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Genetic alterations, including DNA mutations and chromosomal abnormalities, are
primary drivers of tumor formation and cancer progression. These alterations can
endow cells with a selective growth advantage, enabling cancers to evade cell death,
proliferation limits, and immune checkpoints, to metastasize throughout the body.
Genetic alterations occur due to failures of the genome stability pathways. In many
cancers, the rate of alteration is further accelerated by the deregulation of these
processes. The deubiquitinating enzyme ubiquitin specific protease 7 (USP7) has
recently emerged as a key regulator of ubiquitination in the genome stability pathways.
USP7 is also deregulated in many cancer types, where deviances in USP7 protein levels
are correlated with cancer progression. In this work, we review the increasingly evident
role of USP7 in maintaining genome stability, the links between USP7 deregulation and
cancer progression, as well as the rationale of targeting USP7 in cancer therapy.

Keywords: ubiquitin, mutagenesis, genomic integrity, replication, DNA repair, tumor suppressor protein p53,
cancer

INTRODUCTION

Maintaining the genomic integrity of cells is vital, as alterations to the genetic code can result
in deregulation of cellular function, malignant transformation or cell death. This can lead to a
variety of disorders including neurological degeneration, premature aging, developmental defects
and cancer (Khanna and Jackson, 2001). To prevent genetic alterations, cells employ a range
of genome stability pathways, which allow for the accurate metabolism of the DNA, as well as
for any DNA errors or damage to be rapidly repaired (Hoeijmakers, 2001). Post-translational
modifications play an essential role in the signaling, activation and coordination of the genome
stability pathways (Polo and Jackson, 2011). The reversable ubiquitination of proteins is one such
essential modification that regulates numerous key factors involved in genome stability. Known
as the “ubiquitin code”, this versatile pattern of mono- or polyubiquitin moieties dynamically
regulates the activity, interactions, localization and stability of substrate proteins (Komander and
Rape, 2012). For example, ubiquitination promotes initiation of DNA replication (Hernandez-
Carralero et al., 2018), regulates all DNA damage tolerance and repair pathways and activates
cell cycle regulatory components (Mocciaro and Rape, 2012). Dynamic ubiquitination is therefore
essential to prevent genome instability.

Ubiquitination is mediated by a cascade of E1, E2 and E3 ubiquitin enzymes, which
covalently attach the 8.5 kDa ubiquitin protein onto a substrate molecule, while deubiquitinating
enzymes (DUBs) can edit or remove ubiquitin modifications (Pickart and Eddins, 2004). The
human genome encodes close to 100 DUBs, which can be structurally grouped into seven
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distinct protein families: ubiquitin specific proteases (USPs),
ovarian tumor proteases (OUTs), JAB1/MPN/MOV24
metalloproteases (JAMMs), ubiquitin c-terminal hydrolases
(UCHs), Macho-Joseph disease protein domain proteases
(MHDs), motif interacting with ubiquitin (MIU)-containing
novel deubiquitinases (MINDYs) and ZUP1 (Ruan et al., 2020).
Of these, the ubiquitin specific proteases (USPs) represent
the largest DUB family, with 57 members (Komander et al.,
2009). Many USPs have been found to function within the
genome stability pathways (Jacq et al., 2013). USP1, for instance,
regulates the monoubiquitination of FANCD2 (Oestergaard
et al., 2007; Liang et al., 2019) and PCNA (Huang et al., 2006),
thereby influencing the pathways of interstrand crosslink
repair and translesion synthesis, respectively. By contrast,
USP47 deubiquitinates and stabilizes polyubiquitinated DNA
polymerase β, ensuring availability of the latter to participate
in base excision repair (Parsons et al., 2011). While many USPs
play essential roles in ensuring genome stability, they are often
dysregulated in cancers where they promote tumorigenesis
(Young et al., 2019). The prospect of targeting USPs has thus
been increasingly considered as an attractive approach for cancer
therapies (Yuan et al., 2018).

Ubiquitin specific protease 7 (USP7), also known as
Herpesvirus associated protease (HAUSP), is an ∼128 kDa
cysteine protease and member of the USP DUB family. USP7
was first identified as an interacting partner of herpes simplex
virus type 1 (HSV-1) regulatory protein infected cell polypeptide
0 (ICP0) (Everett et al., 1997). Since its discovery, mounting
evidence has demonstrated the extensive roles and interaction
network of USP7 in several cellular pathways. This includes
its significant role in genome stability, where USP7 regulates
the well-characterized p53/Mdm2 signaling axis (Li et al.,
2004), along with many other factors that will be addressed
in detail in this review. USP7 is an essential enzyme; its
homozygous knockout in mice results is early embryonic
lethality (Kon et al., 2010) and no human individuals have been
identified who are USP7 homozygous-null (Fountain et al., 2019).
Heterozygous loss-of-function USP7 mutations have, however,
been identified in 23 individuals, all of whom have experienced
neurodevelopmental disorders – characterized by developmental
delay/intellectual disability (DD/ID), speech delay, behavioral
anomalies and autism spectrum disorder – as well as physical
characteristics that include dysmorphic facial features (Hao et al.,
2015; Fountain et al., 2019). While diseases caused by pathogenic
somatic mutations of USP7 are rare, the aberrant expression
of USP7 is much more frequent, resulting in deregulation of
numerous pathways and contributing to disease states that
include non-small cell lung cancer (Masuya et al., 2006) and
prostate cancer (Song et al., 2008a). In this review, we will discuss
the many roles USP7 plays in maintaining genome stability and
its links with cancer.

OVERVIEW OF USP7 STRUCTURE

All USPs share a conserved catalytic core, while their unique
substrate specificity is determined by a variety of accessory

substrate-binding domains (Nijman et al., 2005). From its N- to
C-terminus, USP7 contains a tumor necrosis factor receptor
associated factor-like (TRAF-like) domain, a catalytic domain
and five ubiquitin-like (UBL) domains (Figure 1). Although a
full-length structure of USP7 is yet to be determined, structural
information is known for each individual USP7 domain (Hu
et al., 2001; Saridakis et al., 2005; Faesen et al., 2011a).

Substrate Recognition by TRAF-Like
Domain
At its very N-terminus, USP7 contains an intrinsically disordered
∼50 amino acid sequence with a polyglutamine region, followed
by its TRAF-like domain (residues 52–205). The USP7 TRAF-like
domain has been extensively characterized as one of two major
substrate-binding sites within USP7. Of the USP family of
enzymes, USP7 is the sole member with a TRAF-like domain.
This endows USP7 with unique substrate recognition and
specificity that sets it apart from other USPs (Nijman et al., 2005).

USP7 is primarily nuclear and the N-terminus of the enzyme
is largely responsible for its nuclear localization. Thus, truncation
of amino acids 1–207 abolishes its ability to enter the nucleus.
As this region of the protein does not contain a nuclear
localization signal, it has been speculated that binding to
USP7 substrates – which are primarily nuclear – may mediate
translocation of USP7 into the nucleus (Zapata et al., 2001;
Fernandez-Montalvan et al., 2007).

The majority of known USP7 substrate interactions occur
within the TRAF-like domain. This wide range of substrates
includes several factors that are involved in genome stability.
The interactions between the USP7 TRAF-like domain and
its substrates has been extensively characterized structurally.
The TRAF-like domain assumes an eight stranded antiparallel
β- sandwich fold, with residues D164 and W165 forming
essential contacts with P/A/ExxS motifs shared by all TRAF-like
domain-binding substrates. These substrates include the tumor
suppressor p53 (Hu et al., 2006; Sheng et al., 2006), the
Mdm2 E3 ubiquitin ligase (Hu et al., 2006; Sheng et al.,
2006; Sarkari et al., 2010), the Mdm2 homolog Mdm4
(Sarkari et al., 2010) and mini-chromosome maintenance
binding-protein MCM-BP (Jagannathan et al., 2014; Figure 1
and Table 1).

As all USP7 TRAF-like substrate interactions occur on
an identical interface, these interactions occur in a mutually
exclusive manner. This regulation of TRAF-like-mediated
interactions is important for fine-tuning ubiquitination of
USP7 substrates (as is described in the “p53-Dependent
Transcription” section below).

USP7 Catalytic Domain
Following the TRAF-like domain and central to USP7 is its
catalytic domain (residues 207–560). The catalytic domains
of USPs contain a highly conserved Cysteine-Histidine box,
which in USP7 is formed by residues C223, H464 and D481
(Hu et al., 2001).

Despite differences in size, the catalytic domains of all USPs
possess a characteristic papain-like fold with a “thumb, palm,
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FIGURE 1 | Overview of USP7 domain structure. (A) USP7 model based on superposition of PDBs 2f1z, 5fwi and 4z97, with ubiquitin (black) (PDB ID:1nbf). Red
spheres on the TRAF-like domain indicate the residues D164 and W165 responsible for substrate binding. Green spheres on catalytic domain represent catalytic
triad active site residues C223, H464, and D481. Blue spheres on UBL2 indicate substrate-binding residues D758, E759, and D764. Red dashed lines indicate the
characteristic papain-like fold “thumb, palm, fingers” sub-domain architecture of the USP7 catalytic domain. (B) Schematic of USP7 indicating the amino acid
location of each domain, as well as of each substrate-binding region. Lists below the schematic indicate protein substrates known to bind each
substrate-binding site.

TABLE 1 | List of USP7 substrates involved in genome stability and maintenance
with available structural information.

