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Abstract: Clubroot caused by Plasmodiophora brassicae is a severe disease of cruciferous crops that
decreases crop quality and productivity. Several clubroot resistance-related quantitative trait loci
and candidate genes have been identified. However, the underlying regulatory mechanism, the
interrelationships among genes, and how genes are regulated remain unexplored. MicroRNAs
(miRNAs) are attracting attention as regulators of gene expression, including during biotic stress
responses. The main objective of this study was to understand how miRNAs regulate clubroot
resistance-related genes in P. brassicae-infected Brassica rapa. Two Brassica miRNAs, Bra-miR1885a
and Bra-miR1885b, were revealed to target TIR-NBS genes. In non-infected plants, both miRNAs
were expressed at low levels to maintain the balance between plant development and basal immunity.
However, their expression levels increased in P. brassicae-infected plants. Both miRNAs down-
regulated the expression of the TIR-NBS genes Bra019412 and Bra019410, which are located at a
clubroot resistance-related quantitative trait locus. The Bra-miR1885-mediated down-regulation of
both genes was detected for up to 15 days post-inoculation in the clubroot-resistant line CR Shinki
and in the clubroot-susceptible line 94SK. A qRT-PCR analysis revealed Bra019412 expression was
negatively regulated by miR1885. Both Bra019412 and Bra019410 were more highly expressed in
CR Shinki than in 94SK; the same expression pattern was detected in multiple clubroot-resistant
and clubroot-susceptible inbred lines. A 5′ rapid amplification of cDNA ends analysis confirmed
the cleavage of Bra019412 by Bra-miR1885b. Thus, miR1885s potentially regulate TIR-NBS gene
expression during P. brassicae infections of B. rapa.

Keywords: MicroRNA; TIR-NBS genes; QTL; R gene; Brassica; Plasmodiophora brassicae; disease
resistance; clubroot; B. rapa

1. Introduction

Clubroot (CR), which is caused by the soil-borne pathogen Plasmodiophora brassicae, is
a severe disease of crops in the family Brassicaceae. As a part of sustainable agriculture
under deteriorating growth conditions due to long-term cultivation and climate change,
the improvement of crops by introducing disease resistance traits is an important goal
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for plant breeders [1]. Traditionally, the introgression of new traits for crop improvement
has been performed via interspecific and intraspecific hybridizations, and these methods
have resulted in the successful generation of crop resources with resistance traits [2].
Because CR disease is a major source of economic losses [3], the CR resistance trait has
been introduced into Brassica species using various resistance resources (primarily turnip,
but other subspecies as well).

To fully utilize resistance traits, the mechanisms underlying their genetic regulation
must be characterized. In the last two decades, genetic analyses of CR resistance have
been conducted using a variety of resistant Brassica rapa germplasm. Additionally, the A
genome of Brassicaceae species has been extensively investigated. Comparative analyses
have revealed the high collinearity between the resistance loci in the genomes of other
amphidiploids (with AB and AC genomes) and those in the A genome. Previous studies
have identified the following 23 CR resistance loci distributed on seven chromosomes
(A01, A02, A03, A05, A06, A07, and A08) in B. rapa: CRa [4,5], CRaki [6,7], CRb [8,9], CRc,
CRk [10], CRd [11], Crr1, Crr2 [12]), Crr3 [13], Crr4 [14], CrrA05 [15], CRs [16], PbBp3.1,
PbBp3.3 [9], qBrCR38-1, qBrCR38-2 [17], Rcr1 [18], Rcr2 [19], Rcr4, Rcr8, Rcr9 [20], Rcr3, and
Rcr9wa [21]. Chromosome A03 harbors at least 12 CR resistance loci (CRa, CRaki, CRb, CRd,
CRk, PbBp3.1, PbBp3.3, Crr3, Rcr1, Rcr2, Rcr4, and Rcr5) effective against diverse pathotypes.
After CRa was first identified at the CR locus in B. rapa, CRb, CRk, and Crr3 were identified
using diverse resistant materials and pathotypes. Recent advances in next-generation
sequencing technology have enabled the easy, fast, and accurate identification of genomic
regions related to qualitative and quantitative resistance traits [22].

Despite many genetic studies on resistance, relatively little is known about the can-
didate genes and the mechanisms controlling the CR resistance trait. Two loci related to
CR resistance (Crr1 and CRa) were discovered by map-based cloning, and TIR-NBS-LRR
(TNL) genes were identified as candidate genes involved in resistance, based on gain-
of-function analyses [5,23]. In the last decade, several loci (CRd, Rcr1, Rcr2, Rcr4, and
Rcr5) were detected based on the identification of genome-wide variants through bulked
segregant RNA sequencing and genotyping-by-sequencing [11,20,24,25]. These earlier
studies identified candidate genes on the basis of abundant sequence variations between
resistant and susceptible lines, as determined by high-throughput sequencing and analyses
of functional similarity. Although different resistant materials and pathogens were used
in these studies, the identified loci were localized on chromosome A03 and in genomic
regions with a similar set of candidate genes.

Recent genomic, transcriptomic, and proteomic analyses have indicated that hormonal
regulation, cell wall structure, secondary metabolites, and resistance genes (R genes)
are involved in the CR resistance trait [26,27]. However, to characterize the mechanism
regulating CR resistance, future studies should focus on the interrelationships among genes
and how genes are regulated.

MicroRNAs (miRNAs) are small non-coding RNAs that are attracting attention as
essential regulators of gene expression. They play a major role in the regulation of devel-
opmental and physiological processes [28,29] and in the expression of genes responsive
to abiotic and biotic stresses, including R genes [30]. On the basis of the presence of spe-
cific domains, R genes are generally classified into five functionally distinct classes. The
first class contains nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes, which
are further classified as Toll/interleukin 1 receptor (TIR)-NBS-LRR (TNL) and coiled-coil
(CC)-NBS-LRR (CNL) genes. The second class comprises genes encoding transmembrane
proteins, including receptor-like transmembrane proteins. The genes in the third class en-
code kinases, including serine–threonine kinases, whereas those in the fourth class encode
kinases with receptor-like functions (e.g., receptor-like kinases). The fifth class contains
atypical R genes [31]. At the molecular level, various R genes contribute to the direct or
indirect recognition of pathogen-derived effectors that induce effector-triggered immunity,
which frequently involves a series of responses, including the hypersensitive response (i.e.,
a type of programmed cell death) [32].
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In recent decades, several studies have demonstrated the importance of miRNA-
regulated RNA silencing for plant innate immunity. Initially, miR472 and miR482 were
identified and experimentally confirmed to target various NLR genes [33,34]. In Glycine max,
most R genes (178/290 CNLs and 171/235 TNLs) are directly regulated by miRNAs [35].
Additionally, miRNA target decoys (i.e., endogenous RNAs that can negatively regulate
miRNA activity) have also been identified [36]. Subsequent studies on several plant species
detected numerous miRNA families whose members target multiple R genes and are
responsible for post-transcriptional gene silencing [18,37–45]. Such miRNAs are generally
conserved in identical/similar species and their target sequences encode conserved R
protein motifs [45]. For example, members of the miR482 superfamily specifically target
a conserved P loop motif in NLR proteins that is crucial for function [46]. In tobacco,
nta-miR6019 and nta-miR6020 are involved in the silencing of the N gene, encoding a
TNL protein [42]. In Medicago truncatula, miR1510 is differentially expressed between the
roots and nodules [47,48]. In a soybean, miR1510 cleaves TNL gene transcripts, thereby
activating phased secondary small interfering RNA (phasiRNA) synthesis [37]. