with the human UCH-

L5 and 43% with the C. elegans UBH-4. Residues 5-209 of the

parasite protein comprise the full peptidase C12 domain (Figure 2).

Studies on mammalian UCH-L5 have shown that in HeLa and

HEK 293T cells, this enzyme is located in both the cytoplasm and

the nucleus [34,41]. Although a larger proportion of the UCH-L5

is found in association with the 19S (PA700) proteasome subunit,

some also exists in a free unassociated state. It has been shown that

upon interaction with the 19S subunit of the proteasome,

hydrolysis of mono-Ub (as Ub-AMC) is elevated, and hydrolysis

of di-Ub becomes possible [34]. This is perhaps due to the change

in conformation of a C-terminal tail that sterically blocks the active

site in the enzyme’s free form [42]. This interaction with the

proteasome is mediated by the binding of a KEKE motif found at

the C-terminal tail of the DUB with a complementary motif on the

C-terminal tail of the proteasome component ADRM1 (yeast

Rpn13 homologue) [43]. It is therefore postulated that one major

role of UCH-L5 is to hydrolyse Ub from protein substrates as they

pass into the 20S core of the proteasome for degradation. At the

C-terminal end of the TsUCH37 catalytic domain, albeit

upstream of the putative human orthologue, a potential KEKE

motif can be found that may correspond to that found at the C-

terminus of hUCH-L5 (Figure 2). In addition, a putative

homologue for ADRM1 is annotated in the T. spiralis genome.

The protein sequence for TsADRM1 matched peptides identified

by LC/MS/MS from HA-Ub-VME-reacted lysate, suggesting an

association between TsADRM1 and probe-bound DUBs. Fur-

thermore, co-precipitation experiments with proteins from L1

larvae lysate using recombinant N-terminally HIS-tagged TsUCH37

as bait, yielded numerous putative T. spiralis proteasome components

including TsADRM1. This suggests that a specific interaction

between UCH37 and ADRM1 occurs and we can hypothesise

that this role of TsUCH37, releasing Ub from proteins targeted for

degradation, has been conserved throughout evolution.

Due to the complexity of the parenteral phase of trichinellosis,

successful treatment of the symptoms that arise in the CNS,

cardiac and vascular tissue during parasite migration to the host

skeletal muscle, largely relies on the use of corticosteroids

[5,44,45]. Evidence also suggests that currently used anthelmintics

show low efficacy in the management of encysted larvae, and that

any effect may be accounted for by the prevention of nurse cell

formation rather than the clearance of complexes that are already

present [46]. Improved treatment would require the identification

of parasite-specific drug targets and the development of drugs

Figure 4. Identification of recombinant TsUCH37 associated T.
spiralis proteins. Ni-NTA bound TsUCH37 (with an N-terminal HIS-tag)
was incubated with pre-cleared T. spiralis L1 larvae lysate. Associated
proteins were isolated by co-precipitation and separated by SDS-PAGE.
Samples containing native Ni-NTA resin incubated with pre-cleared T.
spiralis lysate (middle lane) and Ni-NTA bound recombinant TsUCH37
incubated with lysis buffer (right lane) were included as controls. The
gel was visualised using colloidal Coomassie staining and 19
(numbered) bands were excised and analysed by LC/MS/MS. Recom-
binant HIS-tagged TsUCH37 is indicated by an arrow and the location of
peptides matching the putative T. spiralis ADRM1 protein sequence is
marked with an asterisk. Molecular weights are shown in kDa.
doi:10.1371/journal.pntd.0001340.g004
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capable of a) inhibiting entry of newborn larvae into the

circulation, b) targeting migratory larvae in the circulation or c)

preventing or clearing encysted larvae. Developing antiparasitic

compounds that target these more advanced stages of infection

would reduce the risk of medical complications and fatalities and

may also prevent zoonotic transmission.