USP7
substrate

USP7 interaction
domain

Kd (µM) PDB ID

p53 TRAF 18 ± 1.5 2foo, 2foj, 2f1x

Mdm2 TRAF 8 ± 0.3 2fop, 2f1y, 3mqs

Mdm4 TRAF N/A 3mqr

MCM-BP TRAF N/A 4kg9

UHRF1 UBL1-2 1.5 5c6d

DNMT1 UBL 1-2 0.6 ± 0.05 4yoc

RNF169 UBL 1-2 1.5 ± 1.1 5gg4

fingers” sub-domain architecture (Reyes-Turcu et al., 2009)
(Figure 1). The fingers “hold” ubiquitin and is the primary
interaction interface between the enzyme and ubiquitin.
The active site catalytic triad resides in a cleft between the
“palm” and “thumb” of the enzyme. The C-terminal tail

of ubiquitin conjugated to a lysine residue of the substrate
enters this cleft, allowing for hydrolysis of the isopeptide
bond between ubiquitin and the substrate (Hu et al., 2001;
Pozhidaeva et al., 2017). Once cleaved, the low affinity between
free ubiquitin and the catalytic domain results in subsequent
release of the product (Faesen et al., 2011b; Pozhidaeva et al.,
2017; Kim et al., 2019). Accordingly, mutations that enhance
ubiquitin affinity to USPs result in inhibition of the enzyme
(Morrow et al., 2018)

Crystal structures of the USP7 catalytic domain apo-enzyme
(PDB ID: 1nb8) and the USP7 catalytic domain in complex
with ubiquitin-aldehyde (PBD ID: 1nbf), reveal that for
the most part, ubiquitin-binding does not result in broad
conformational changes to the catalytic domain. However, major
structural deviations do occur for the active site catalytic
triad residues (C223, H464, D481), which undergo drastic
conformational movement upon ubiquitin binding. In the
apo-enzyme or “inactive” catalytic domain structure, active site
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residues are too far apart to perform enzymatic functions,
while these same residues move towards each other in the
“active” ubiquitin-bound structure. The “switching loop,” a
loop that is proximal to the active site, undergoes even
larger rearrangement and becomes more structured upon
ubiquitin-binding (Hu et al., 2001; Faesen et al., 2011a). The
existence of these two distinct conformations assumed by
the USP7 catalytic domain may be a mechanism employed
by the enzyme to regulate its activity (Hu et al., 2001;
Ozen et al., 2018).

C-Terminal UBL Domains Regulate
Activation and Specificity of USP7
A long and potentially flexible α-helix connects the USP7
catalytic domain to its 64 kDa C-terminal ubiquitin-like domains
(UBL 1–5) (Kim et al., 2016). Of the USPs, USP7 has the
greatest number of UBLs (Komander et al., 2009). Despite
low sequence homology to each other and to ubiquitin, these
UBLs all structurally resemble the classic β-grasp ubiquitin fold
(Faesen et al., 2011a, 2012).

USP7 UBLs function as di-UBL units in a 2-1-2 domain
architecture: UBL 1-2, UBL 3, and UBL 4-5 (Kim and
Sixma, 2017). These units are separated by flexible linkers,
which allow for the C-terminus to assume an extended
or compact conformation. This conformational flexibility
and allosteric regulation is required for enzymatic activity
(Faesen et al., 2011a, 2012; Pfoh et al., 2015; Kim et al.,
2016; Rouge et al., 2016). While the catalytic domain
is essential for enzymatic activity of USP7, the isolated
catalytic domain has poor catalytic activity compared to
the full-length enzyme (Faesen et al., 2011a). Interestingly,
efficient enzymatic activity of USP7 requires its UBL 4-5
domains (amino acids 894–1102). Studies have shown that
following ubiquitin binding to the catalytic domain, the USP7
C-terminal domains assume a conformation that allows its
disordered tail (residues 1084–1102) to bind to the “switching
loop.” This conformational switch promotes an “active”
state, increasing USP7 enzymatic activity. Without UBL
4–5, the catalytic activity of USP7 is severely compromised.
Therefore, a functional full-length USP7 is required for its
proper activity (Faesen et al., 2011a; Rouge et al., 2016;
Kim et al., 2019).

UBL Domains Also Function as
Additional Platform for
Substrate-Binding
Outside of the TRAF-like domain, the UBL 1–2 domains
contain the second major substrate recognition site for USP7
substrates. These interactions largely occur through an acidic
patch on the interface of UBL 2 (Figure 1). This acidic interface
interacts with a highly basic motif (R/KxKxxxK) within USP7
substrates that include UHRF1 (Zhang et al., 2015), DNMT1
(Cheng et al., 2015) and RNF169 (An et al., 2017; Figure 1
and Table 1).

UBL 4–5 has also been speculated to contain a secondary
binding site outside of the TRAF-like domain for binding to p53

and Mdm2, although further validation of this site is still needed
(Ma et al., 2010; Kim et al., 2019).

USP7 CLEAVES MONO- AND
POLYUBIQUITIN CHAINS FROM
SUBSTRATE PROTEINS

The “ubiquitin code,” or pattern of ubiquitin modifications
that occurs on a substrate, serves to regulate tagged
substrates (Komander and Rape, 2012). Proteins may be
monoubiquitinated, where a single ubiquitin moiety is covalently
attached to a lysine residue of a substrate, or polyubiquitinated,
where the initial ubiquitin group is further ubiquitinated.
Successive ubiquitination can occur at one of the seven lysine
residues within ubiquitin – K6, K11, K27, K29, K33, K48,
and K63 – to form polyubiquitin chains of specific linkage
types. Besides lysine residues, the N-terminal methionine
of ubiquitin can also be ubiquitinated (Spit et al., 2019).
USP7 specifically cleaves ubiquitin and is unable to cleave
other ubiquitin-like modifiers including SUMO and Nedd8
(Fernandez-Montalvan et al., 2007).

The pattern of ubiquitin linkage on a substrate can have
several effects, including targeting the substrate for proteasomal
or lysosomal degradation, influencing substrate localization,
regulating protein-protein interactions, and altering substrate
activity (Komander and Rape, 2012). To date, the most
common and well-characterized ubiquitin modifications include
K11 and K48 polyubiquitin chains, which are best known
for targeting substrates for proteasomal degradation and K63
polyubiquitin chains, which can signal proteins for lysosomal
targeting and NF-KB activation (Komander and Rape, 2012).
K63 polyubiquitination, as well as monoubiquitination, can also
generate binding-platforms to mediate specific protein-protein
interactions. The USP7 substrate PCNA, for instance, can be
modified by both mono- and K63 polyubiquitination, which
mediates interactions with translesion DNA polymerases (Bienko
et al., 2005) and ZRANB3 (Vujanovic et al., 2017), respectively
(discussed further in the DNA Damage Bypass section below).

Although USP7 substrate-specificity has been extensively
characterized, its ubiquitin chain specificity for its specific
substrates is still being elucidated. Like other USPs, USP7
is unable to cleave methionine-linked linear ubiquitin chains
(Faesen et al., 2011a). USP7 can, however, cleave K6, K11,
K33, K48, and K63-linked modifications and does so with
similar efficiencies (Faesen et al., 2011a; Schaefer and Morgan,
2011; Kategaya et al., 2017; Masuda et al., 2019). As a
means of regulating substrate-specificity, USP7 is inefficient
in recycling and converting free-floating polyubiquitin chains
to monoubiquitin if the chain is not attached to a substrate
(Schaefer and Morgan, 2011; Masuda et al., 2019). USP7 can,
however, cleave ubiquitin chains that are attached to the small
ubiquitin-like modifier, SUMO, regardless of whether SUMO
is itself attached to another substrate or otherwise free-floating
(Lecona et al., 2016).

K63 and K48 polyubiquitin chains are the best-characterized
ubiquitin linkages cleaved by USP7. USP7 indiscriminately
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cleaves K63 polyubiquitin linkages throughout the chain. This
includes cleavage between ubiquitin and the substrate (base
cleavage), between two ubiquitin molecules within the chain
(endo-cleavage) or at the distal end of the chain, working
inwards (exo-cleavage) (Figure 2). One study suggests that
K48-polyubiquitin linkages are not favored by USP7 and that
the enzyme prefers ubiquitin modifications with a free K48
side chain. Because of this, USP7 preferentially exo-cleaves
K48 polyubiquitin linkages, rather than endo-or base cleavage.
This preference may act as an intrinsic negative regulator of
USP7, helping to ensure that proteins destined for proteasomal
degradation are in fact degraded (Kategaya et al., 2017). USP7
activity is also influenced by the length of the polyubiquitin
chain, as long polyubiquitin chains (>4 ubiquitin) seem to
be “resistant” to cleavage compared to shorter chains. This
chain specificity is speculated to be an additional mechanism
regulating USP7 activity, by serving as a threshold for
proteasome-targeting polyubiquitination (Schaefer and Morgan,
2011; Kategaya et al., 2017).

Despite the limitations above, stabilizing proteins by removal
of proteasome-targeting K48 polyubiquitin chains is a common
mechanism by which USP7 regulates many of its characterized
substrates. Remarkably, these USP7 substrates include a high
number of E3 ubiquitin ligases and their target substrates (Kim
and Sixma, 2017). This results in an interesting dichotomy,
where USP7 can deubiquitinate and stabilize: 1) the E3 ubiquitin
ligase, allowing it to mediate K48 ubiquitination of its substrates;
or 2) the substrate targeted by the E3 ubiquitin ligase. Most

intriguing is the frequent observation for this pattern to occur
as part of a negative feedback system, where USP7 contributes to
both stabilizing and degrading both substrates. This arrangement
allows USP7 to fine-tune substrate protein levels and dynamically
regulate its target pathways.

USP7 IS A MASTER REGULATOR OF
GENOMIC INTEGRITY PATHWAYS

In this section, we will discuss the intricate manner through
which USP7 regulates the genome stability pathways. We will
firstly discuss the roles of USP7 in maintaining genome stability
during normal cellular metabolism, by regulating the cell cycle,
replication, mitosis and telomere stability. We will then review
roles of USP7 following the induction of DNA damage, in
regulating p53-dependent transcription and the pathways of
nucleotide excision repair, double-strand DNA break repair and
DNA damage bypass. Finally, we will consider roles of USP7 in
the ‘last resort’ pathway of apoptosis.

Cell Cycle Regulation
For a proliferating cell to give rise to identical daughter cells,
genomic DNA must be duplicated and equally distributed
into two new nuclei. These events occur in the S and M
phases of the cell cycle; DNA is replicated during S phase,
and then separated into distinct nuclei via mitosis in M phase.
Towards the end of M phase, these two nuclei are partitioned

FIGURE 2 | USP7 can cleave monoubiquitin moieties, as well as K48 and K63-linked polyubiquitin chains, from substrate proteins. K48 polyubiquitin chains are
cleaved from the distal end of the chain, working inwards, while linkages between K63 polyubiquitin chains can be cleaved indiscriminately.
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into separate daughter cells in the process of cytokinesis.
Interspersing S phase and M phase are two growth phases – G1
and G2 – during which the cell synthesizes new mRNA and
protein for the subsequent phase. Progression through the cell
cycle – G1, S, G2, M – is tightly regulated by proteins referred
to as cyclins, which activate cyclin-dependent kinases (CDKs)
to phosphorylate key proteins that initiate each cell cycle phase
(Malumbres and Barbacid, 2009).

Numerous reports have demonstrated that the inhibition
or depletion of USP7 in cells causes defects in cell cycle
progression and a resulting decrease in cell proliferation
(Reverdy et al., 2012; Giovinazzi et al., 2013; Jagannathan
et al., 2014; Yi et al., 2016). While these phenotypes are
multi-factorial – resulting from disruptions to DNA replication,
mitosis, and DNA repair – mounting evidence suggests they are
also the result of disrupted cell cycle regulation. This includes
recent findings regarding a role of USP7 in regulating the
expression of cyclin A2, one of the major regulators of S phase
initiation and the subsequent transition to G2 (Figure 3A;
Wang et al., 2016).

USP7 regulates cyclin A2 indirectly, by stabilizing the PHF8
demethylase (Wang et al., 2016). PHF8 activates transcription
start sites by demethylating the histone substrates H3K9me1/2,
H3K27me2, and H4K20me1. PHF8 also has an integral role
in the upregulation of gene targets involved in cell cycle
progression, including cyclin A2 (Liu et al., 2010). Protein levels
of PHF8 are themselves cell cyclically regulated, with levels
peaking in G2 due to USP7-mediated deubiquitination, before
being degraded in M and G1 due to polyubiquitination by
the anaphase-promoting complex (APC/C) (Lim et al., 2013;
Wang et al., 2016).

Another means through which USP7 regulates cell cycle
progression is via stabilization of the Ki-67 antigen (Zhang et al.,
2016). Ki-67 is a nuclear protein often used as biomarker of
cell proliferation in immunohistochemical analysis of malignant
tissues (Sales Gil and Vagnarelli, 2018). This is due to the
near-exclusive expression of Ki-67 in the active cell cycle phases
(G1, S, G2, M), as opposed to in the quiescent ‘G0’ state of
non-dividing cells. Although Ki-67 expression has been used as
a proliferation marker for many decades, roles for this protein
remain poorly described. Recent findings, however, suggest
that Ki-67 contributes to cell cycle regulation, heterochromatin
maintenance and mitosis (Sun and Kaufman, 2018).

Replication
In addition to broad cell cycle regulation, USP7 also has more
direct roles in regulating DNA replication (Figure 3B). One of the
earliest steps in this process is the so-called ‘licensing’ of origins
of replication (Bell, 2017). This process occurs in late M phase/G1
and involves recruiting mini-chromosome maintenance 2–7
(MCM 2–7) replicative helicases to thousands of potential
replication start sites, ready for use during S phase. Replication
licensing is mediated by the licensing factors Cdc6 and Cdt1,
which help to load the MCM proteins onto DNA (Evrin et al.,
2009; Remus et al., 2009). To ensure that origins of replication can
only be fired once per cell cycle, licensing is strictly inhibited once
the cell enters S phase. This is essential to prevent DNA being

replicated more than once per cell cycle, an undesirable outcome
which can cause genome instability and tumorigenesis as a result
of gene amplification (Truong and Wu, 2011).

USP7 has a role in preventing DNA re-replication by
stabilizing Geminin, a negative regulator of replication
(Hernández-Pérez et al., 2017). Geminin interacts directly
with Cdt1, preventing Cdt1from loading MCM proteins onto
origins of replication (Wohlschlegel et al., 2000). Analogous to
the regulation of PHF8, Geminin protein levels are cyclically
regulated to increase in S and G2 due to USP7-mediated
deubiquitination, prior to degradation in M phase and G1 as
a result of APC/C-mediated polyubiquitination (McGarry and
Kirschner, 1998). By deubiquitinating Geminin in S and G2,
USP7 helps to ensure its availability to suppress aberrant origin
licensing (Hernández-Pérez et al., 2017).

The firing of replication origins occurs once the MCM2-7
proteins associate with Cdc45 and the GINS protein complex,
to form an active replicative helicase (Gambus et al., 2006;
Moyer et al., 2006; Ilves et al., 2010). This complex then begins
the process of unwinding the DNA, allowing the recruitment
of ‘replisome’ proteins, while exposing single-stranded DNA
for use as a template for new DNA synthesis by replicative
DNA polymerases (Leman and Noguchi, 2013). A recent study
has indicated that USP7 associates at sites of replication and
is important for origin firing and replication fork progression
(Lecona et al., 2016). Here, USP7 deubiquitinates replication
fork proteins, with an apparent preference for substrates that
are also SUMOylated. This role allows USP7 to maintain a
high local ratio of SUMOylated to ubiquitinated proteins, a
distinguishing feature of replication fork-adjacent chromatin
(Lopez-Contreras et al., 2013). An explanation for this role
is that by deubiquitinating replication proteins, USP7 is able
to prevent their recognition by the valosin-containing protein
(VCP) [also known as the p97 segregase (Lecona et al., 2016)].
VCP recognizes and extracts chromatin-bound ubiquitinated
proteins, allowing for their proteasomal degradation (Dantuma
and Hoppe, 2012). By deubiquitinating SUMOylated proteins
at the replication fork, USP7 may therefore help to maintain
protein levels required for new DNA synthesis. A precise catalog
of SUMOylated proteins targeted by USP7, will, however, require
further exploration.

USP7 also contributes to maintaining the methylation status of
newly synthesized DNA through multi-level regulation of DNA
(cytosine-5)-methyltransferase 1 (DNMT1) (Felle et al., 2011;
Qin et al., 2011). DNMT1 catalyzes the methylation of cytosine
bases at cytosine-phosphate-guanine (CpG) dinucleoside sites
and as such is an important mediator of epigenetic gene silencing
(Jones et al., 1998; Dhe-Paganon et al., 2011). Unlike related DNA
methyltransferases of the DNMT3 family, which have a higher
affinity for non-methylated DNA, DNMT1 instead preferences
the methylation of hemi-methylated CpG sites (Hermann et al.,
2004). This preference allows DNMT1 to specifically modify
newly synthesized DNA by copying the methylation pattern of
the template strand. Although an association with the replication
fork is not strictly necessary for the post-replicative activity
of DNMT1, DNMT1 does interact directly with the PCNA
sliding clamp. This interaction is thought to increase the catalytic
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FIGURE 3 | USP7 functions in numerous genome stability pathways. Schematics indicate roles of USP7 in: (A) cell cycle regulation, (B) replication, (C) mitosis, (D)
telomere regulation, (E) p53-dependent transcription, (F) nucleotide excision repair, (G) double-strand DNA break repair, (H) DNA damage bypass, and (I) apoptosis.
Curved arrows towards a substrate indicate ubiquitination events, while curved arrows away from a substrate indicate deubiquitination; enzymes adjacent to the
arrow catalyze the reaction. Color coding throughout the figure is indicated by the Key at the bottom of the figure.

efficiency of DNMT1 (Chuang et al., 1997; Schermelleh et al.,
2007; Spada et al., 2007).

USP7 has been found to interact directly with DNMT1 and
was initially suggested to stabilize the latter by opposing its
polyubiquitination by the E3 ubiquitin ligase UHRF1 (Felle et al.,
2011; Qin et al., 2011). Acetylation of DNMT1 by Kat5 (also
known as Tip60) at the end of S phase was further proposed

to disrupt the USP7-DNMT1 interaction and target the latter
for degradation (Du et al., 2010; Cheng et al., 2015). Some
doubt has, however, recently arisen as to the extent to which
USP7 contributes to DNMT1 stability (Yarychkivska et al., 2018).
Indeed, in this report, DNMT1 protein levels were found to be
unaffected by USP7-depletion or to decrease at the end of S phase.
Reconciling these findings will require further study.
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While the role of USP7 in regulating DNMT1 protein
levels remains unclear, numerous reports have indicated that
USP7 also regulates DNMT1 chromatin localization via indirect
means. This includes USP7-mediated stabilization of UHRF1
(Jenkins et al., 2005; Felle et al., 2011). In addition to its
role in polyubiquitinating DNMT1, UHRF1 is also a critical
factor in localizing DNMT1 to chromatin (Bostick et al., 2007;
Achour et al., 2008; Bronner et al., 2019). UHRFI has been
suggested to guide DNMT1 towards hemi-methylated DNA, by
cooperative binding to both hemi-methylated DNA and lysine
9 methylated histone H3 (H3K9me3) (Liu et al., 2013). USP7
has been suggested to have an additional role in this step,
where its binding to UHRF1 seems to promote a conformational
change in UHRF1, allowing for efficient H3K9me3-binding (Gao
et al., 2018). These rearrangements presumably contribute to
the subsequent channeling of DNMT1 to these histone marks.
In addition, UHRF1 seems to promote DNMT1 chromatin
binding by monoubiquitinating histone H3 at three different
lysine residues, K14, K18, and K23, which generates a platform
for DNMT1-binding (Nishiyama et al., 2013; Harrison et al.,
2016; Ishiyama et al., 2017). Interesting, USP7 seems to play a
role in negatively regulating this interaction by deubiquitinating
H3 (Yamaguchi et al., 2017); this may allow USP7 to fine-tune
DNMT1 recruitment.