Previous studies have led to the conclusion that T. spiralis are

refractory to current methods of genetic manipulation and we

therefore cannot comment on the essentiality of TsUCH37 in T.

spiralis survival. Al-Shami et al recently demonstrated that knock

out of murine UCH37 (UCH-L5 homologue) was lethal [47]. The

essential nature of many Ub/proteasome system enzymes and

their expression throughout all stages of eukaryotic development

has led to the investigation of these enzymes as potential drug

targets in cancer and in infectious disease [48,49]. In the case of

the DUB enzyme family, sequence identity of orthologous proteins

may diverge sufficiently for the development of pathogen specific

inhibitors [50]. Liu et al showed that although hUCH-L1 and

hUCH-L3 share 52% identity, the UCH inhibitors compound 30

(LDN-57444) and compound 11 demonstrate significantly differ-

ent potency in their relative inhibition of the two enzymes [36].

This illustrates that using exploratory medical chemistry, UCH

enzymes containing the same conserved catalytic domain can be

specifically and individually drug-targeted. Figure 2 shows

differences in the protein sequences of the human and T. spiralis

UCH-L5 orthologues that may be exploited in the development of

specific inhibitors.

We have shown that the active site-directed inhibitor of hUCH-

L1 and L3, LDN-57444, specifically inhibits cleavage of Ub-AMC

by recombinant TsUCH37. This correlated with a concentration

dependent reduction of the viability of T. spiralis L1 larvae in

culture. It may therefore be possible to target the T. spiralis UCH

enzyme family with drugs that could be modified for further

specificity. Considering that LDN-57444 shows specificity for

hUCH-L1 and L3, proteins for which homologues are likely to be

expressed by T. spiralis, the reduction in viability of parasites in

culture cannot be directly accounted for by TsUCH37 inhibition

but rather a more general effect stemming from the interface with

the UCH DUB family as a whole. The specific target of LDN-

57444 in T. spiralis therefore remains unknown, however

considering its observed effect on the viability of L1 larvae, it

can be hypothesised that UCH DUBs play an important role in

parasite biology. Inhibition of DUB enzymes blocks the removal of

Ub and Ub chains from substrate proteins. In mammalian cells an

Table 2. Spectra were searched against EST_nematodes and nr_FASTA databases using Mascot.

MASCOT SCORE

BAND
EST/put.
protein ID

SPECIES
(EST)

BLASTx
DESCRIPTION-T.
spiralis put.
proteasome
component

HUMAN
HOMOLOGUE

CONSERVED
DOMAIN

No. of unique
peptides

Total no.
of spectra

Molecular
weight (kDa)

1 157957916 T. spiralis Rpn-2 26S non-ATPase
regulatory subunit 1

RPN2 2 2 55

2 148306182 T. spiralis 26S proteasome non-
ATPase regulatory
subunit 2

26S proteasome non-
ATPase regulatory
subunit 2

RPN1 3 4 56

7 316974493 T. spiralis 26S proteasome non-
ATPase regulatory
subunit 3

26S proteasome non-
ATPase regulatory
subunit 3

RPN3 6 7 59

8 148300883 T. spiralis 26S protease
regulatory subunit 4

Proteasome ATPase
subunit 4

P-loop NTPase,
RPT2

2 2 58

9 316973936 T. spiralis 26S protease non-ATPase
regulatory subunit 5

26S proteasome non-
ATPase regulatory
subunit 4

Rpn10 6 6 45

9 316977948 T. spiralis ADRM1 ADRM1 Rpn13 2 2 46

10 157958515 T. spiralis Rpt-5 Proteasome ATPase
subunit 3

P-loop NTPase,
RPT5

2 2 58

10 148301308 T. spiralis 26S proteasome non-
ATPase regulatory
subunit 11

26S proteasome non-
ATPase regulatory
subunit 11

RPN6 2 2 65

11 316968151 T. spiralis 26S proteasome
regulatory subunit 6B

26S protease
regulatory subunit 6B

RPT3 4 4 39

12 316972496 T. spiralis 26S proteasome
regulatory subunit 8

26S protease
regulatory subunit 7

RPT1 4 4 39

14 157958781 T. spiralis Putative proteasome
activator complex
subunit 3

PSME3 PA28 alpha,
PA28 beta

5 17 58

17 148302503 T. spiralis Proteasome activator
complex subunit 3

PSME4 PA28 alpha,
PA28 beta

4 4 64

19 148307154 T. spiralis Proteasome subunit
alpha type-2-A

Proteasome subunit
alpha type-2

proteasome
alpha type-2

2 2 50

The table lists T. spiralis proteasome specific matches to peptides isolated by co-precipitation of lysate with recombinant TsUCH37.
doi:10.1371/journal.pntd.0001340.t002
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accumulation of ubiquitinated proteins can lead to the unfolded