USP7 also has a likely role in the final stages of replication,
in the unloading of MCM complexes. This was first suggested
by the delayed progression of USP7-depleted cells through
late S and G2 of the cell cycle, which corresponds with a
defect in the dissociation of MCM proteins from chromatin
(Jagannathan et al., 2014). Furthermore, USP7 was found to
interact with MCM-binding protein (MCM-BP) – a protein
that mediates MCM disassembly and dissociation from DNA
following the completion of replication (Nishiyama et al., 2011;
Nguyen et al., 2012). Although a precise mechanism remains
unclear, these observations suggest USP7 has a direct role in
the disassembly of replication forks, presumably involving an
interaction with MCM-BP.

Mitosis
While the accurate replication of DNA is essential to prevent
the accumulation of DNA mutations, the precise division of this
DNA during mitosis is equally important for the generation of
genetically identical daughter cells. Indeed, failures during this
process can result in aneuploidy – the production of daughter
cells with too many or too few chromosomes – as well as other
chromosomal rearrangements (Levine and Holland, 2018). The
consequence of these errors is highlighted by the structural
alterations and copy number changes of chromosomes found
in the vast majority of tumors (Duijf et al., 2013). A number
of studies have suggested that USP7 functions in the regulation
of mitosis (Oh et al., 2007; Giovinazzi et al., 2013, 2014; Peng
et al., 2019; Figure 3C). Here, cells depleted of USP7 exhibit
increases in chromosomal abnormalities and aneuploidy, as well
as an accumulation of micronuclei (Giovinazzi et al., 2013, 2014).

Mitosis occurs as a series of five distinct phases: prophase,
prometaphase, metaphase, anaphase, telophase (McIntosh, 2016).
In prophase, the duplicated and entangled chromosomes are

condensed into two distinct sister chromatids, joined together
by a centromere (Belmont, 2006). Disk-shaped protein structures
called kinetochores then assemble on the centromere in
prometaphase, which are bound by microtubules originating
from centrosomes found at either end of the cell (Magidson
et al., 2011). The chromosomal centromeres are then aligned
at equal distances from the centrosomes in metaphase, along
the so-call metaphase plate (Jaqaman et al., 2010). In anaphase,
the sister chromatids are then separated and move to opposite
ends of the cell, prior to formation of distinct nuclear
membranes around each identical set of chromatids in telophase
(McIntosh, 2016).

One of the major ways USP7 contributes to mitosis, is by
regulating the stability of polo-like kinase 1 (PLK1) (Giovinazzi
et al., 2013; Peng et al., 2019). PLK1 is one of the foremost
M phase kinases, which functions in almost every stage of
mitosis, including progression through the G2/M boundary,
the alignment of chromatids on the metaphase plate and
sister chromatid segregation (Combes et al., 2017). USP7 both
positively and negatively influences PLK1 proteins levels by
deubiquitinating and stabilizing both PLK1 and its E3 ubiquitin
ligase, CHFR (Oh et al., 2007; Peng et al., 2019). CHFR triggers
the degradation of PLK1 in response to mitotic stress, which
prevents activation of mitosis-promoting factor and progression
into M phase (Kang et al., 2002). By stabilizing both PLK1 and
CHFR, USP7 thereby helps to regulate mitotic entry; indeed,
cells depleted of USP7 exhibit G2/M cell cycle arrest and delayed
mitotic progression (Giovinazzi et al., 2013; Peng et al., 2019).
How the cell balances these opposing functions of USP7 will,
however, require further study.

In addition to mitotic entry, USP7-mediated stabilization of
PLK1 also contributes to the PLK1 regulation of chromatid
alignment and segregation. Indeed, cells depleted of PLK1 or
USP7 exhibit increased rates of chromosomal misalignment and
segregation during metaphase and anaphase, respectively (Peng
et al., 2019). PLK1 exerts these functions by localizing to the
chromatid kinetochores in prometaphase, where it promotes
microtubule attachments (Liu et al., 2012).

Aside from PLK1-mediated regulation, USP7 also influences
proper chromatid alignment and segregation by deubiquitinating
Bub3 during M phase (Giovinazzi et al., 2014). Bub3 is a key
component of the Spindle Assembly Checkpoint (SAC), where
it functions with other members of the Mitotic Checkpoint
Complex (MCC) (Musacchio, 2015). The SAC regulates the
metaphase-to-anaphase transition, by ensuring that all sister
chromatids are aligned on the metaphase plate and properly
connected to centrosomal microtubules – a process regulated by
PLK1 (Combes et al., 2017) – prior to chromatid segregation
during anaphase. The SAC delays this transition by inhibiting
the anaphase-promoting complex (APC/C) and preventing it
from degrading cyclin B and securin (Musacchio, 2015). Securin,
in turn, inhibits the protease separase, which is responsible
for cleaving the cohesin rings that hold sister chromatids
together to initiate anaphase (Ross and Cohen-Fix, 2002). By
stabilizing both PLK1 and Bub3, USP7 therefore regulates
chromosomal segregation in two ways: 1) by regulating the
proper attachment of microtubules to the kinetochores, and 2)
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by ensuring a proper checkpoint response can be initiated, in the
event of any errors.

Telomere Maintenance
Another means by which USP7 influences genome stability, is
through the maintenance of telomere ends (Figure 3D; Zemp
and Lingner, 2014; Episkopou et al., 2019). Telomeres are
protein-nucleotide structures at the termini of each eukaryotic
chromosome, which in humans contain 10 to 15 kb of a
repeating hexanucleotide sequence (Kong et al., 2013). While
the vast majority of the telomeric DNA is double-stranded, the
termini of each telomere is characterized by a 3’ overhang of
50–300 bp of single-stranded DNA (ssDNA). These overhangs
result from the so called “end-replication problem,” where
the cell is unable to replicate the 3’ termini of chromosomes
due to the strict requirement of a primed template from
which replication can proceed (Harley et al., 1990). These
overhangs represent a challenge for the cell, as exposed ssDNA
is vulnerable to both chemical and enzymatic degradation.
Furthermore, as telomere ends resemble broken chromosomes,
they must be protected to prevent triggering a double-strand
DNA break response and the fusion of adjacent chromosomes
(O’Sullivan and Karlseder, 2010).

One of the ways cells sequester telomere overhangs is through
the formation of so called “t-loops”. These structures form when
the telomeric ssDNA overhang invades an upstream region of
the telomere duplex and stably binds via complementarity of
the hexanucleotide sequence (Griffith et al., 1999). Although
this protects the telomere overhang, it does so at the expense
of displacing a section of ssDNA from the upstream DNA
duplex. This displaced section is, however, rapidly bound by
proteins of the shelterin complex – comprised of TRF1, TRF2,
POT1, TPP1, TIN2, and Rap1 – which bind both directly to
the ssDNA section, as well as the adjacent dsDNA (de Lange,
2005). In germ cells and the vast majority of cancer cells,
the shelterin complex also contributes to regulating telomere
lengthening, either via telomerase-mediated DNA synthesis
(active in 85 – 90% of cancers) or recombination-based
alternative lengthening of telomeres (ALT; active in 10 – 15% of
cancers) (Cesare and Reddel, 2010).

USP7 contributes to telomere maintenance by interacting
with and deubiquitinating the shelterin component, TPP1
(Zemp and Lingner, 2014). TPP1 binds to telomeric ssDNA
as a heterodimer with POT1, which helps to protect the
telomere from degradation. In addition, TPP1 interacts
directly with telomerase and is a processivity factor for
telomerase-mediated telomere lengthening (Wang et al., 2007;
Xu et al., 2019). Unlike murine TPP1, whose ubiquitination
promotes telomere localization (Rai et al., 2011), the
ubiquitination of human TPP1 signals the protein for
proteasomal degradation. USP7, however, stabilizes human
TPP1, likely in conjunction with other DUBs (Zemp and
Lingner, 2014). Although a precise functional outcome of
USP7-mediated TPP1 stabilization remains unclear, by limiting
TPP1 degradation, USP7 presumably contributes to the integrity
of telomere cap as well as regulation of telomerase-mediated
end lengthening.

USP7 localizes to telomere ends in both telomerase+ and
ALT+ human cell lines, however, its roles at either seem to
differ. Indeed, while USP7 has an apparent protective role in
telomerase+ cells – via TPP1 stabilization – USP7 seems to
promote POT1 degradation in ALT+ cells (Episkopou et al.,
2019). Although a precise explanation for this difference remains
unclear, it seems to involve the specific localization of ALT+
telomeres within promyelocytic leukemia (PML) nuclear bodies.
These ALT-associated PML bodies have an essential role in
telomere-lengthening in ALT+ cells, by bringing chromosome
ends together with the recombination proteins that mediate
their lengthening (Draskovic et al., 2009; Osterwald et al.,
2015). USP7 also associates with PML bodies (Sarkari et al.,
2011) and PML proteins are essential for USP7 to degrade
POT1 (Episkopou et al., 2019). Here, USP7 is thought to
contribute to POT1 degradation by stabilizing one of the many
E3 ubiquitin ligases known to accumulate within PML bodies
(Cheng and Kao, 2013; Episkopou et al., 2019). Although
USP7-regulated degradation of POT1 is likely required for
proper ALT regulation, this process is strictly regulated by the
USP7 inhibitor protein, TSPYL5 (testis-specific Y-encoded-like
protein 5). TSPYL5 competitively binds to the USP7 TRAF-like
domain, limiting USP7 substrate-binding (Epping et al., 2011).
Regulation of USP7 by TSPYL5 is of particular importance in
ALT+ cells, as unlike in telomerase+ cells, TSPYL5 depletion
causes cell death due to unrestricted POT1 degradation
(Episkopou et al., 2019).

p53-Dependent Transcription
Regulating the p53 pathway is one of the most well-studied
and well-characterized aspects of USP7 function (Li et al.,
2002; Figure 3E). Colloquially referred to as the ‘guardian
of the genome’, tumor suppressor protein p53 is an essential
transcription factor that stimulates the expression of hundreds of
target genes in response to genomic stress. Depending on the type
and extent of the damage that occurs, these target genes encode
proteins that function in cell cycle arrest, DNA damage repair and
apoptosis (Hafner et al., 2019).

In undamaged cells, p53 protein levels are maintained
at minimal levels due to prompt proteasome-targeting
polyubiquitination by the Mdm2 E3 ubiquitin ligase (Haupt
et al., 1997; Honda et al., 1997; Kubbutat et al., 1997). While
Mdm2 is also targeted for proteasomal degradation due its
auto-polyubiquitination (Fang et al., 2000), USP7 is able to
stabilize Mdm2 by rapidly removing these ubiquitin chains
(Cummins et al., 2004; Li et al., 2004). Furthermore, USP7
deubiquitinates and stabilizes the Mdm2 interacting partner –
and substrate (Kawai et al., 2003; Pan and Chen, 2003) –
Mdm4 (also known as Mdmx) (Meulmeester et al., 2005).
Mdm4 further contributes to Mdm2 stability by disrupting
self-ubiquitination of the latter (Stad et al., 2001), while
also stimulating Mdm2-mediated polyubiquitination of
p53 (Linares et al., 2003). Further, Mdm4 directly interacts
with p53 to disrupts its DNA-binding and transcriptional
activation (Francoz et al., 2006; Wei et al., 2016). The
interaction between USP7 and Mdm2 is also enhanced
by DAXX, which simultaneously binds both proteins and
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enhances the E3 ubiquitin ligase activity of Mdm2 towards p53
(Tang J. et al., 2006).

The SUV39H1 methyltransferase (also known as KMT1A) is
another Mdm2 substrate that is deubiquitinated and stabilized
by USP7 in undamaged cells (Bosch-Presegué et al., 2011;
Mungamuri et al., 2016). As with Mdm4, SUV39H1 negatively
regulates the transcriptional activation of p53. It does so
by co-localizing with p53 at the promoters of target genes,
where it trimethylates lysine 9 of histone H3 (H3K9me3) to
promote formation of transcriptionally inactive higher-order
heterochromatin (Mungamuri et al., 2012). SUV39H1 function
is also modulated by the SIRT1 deacetylase, which regulates
SUV39H1 in two separate ways: (1) by deacetylating SUV39H1
lysine residue 266 (K266) (Vaquero et al., 2007) and (2)
by deacetylating lysine 9 of histone H3 (H3K9Ac) to allow
SUV39H1 methylation (Vaquero et al., 2004, 2007). As SIRT1
was recently found to be deubiquitinated and stabilized by
USP7, these findings suggest another way through which
USP7 can regulate SUV39H1 activity and p53 transcription
(Song et al., 2020).

The above interactions demonstrate the critical roles USP7
plays in suppressing p53 activation in undamaged cells. USP7
is, however, also important for mounting a strong p53 response
following DNA damage. Fundamental to this response is a
switch from USP7 deubiquitinating Mdm2 to preferentially
deubiquitinating p53 (Li et al., 2004). An obstacle to this
switch is that while USP7 binds both Mdm2 and p53 via
its TRAF-like domain, Mdm2 makes more extensive contacts
and thus binds the TRAF-like domain with a higher affinity
(Hu et al., 2006; Sheng et al., 2006). A contributor to
this switch is the DNA damage-induced phosphorylation of
p53, Mdm2, Mdm4, and DAXX by the Ataxia telangiectasia
mutated (ATM) kinase and its downstream effector kinase,
Chk2 (Cheng and Chen, 2010; Maréchal and Zou, 2013).
These phosphorylation events contribute to disrupting the
p53-Mdm2 (Chehab et al., 2000; Shieh et al., 2000), and
Mdm2-DAXX (Tang et al., 2013) interactions, as well as to
the degradation of Mdm2 and Mdm4 (Stommel and Wahl,
2004; Chen et al., 2005; Pereg et al., 2005, 2006; LeBron et al.,
2006). Deacetylation of Mdm2 by Sirt1 also contributes to
the Mdm2/p53 switch, by disrupting the association between
Mdm2 and USP7, leading to Mdm2 auto-ubiquitination
(Nihira et al., 2017).

Various regulatory proteins also influence the transition
of USP7 between Mdm2- and p53-binding. The RASSF1A
tumor suppressor is one such protein, which disrupts the
Mdm2-DAXX-USP7 interaction in response to DNA damage by
simultaneously binding to both Mdm2 and DAXX. RASSF1A
thereby destabilizes Mdm2, allowing for a p53-dependent
delay in G1-S cell cycle progression (Song et al., 2008b).
ABRO1 (also known as FAM175B) also contributes to the
p53 response by stabilizing the p53-USP7 interaction and
promoting USP7-mediated p53 deubiquitination (Zhang J.
et al., 2014). The p53-USP7 interaction is also negatively
regulated by the TSPYL5 inhibitor protein (Epping et al., 2011).
As mentioned in the ‘Telomere Maintenance’ section above,
TSPYL5 binds to the USP7 TRAF-like domain, competitively

inhibiting USP7 substrate binding. TSPYL5 disrupts the
p53-USP7 interaction, leading to increased polyubiquitination
and degradation of p53. Unlike RASSF1A and ABRO, which
stimulates p53-activation, TSPYL5 therefore seems to contribute
to a more measured p53 response.

Nucleotide Excision Repair
Aside from activating p53, multiple studies have suggested that
USP7 also has a direct role in the DNA damage response via
regulation of the nucleotide excision repair (NER) pathway
(Sarasin, 2012; Schwertman et al., 2012; He et al., 2014;
Higa et al., 2016; Zhu et al., 2020; Figure 3F). NER is a
central pathway through which cells remove a range of bulky
DNA lesions, caused by numerous environmental mutagens
and metabolic byproducts. While such lesions are structurally
diverse and are caused by a range of DNA-damaging agents,
UV radiation-induced lesions are a primary substrate (Schärer,
2013). Indeed, cells depleted of USP7 are deficient in the
repair of UV-induced cylobutane pyrimidine dimers and 6-4
photoproducts (He et al., 2014).

The detection of DNA lesions and the initiation of
NER, occurs through two sub-pathways: global genome NER
(GG-NER) and transcription-coupled NER (TC-NER). In
GG-NER, lesions are detected throughout the genome by
the XPC-Rad23B and DDB1-XPE protein complexes, which
recognize helical distortions caused by the DNA adduct.
By contrast, TC-NER is activated by the stalling of RNA
polymerase II at lesions in the transcribed strand of active
genes, as well by accumulation of the TC-NER proteins ERCC8
(CSA), ERCC6 (CSB), and XAB2 at sites of damage. In
both GG- and TC-NER, lesion recognition is followed by
unwinding of the DNA by TFIIH helicase, excision of the
lesion, and the synthesis and ligation of a new DNA patch
(Kusakabe et al., 2019).

USP7 has apparent functions in the initiation steps of
both GG- and TC-NER pathways. In the former, USP7 has
been found to interact with and deubiquitinate the lesion
sensing factor, XPC (He et al., 2014). XPC is polyubiquitinated
in cells in response to UV-induced DNA damage by a
complex containing the DDB1-XPE proteins and the Cul4A
E3 ubiquitin ligase (Sugasawa et al., 2005; Wang et al., 2005).
Although ubiquitination of XPC is functionally important
for enhancing binding to damaged DNA, it does so at
the expense of exposing XPC to valosin-containing protein
(VCP/p97)-mediated proteolysis. Deubiquitination of XPC by
USP7, however, stabilizes XPC and prevents its premature
degradation (He et al., 2014).

In the early stages of TC-NER, USP7 interacts with and
is recruited to lesions by the UVSSA scaffolding protein. This
interaction is important for USP7 to localize and subsequently
stabilize the adjacent protein, ERCC6 (Schwertman et al., 2012).
Indeed, ERCC6 protein levels are substantially reduced in cells
depleted of USP7 or UVSSA (Zhang et al., 2012). Furthermore,
while ERCC6 is degraded in cells following UV irradiation
(Groisman et al., 2006; Wei et al., 2011), this degradation is
more rapid in the absence of either protein. Although ERCC6
degradation is necessary for the resumption of transcription
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following NER, it has been suggested that USP7 helps to delay
this process until the proper completion of ERCC6 function
(Schwertman et al., 2012).

Double-Strand DNA Break Repair
USP7 also has important regulatory roles in the repair of
double-strand DNA breaks (DSBs) (Figure 3G). DSBs are an
especially toxic form of DNA lesion, as their incorrect repair
can lead to chromosomal fragmentation and/or rearrangement
(So et al., 2017). Two major DNA repair pathways are
employed for the repair of double-strand DNA breaks in
cells: non-homologous end-joining (NHEJ) and homologous
recombination (HR). NHEJ is a comparatively simple DSB
repair pathway, in which either end of a DSB are bound by
the Ku70/80 heterodimer, aligned and then re-ligated by DNA
ligase IV. If necessary, this process may involve a small degree
of end-processing (either gap-filling or ssDNA-trimming) to
create compatible DNA ends (Lieber, 2010). By contrast, the
initial stages of HR involve the large-scale resection of the
5’-terminating DNA strand to generate 3’-ssDNA tracts of up
to 3.5 kb in length (Zhou et al., 2014). Resection of the break
is catalyzed by the Mre11-Rad50-Nbs1 (MRN), DNA2, and
Exonuclease 1 (Exo1) nucleases, in concert with the BLM helicase
(BLM). These tracts are then used to invade a sister chromatid,
where they are extended past the break and then reanneal with
the second end of the DSB (Brandsma and van Gent, 2012).
While NHEJ may be used at any stage during the cell cycle,
HR is only available during the S and G2 cell cycle phases,
where a sister chromatid is available (Khanna and Jackson,
2001). HR is also the dominant pathway used in the repair of
“single-ended DSBs” caused by the collapse of replication forks
(Whelan et al., 2018).