protein response and endoplasmic reticulum stress, an effect that

in neurons is linked to Parkinson’s disease [37]. The use of

inhibitor compounds such as LDN-57444 may help elucidate the

role of UCH enzymes in the process of infection by investigating

their effect on circulating larvae, muscle stage larvae and nurse cell

complex formation both ex and in vivo.

Without further analysis of Ub/proteasome components in T.

spiralis secreted proteins it can only be postulated that TsUCH37 is

involved in endogenous protein turnover. It is of great interest to

us to investigate whether or not components of the Ub/

proteasome system are secreted by T. spiralis and indeed if they

are secreted into the nurse cell, in order to determine the role of

this pathway in infection. The activity-based approach taken in

these studies is currently underway to identify DUBs from only the

excretory-secretory elements of the worms, proteins that are likely

to be specifically host-targeted.

Supporting Information

Figure S1 Gene predictions of the putative TsUCH37 ORF.

The EST fragment obtained by LC/MS/MS (gi157958881) was

aligned with contig 1.2 from the draft assembly of the T. spiralis

genome. At this location, gene predictions from Fgenesh (de novo

or using EST as an hint/constraint as Fgenesh+) span a large

region of the contig. However, when employing UBH4 (the C.

elegans UCH-L5 orthologue) as a hint, the Fgenesh_C predicted

start agrees with all other gene prediction programs employed

(AUGUSTUS de novo, AUGUSTUS with EST and/or UBH-4

as constraints, SNAP, Genemark.HMM).

(TIF)

Figure S2 Multiple nucleotide alignments (MUSCLE) of

putative UCH-L5 orthologues with the T. spiralis contig 1.2

(34000-37000), the AUGUSTUS predicted ORF for TsUCH37

and the EST gi157958881. The AUGUSTUS TsUCH37 sequence,

Figure 5. LDN-57444 inhibition of recombinant TsUCH37 DUB activity and parasite viability. Recombinant TsUCH37 was incubated with
the UCH inhibitor LDN-57444. Panel A shows the cleavage of Ub from fluorogenic AMC by 12.5 nM TsUCH37 (measured as relative fluorescence units,
RFU) after incubation with 50 mM, 100 mM and 500 mM of LDN-57444 solubilised in DMSO. Pre-incubation of TsUCH37 with NEM was included as a
negative control and incubation with DMSO alone as a positive control. All assays were carried out in triplicate. Points show the mean fluorescence
with standard deviation (error bars are indicated). (B), (C) and (D) The susceptibility of T. spiralis L1 larvae cultured in the presence of DMSO or 50 mM
and 100 mM LDN-57444 after 24, 48 and 96 hours was measured as absorbance of formazan at 575 nm using the MTT assay. All assays were carried
out in triplicate. The mean percentage of the DMSO control (100%) with 1 standard deviation is shown. Baseline absorbance was taken by MTT assay
of heat-killed (HT) parasites. Statistically significant data are indicated with asterisks (*, P,0.05 versus parasites incubated with DMSO alone).
doi:10.1371/journal.pntd.0001340.g005
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EST gi157958881 and the orthologous UCH-L5 sequences are

coding sequence only (no introns). The Contig was obtained from the

Genome Institute at Washington University, accessed August 2010.

The alignment was generated using Geneious (Drummond AJ et al,

www.geneious.com). Blocks indicate nucleotide bases and lines

indicate gaps in alignment. Accession numbers for coding sequences

in order of appearance: D.m NM_001201752, S.c NM_001181757,

A.t NM_105238, C.e NM_063283, X.l NM_001095597, H.s

NM_001199263, M.m NM_019562, B.m XM_001895545.

(TIF)
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