The depletion of USP7 from cells has been found to
greatly compromise the repair of DSBs by either NHEJ or
HR (Wang et al., 2016; An et al., 2017). This is due to a
key role of USP7 in the early recruitment of DNA repair
proteins to sites of DSB lesions. One such protein is the
histone demethyltransferase, PHF8. As discussed in our “Cell
Cycle Regulation” section above, PHF8 is an interactor of
USP7, which the latter stabilizes via deubiquitination. In
addition to the transcriptional regulation of cyclin A2, PHF8
interacts with Ku70 and the BLM helicase to facilitate their
localization to sites of DSBs. Indeed, the recruitment of
either protein is impaired in cells following PHF8 or USP7
depletion (Wang et al., 2016). As Ku70 and BLM are essential
factors in NHEJ and HR, respectively, USP7 is thus able to
influence both pathways.

USP7 also regulates the protein stability of mediator of
DNA damage checkpoint 1 (MDC1) (Su et al., 2018). MDC1
is a binding partner of the MRN nuclease complex (Goldberg
et al., 2003) and functions in the initial detection and
signaling of DSBs (Stewart et al., 2003). This is demonstrated
by the failed recruitment of the downstream DNA repair
proteins 53BP1 and BRCA1 in MDC1-depleted cells following
DNA damage; this defect is mimicked in cells depleted of
USP7 (Su et al., 2018). MDC1 promotes DSB signaling
by binding to histone H2AX following its phosphorylation

by the repair kinase, ataxia-telangiectasia mutated (ATM)
(Stewart et al., 2003). In addition, MDC1 is itself phosphorylated
by ATM, which creates a binding site for the RNF8 E3 ubiquitin
ligase (Kolas et al., 2007; Mailand et al., 2007). The accumulation
of RNF8 subsequently triggers the recruitment of another E3
ubiquitin ligase, RNF168 (Nowsheen et al., 2018), which catalyzes
the K63-linked polyubiquitination of histones H2A and H2AX
(Mattiroli et al., 2012). These ubiquitin chains are in-turn bound
by the ubiquitin-binding domains of 53BP1, and the BRCA1-
interacting protein, Rap80 (Sobhian et al., 2007; Fradet-Turcotte
et al., 2013).

In addition to stabilizing MDC1 – and thus promoting
RNF168 accumulation – USP7 also directly deubiquitinates
and stabilizes RNF168 (Zhu et al., 2015), as well as its
paralog, RNF169 (An et al., 2017). While RNF168 promotes
53BP1 and BCRA1 localization to sites of DSBs, RNF169 is a
direct inhibitor of this binding. This is because, once RNF168
synthesizes H2A/H2AX ubiquitin chains, RNF169 competes with
53BP1 and BRCA1 for ubiquitin binding (Chen et al., 2012;
Panier et al., 2012; Poulsen et al., 2012). Although it seems
counterintuitive for USP7 to both promote and limit 53BP1
and BRCA1 accumulation at sites of DSBs, an explanation may
come from the finding that while 53BP1 and BRCA1 promote
DSB signaling, 53BP1 subsequently prevent DSB resection during
HR (Bunting et al., 2010; Coleman and Greenberg, 2011).
USP7 might therefore have an important role in balancing
these activities, to allow for both HR activation as well as
subsequent DSB resection.

USP7 also influences DSB repair by regulating checkpoint
kinase 1 (Chk1) (Faustrup et al., 2009; Alonso-de Vega
et al., 2014; Zhang P. et al., 2014). Chk1 is activated
during HR following the resection of DSBs and the
exposure of single-stranded DNA. This elicits activation
of the ATR kinase, which stimulates Chk1 activity via
phosphorylation (Choi et al., 2007). Chk1 then phosphorylates
numerous downstream targets, including the Cdc25A
phosphatase (Uto et al., 2004), which prompts Cdc25A
proteasomal degradation (Mailand et al., 2000; Xiao et al.,
2003). Cdc25A is a dual-specific phosphatase, which
promotes cell cycle progression by removing inhibitory
phosphate modifications from cyclin dependent kinases.
The degradation of Cdc25A during HR thus prevents
cell cycle progression, triggering S and G2 cell cycle arrest
(Donzelli and Draetta, 2003).

USP7 controls Chk1 signaling by deubiquitinating and
stabilizing both Chk1 and its activator protein, Claspin
(Faustrup et al., 2009; Alonso-de Vega et al., 2014; Zhang P.
et al., 2014). Here, the interaction between USP7 and Chk1
is enhanced by ZEB1, which is itself phosphorylated and
stabilized by the ATM kinase, in response to DNA damage
(Zhang P. et al., 2014). Interestingly, USP7 also negatively
regulates Chk1-mediated cell cycle arrest, by deubiquitinating
and stabilizing Cdc25A in response to DNA damage. Here,
USP7 is recruited via an interaction with the Cdc25A-
interactor, BRE (Biswas et al., 2018). Although the precise
purpose of this opposing regulation is not fully understood,
one explanation might be that by maintaining a small pool
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of Cdc25A, USP7 might play a role in cell cycle re-entry,
following DSB repair. Such a model will, however, require
further investigation.

DNA Damage Bypass
Another way USP7 regulates the cellular response to DNA
damage is via the specialized replication pathways of DNA
damage bypass (Zlatanou and Stewart, 2015; Figure 3H). Unlike
the NER and DSB repair pathways, DNA damage bypass does not
mediate the repair of damaged DNA, but rather allows the cell to
avoid DNA lesions encountered during replication, so they may
be repaired at a later time (Sale, 2012). These lesions include bulky
DNA adducts such as those repaired by NER.

The synthesis of DNA during normal replication is facilitated
by the three “replicative” DNA polymerases: Pol α, Pol δ and Pol
ε (Johansson and Dixon, 2013). In this process, high accuracy
is essential to prevent the inadvertent accumulation of DNA
mutations. A major contributor to this accuracy is the intrinsic
high-fidelity of the replicative polymerases (Bębenek and Ziuzia-
Graczyk, 2018). This is largely ensured by the tight active
site of these polymerases, which geometrically accommodates
the template DNA and only those dNTPs that can form a
correct base pair (Beard and Wilson, 2003). However, while the
active site of the replicative polymerase is suited to replicating
undamaged DNA, it is unaccommodating if the polymerase
encounters a DNA lesion on the template strand. In such
cases, DNA damage becomes a replication barrier, which must
be overcome to ensure the DNA is completely duplicated
prior to cell division. Furthermore, in the absence of a timely
restart of replication, stalled replication forks can collapse
to generate toxic DSBs, which pose further risk to the cell
(Saintigny et al., 2001).

To overcome replication lesions, the cell employs one of
two pathways of DNA damage bypass: translesion synthesis
(TLS) and template switching (Sale, 2012). In the former,
replicative polymerases that have stalled due to a bulky DNA
lesion are replaced by specialized TLS polymerases, which are
able to bypass the damaged residues (Sale et al., 2012). Such
bypass is facilitated by the comparatively more open active
sites of TLS polymerases, which can accommodate alterations
to the template strand (Yang, 2003). TLS, however, comes
at the expense of potential misincorporation of incorrect
dNTPs, due to the intrinsic lower fidelity of the translesion
polymerase active sites (Beard et al., 2002). By contrast,
template switching is considered a more accurate form of
DNA damage tolerance. Here, the stalled replicative polymerase
makes use of the undamaged, newly synthesized strand on
the sister chromatid. This reaction occurs via a strand
invasion mechanism, similar to that employed during HR
(Giannattasio et al., 2014).

Recent reports have suggested that USP7 has a role
in the initial stages of both translesion synthesis and
template switching. Indeed, following UV exposure, cells
depleted of USP7 are defective at elongating nascent DNA
strands (Zlatanou et al., 2016). This defect seems due to
a role of USP7 in regulating ubiquitination of the PCNA
sliding clamp (Kashiwaba et al., 2015; Qian et al., 2015;

Masuda et al., 2019). During translesion synthesis, the
PCNA sliding clamp is monoubiquitinated at lysine residue
164 (K164) by the E3 ubiquitin ligase, Rad18 (Watanabe
et al., 2004). This modification stimulates recruitment of
translesion synthesis polymerases, which bind the PCNA
ubiquitin group via their ubiquitin-binding domains
(Kannouche et al., 2004; Bienko et al., 2005). In template
switching, the monoubiquitin moiety added to K164 of PCNA
is instead further ubiquitinated by the HLTF E3 ubiquitin
ligase, to form a K63-linked ubiquitin chain (Motegi et al.,
2008; Unk et al., 2008). Recently, K63-linked polyubiquitination
of PCNA was found to stimulate template switching by
creating a binding platform for the DNA translocase, ZRANB3
(Vujanovic et al., 2017).

Research over the past decade has suggested an intricate
manner through which USP7 fine-tunes PCNA ubiquitination.
Most directly, USP7 has been reported to deubiquitinate
PCNA during interphase of the cell cycle, to suppress PCNA
monoubiquitination in response to oxidative – and to a lesser
extent, UV-induced – DNA damage (Kashiwaba et al., 2015).
Although it is yet to be demonstrated in cells, biochemical
assays have suggested USP7 might also be able to deubiquitinate
PCNA modified by the addition of K63-linked ubiquitin chains
(Masuda et al., 2019). These observations suggest that USP7
might deubiquitinate PCNA to negatively regulate both the
translesion synthesis and template switching pathways.

In addition, USP7 has been suggested to indirectly influence
PCNA mono-ubiqutination, by regulating the stability of the
Rad18 and HLTF E3 ubiquitin ligases (Qing et al., 2011; Zlatanou
et al., 2016). Indeed, depleting USP7 from cells was found to
decrease the protein levels of Rad18 and HLTF, suppress PCNA
mono and polyubiquitination, as well as reduce Pol η foci
formation in UV irradiated cells. These findings are, however,
complicated by the finding that, in addition to stabilizing HLTF,
USP7 also deubiquitinates the HLTF E3 ubiquitin ligase, CHFR
(Oh et al., 2007). USP7 may therefore act to balance the level
of HLTF in the cell, by promoting both polyubiquitination (via
CHFR) and deubiquitination of the protein. These reports further
demonstrate the intricacies through which USP7 influences
PCNA ubiquitination.

USP7 has also been proposed to regulate the stability of
the TLS polymerase, DNA polymerase eta (Pol η) (Qian et al.,
2015). Here, USP7 seems to regulate Pol η transcriptionally –
via p53 (Lerner et al., 2017) – as well as through protein
stabilization by directly removing K48-linked polyubiquitin
chains. Furthermore, as Pol η is polyubiquitinated by Mdm2
(Jung et al., 2012), which is itself a substrate of USP7 (Li
et al., 2004), these observations suggest that USP7 regulates
Pol η protein levels both positively (by direct deubiquitination)
and negatively (by stabilizing Mdm2). Indeed, as evidence
of this complexity, both the depletion and over-expression
of USP7 in cells were reported to enhance Pol η protein
levels (Qian et al., 2015). It should be noted, however, that
despite the attractive elegance of this proposed model, these
claims have been contradicted by a subsequent publication,
where Pol η protein levels appeared unchanged following
siRNA-mediated depletion of USP7 (Zlatanou et al., 2016).
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Further work will, therefore, be required to unravel these
apparent inconsistencies.

Apoptosis
The final genome stability pathway we will discuss is that of
apoptosis (Figure 3I). Unlike the pathways above, which are
important for preventing cells from developing DNA mutations,
apoptosis is essential for removing cells which have suffered
irreparable genomic damage (Zhivotovsky and Kroemer, 2004;
Borges et al., 2008). Apoptosis is thereby essential to prevent
the propagation of cells whose genomic integrity has been
compromised (Zhivotovsky and Kroemer, 2004).

As discussed in previous sections, USP7 has a central role
in stabilizing p53 protein levels in response to genomic stress
(Sheng et al., 2006). This allows p53 to participate in the DNA
damage response, by transcriptionally activating genes involved
in cell cycle arrest and DNA damage repair. Beyond a certain
level of DNA damage, however, p53 switches to a pro-apoptotic
function, where it transcriptionally activates a distinct set of gene
targets (Fridman and Lowe, 2003). This includes pro-apoptotic
members of the Bcl-2 family (e.g., PUMA, Bax), which mediate
mitochondrial outer membrane permeabilization and subsequent
caspase activation, to dismantle the cell (Nakano and Vousden,
2001; Chipuk et al., 2004; Aubrey et al., 2018).

The switch between cell cycle arrest and apoptosis in response
to DNA damage, is largely dictated by the cell reaching threshold
p53 protein levels (Kracikova et al., 2013; Paek et al., 2016). This
is driven by aspects of USP7 function we have considered in
previous sections. In addition, however, the apoptotic function
of p53 is activated by a series of post-translational modifications.
This includes acetylation of lysine residue 120 (K120) by the Kat5
histone acetyltransferase (also known as Tip60). K120 resides
within the p53 DNA-binding domain and its acetylation increases
its binding affinity for the Bax and PUMA gene promoters,
while simultaneously preventing binding to the promoter of
p21 (Sykes et al., 2006; Tang Y. et al., 2006; Reed and Quelle,
2014). In addition to stabilizing p53 protein levels, USP7
contributes to p53-dependent apoptosis through interacting with
and de-ubiquitinating Kat5. Further, USP7 was found to promote
p53 K120 acetylation, as well as PUMA expression and apoptosis
following DNA damage (Dar et al., 2013).

USP7: LINKS WITH CANCER

In the above sections we have discussed the numerous and
intricate manners through which USP7 regulates genome
stability. In the following section, we will now discuss links
between USP7 deregulation and carcinogenesis, as well as
strategies for targeting USP7 in anti-cancer therapy.

USP7 Has Context-Dependent Tumor
Suppressor and Oncogenic Roles in
Cancer Progression
USP7 was initially described as a having a tumor suppressive
role, following its identification as a p53 deubiquitinating
enzyme (Li et al., 2002; Bhattacharya et al., 2018). Consistent

with this assessment, USP7 gene expression has been found
to be frequently downregulated in non-small cell lung
adenocarcinomas, where low USP7 mRNA expression correlated
with reduced p53 immunostaining (Masuya et al., 2006).
These clinical findings reflect observations in cell lines, where
partially – although not completely – depleting USP7 causes a
reduction in p53 protein levels (Li et al., 2004). Furthermore,
low USP7 expression levels were found to be an indicator
of poor patient prognosis, supporting a role for USP7 in
suppressing cancer progression by maintaining genome stability
(Masuya et al., 2006).

While the tumor suppressive role of USP7 has been largely
attributed to regulating p53, USP7 evidently also prevents genetic
alterations through an assortment of p53-independent means,
given its intricate roles in maintaining genomic stability. For
instance, USP7 mRNA expression levels were found to correlate
with genomic instability across the NCI-60 panel of cancer cell
lines (Giovinazzi et al., 2014). Here, genomic instability was
detected based on karyotypic complexity (Roschke et al., 2003).
Although p53 status was not a reported parameter in these
analyses, similar chromosomal abnormalities were detected in
both p53 positive and null cell lines following USP7 depletion,
suggesting this phenotype might be caused by means other than
p53 deregulation (Giovinazzi et al., 2013, 2014). A complete
understanding of how each individual USP7 function contributes
to tumor suppression, however, remains unclear and will require
further investigation.

In addition to tumor suppressive roles, USP7 also seems
to have context-dependent oncogenic functions (Bhattacharya
et al., 2018). Indeed, in one study, a non-monotonic relationship
was observed between USP7 expression and breast cancer
survival, where both low and high levels of USP7 were
associated with poor outcome (Hernández-Pérez et al., 2017).
In this study, USP7 and Geminin protein levels were strongly
correlated in a cohort of invasive breast cancers. High Geminin
protein levels are prognostic of poor clinical outcome and
are associated with genome instability, DNA replication errors
and aneuploidy (Sundara Rajan et al., 2014). As Geminin is a
substrate of USP7, these findings suggest USP7 over-expression
contributes to breast cancer progression by stabilizing Geminin
(Hernández-Pérez et al., 2017).

A strong correlation has also been observed between USP7
and the cell cycle regulatory protein PHF8 (Wang et al., 2016).
This correlation was observed in clinical breast cancer samples
and increased with histological grade. As we discussed in the Cell
Cycle Regulation section, USP7 deubiquitinates and stabilizes
PHF8, allowing the latter to upregulate gene targets involved
in cell cycle progression, including cyclin A2 (Liu et al., 2010;
Wang et al., 2016). Indeed, USP7, PHF8 and cyclin A2 were
all found to be upregulated in several breast cancers, as well
as in colon and rectum cancers, compared to adjacent tissues
(Wang et al., 2016). As cyclin A2 deregulation is associated
with aberrant cell proliferation (Gopinathan et al., 2014), these
findings suggest another way in which USP7 upregulation may
promote oncogenesis.

USP7 might also contribute to oncogenesis by
deubiquitinating and stabilizing Ki-67 (Zhang et al., 2016).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 13 August 2020 | Volume 8 | Article 717

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00717 August 3, 2020 Time: 12:5 # 14

Valles et al. USP7 Regulates Genomic Stability

FIGURE 4 | Numerous inhibitors of USP7 have been developed. The structure represents the USP7 catalytic domain. Green spheres on the USP7 catalytic domain
represent catalytic triad active site residues C223, H464, and D481. USP7 inhibitors indicated with a purple background target the catalytic cleft, those with an
orange background bind near the catalytic cleft and those with a blue background bind outside the catalytic cleft. The binding region for each group of inhibitors is
demonstrated by the correspondingly colored surfaces of the USP7 catalytic domain.

As with Cyclin A2, Ki-67 is highly expressed in malignant
tissues and promotes cell division (Sales Gil and Vagnarelli,
2018; Horie et al., 2019). This interaction may be particular
disease-relevant in non-small cell lung cancer cells, where a
strong positive correlation between the two proteins has been
observed (Zhang et al., 2016).

Although outside the scope of this review, USP7 likely also
contributes to carcinogenesis by regulating a number of tumor
suppressors and oncogenes with roles outside of direct genome
stability maintenance (Bhattacharya et al., 2018). These include
the tumor suppressors PTEN (Song et al., 2008a), NOTCH1
(Shan et al., 2018), the Foxo proteins (van der Horst et al., 2006)
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and the retinoblastoma protein (Bhattacharya and Ghosh, 2014),
as well the oncoproteins c-Myc (Bhattacharya and Ghosh,
2015), the REST transcription factor (Huang et al., 2011) and
β-catenin (Novellasdemunt et al., 2017). Together, these data
demonstrate that USP7 has context-dependent tumor suppressor
and oncogenic roles and that up- or down-regulation can
contribute to carcinogenesis.

Targeting USP7 in Cancer Therapy
The frequent up-regulation of USP7 in many cancer types and
the apparent contributions of this upregulation to carcinogenesis,
has led to speculation that USP7 could be an effective target
in anti-cancer therapies. Enthusiasm for this approach is
demonstrated by the dozens of small molecule USP7 inhibitors
developed in the past few years. While human trials of USP7
inhibitors have yet to be conducted, many of these compounds
have been found to inhibit cancer cell growth in vitro, as well
as in animal xenograft models (Fan et al., 2013; Agathanggelou
et al., 2017; Turnbull et al., 2017; Peng et al., 2019; Zhang
et al., 2020). The molecular basis of the interaction between
several inhibitors and USP7 has been determined, revealing that
these small molecules largely target the USP7 catalytic domain
[Figure 4 and Table 2; for a recent and extensive review, see
Li and Liu (2020)].

The quinazolin-based compound XL188 is one such inhibitor
that was developed by a structure-guided approach. XL188 non-
covalently binds the USP7 catalytic domain near the active site
cleft. The inhibitor in complex with the USP7 catalytic domain
reveals that binding occurs about 5 Å from the catalytic triad
(Lamberto et al., 2017). Similarly, the non-covalent pyrimidine-
based USP7 inhibitor Compound 46 binds a few angstroms from
the active site residues (O’Dowd et al., 2018).

High-throughput screening led to the development
of non-covalent pyrimidone-based inhibitors, including
Compounds 2 and 5. These compounds both bind over 5 Å away
from C223 (Gavory et al., 2018).

Interestingly, USP7 pyrimidine-based FT class inhibitors
target different sites of the USP7 catalytic domain. The

TABLE 2 | Available structures and strength of interactions of select
USP7 inhibitors.

USP7 inhibitor Strength of interaction
with USP7 catalytic
domain

PDB ID

XL188 Kd = 90 nM 5vs6

Compound 46 IC50 = 0.09 µM 6f5h

Compound 2 IC50 = 0.3 µM 5n9r

Compound 5 IC50 = 22.0 nM 5n9t

FT671 Kd = 65 nM 5nge

FT827 Kd = 7.8 µM 5ngf

5091 IC50 4.2 µM N/A

217564 IC50 = 3 µM N/A

GNE-6776 IC50 = 0.61 ± 0.15 µM 5uqx

GNE-6640 IC50 = 0.43 ± 0.07 µM 5uqv

Inhibitor 2 IC50 = 79 µM 5whc

GNE Compound 11 IC50 = 4.2 µM N/A

non-covalent inhibitor FT671 in complex with the catalytic
domain reveals this inhibitor is several angstroms from C223,
similar to XL188. Inhibitor FT827 in complex with the catalytic
domain reveals that this inhibitor enters the active site cleft
and covalently modifies C223. This covalent modification of
C223 prevents it from acting as a nucleophile and hydrolyzing
isopeptide bonds (Turnbull et al., 2017). Despite differences
in binding, both USP7-FT inhibitor complexes reveal a
misaligned catalytic triad and the switching loop being in an
unproductive conformation.

Like the covalent FT827 inhibitor, several other USP7
inhibitors also covalently modify the catalytic cysteine to
inactivate USP7. USP7 nitrothiophene-based inhibitor 5091
proved to be a promising therapeutic for treatment of multiple
myeloma (Chauhan et al., 2012), and its second generation
inhibitor, 217564, was determined to covalently modify C223 to
inhibit USP7 activity (Wang et al., 2017). P22077 and P50429,
also derivatives of 5091, both irreversibly modify C223. Here,
mutation of C223 to an alanine prevents inhibitor binding to
USP7, revealing specificity for the catalytic cysteine (Pozhidaeva
et al., 2017). While the USP7 IC50 for P50429 and P22077 are
in the low micromolar range, these inhibitors are not specific
to USP7 as they also target the USP7 homolog USP47 (Tian
et al., 2011; Weinstock et al., 2012). USP7 inhibitor HBX 19,818
also specifically and covalently targets C223 with low micromolar
affinity (Reverdy et al., 2012).

Interestingly, some USP7 inhibitors work in an allosteric
manner, by binding distally to the active site to inhibit
USP7 activity. USP7 catalytic domain in complex with
aminopyridine-based inhibitors GNE-6776 and GNE-6640
reveals these interactions occur 12 Å from the active site cleft.
Rather than interfering with the active site residues, this class of
inhibitors disrupts USP7-ubiquitin binding. With IC50 values for
the catalytic domain in the low micromolar range, these GNE
class inhibitors are unfortunately not specific to USP7, as other
USPs are inhibited by these small molecules (Kategaya et al.,
2017). USP7 Inhibitor 2, which was part of the GNE-inhibitor
screen, also binds distal to the catalytic site (Di Lello et al., 2017).

Recently, a new class of GNE cyanopyrrolidine-based
inhibitors has been described. These inhibitors, including GNE
Compound 11, specifically target C223. Interestingly, these novel
inhibitors cause desulfhydration of the active-site cysteine of
USP7, converting it to dehydroalanine (DHA). Therefore, the
ability of C223 to act as a nucleophile for bond hydrolysis is
eliminated (Bashore et al., 2020).

USP7 inhibitors predominantly kill cancer cells by inducing
p53-dependent apoptosis (Schauer et al., 2020). One way
through which this occurs is via the stabilization of p53,
resulting from the degradation of Mdm2 in the absence of its
USP7-mediated deubiquitination (Li et al., 2002, 2004; Cummins
et al., 2004; Becker et al., 2008; Kategaya et al., 2017). In addition,
USP7 inhibitors simultaneously promote p53 activation via the
induction of genomic instability (Giovinazzi et al., 2013, 2014;
Peng et al., 2019). For instance, as we discussed in the Mitosis
section above, USP7 inhibition causes mitotic stress as a result of
Plk1 depletion, driving cells towards apoptotic cell-death (Peng
et al., 2019). Interestingly, while some studies have reported
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a strict dependency on p53 for USP7 inhibitor-induced cell
death (Fan et al., 2013; Schauer et al., 2020), others have
suggested the inhibition of USP7 may cause cell death even in the
absence of functional p53, possibly due to deregulation of other
essential cellular pathways (Chauhan et al., 2012; Dar et al., 2013;
Kategaya et al., 2017).

Aside from monotherapy-type approaches, several
publications in the past decade have indicated USP7 inhibitors
might also be effective in cancer treatment, in combination
with other chemotherapeutic agents. For instance, P22077 has
been found to significantly enhance the efficacy of the DNA
damaging compounds doxorubicin and etoposide to kill cultured
neuroblastoma cells (Fan et al., 2013). While sensitization by
P22077 was, in this study, found to be dependent on a functional
USP7-HDM2-p53 axis, others have found USP7 inhibition may
sensitize cancer cells to DNA damaging agents, even in p53
defective tumors. USP7 inhibition with the compound HBX19,
818, for example, was shown to sensitize chronic lymphoblastic
leukemia cells to the chemotherapeutic agents cyclophosphamide
and mitomycin C in cells with defects in p53 or the ATM kinase
(Agathanggelou et al., 2017; Sampath, 2017). Such co-treatment
may be particularly effective in cancers that overexpress USP7.
For instance, USP7 has been found to be upregulated in
many cervical carcinomas, where its expression positively
correlates with that of MDC1, as well as with histological tumor
grade. Inhibition of USP7 with the compounds GNE-6640 or
GNE-6776, however, destabilizes MDC1, as well as sensitizes
cervical cancer cells to ionizing radiation-induced genotoxic
insult (Su et al., 2018). USP7 has also been suggested as a potential
target for sensitization in breast cancer treatment, where USP7 is
frequently upregulated and confers resistance to genotoxic insult,
by stabilizing PHF8 (Wang et al., 2016).

Another proposed use for USP7 inhibitors is in sensitizing
taxane-resistant tumors to taxane therapies (Giovinazzi et al.,
2013; Zhang et al., 2016; Peng et al., 2019). Taxanes, such
as paclitaxel and docetaxel, kill cancer cells by binding to
and stabilizing β-tubulin on the inner surface of microtubules,
increasing their polymerization (Jordan et al., 1993). This
binding prevents proper mitotic cell division, as although
chromosomes can be attached to taxane-stabilized microtubules,
the disruption to microtubule dynamics precludes proper
tension being established across sister chromatids (Kelling
et al., 2003). Taxanes, in this way, prevent proper chromosome
orientation on the metaphase plate, leading to activation
of the spindle-assembly checkpoint and stalling cells at the
metaphase to anaphase transition (Musacchio and Salmon,
2007; Gascoigne and Taylor, 2009). Prolonged stalling at this
boundary leads to eventual cell death (Rieder and Maiato, 2004).

While paclitaxel and docetaxel are front-line chemotherapeutics
for treating breast, prostate and nasopharyngeal carcinomas,
resistance to these compounds often develops (Murray et al.,
2012). USP7 may contribute to such resistance via its roles in
stabilizing PLK1. Indeed, USP7 and PLK1 were found to correlate
in tissue sections of primary breast cancer and to be highly
expressed in taxane-resistant tumors (Peng et al., 2019). Here,
PLK1 over-expression likely contributes to taxane resistance by
regulating microtuble dynamics and microtubule-kinetochore
attachment (Gutteridge et al., 2016). By inducing PLK1
degradation, USP7 inhibition with P5091 was, however, found to
sensitize taxane-resistant cancer cells to paclitaxel and docetaxel
and to trigger apoptotic cell death (Peng et al., 2019). These
findings suggest another prospective use for USP7 inhibitors in
cancer treatment.

CONCLUSION

In this review article, we have discussed the extensive roles of
USP7 in maintaining the integrity of the genome. Improper
activity of USP7 leads to destabilization of its many substrates,
resulting in genetic alterations that may drive tumorigenesis.
Recently, USP7 has become an attractive pharmacological target
for inducing apoptotic cell death in cancer cells. This appreciation
has skyrocketed the development of small-molecule compounds
targeting USP7. With relentless high-throughput screens and
optimizations being pursued, human trials of USP7 inhibitors
may be on the horizon.
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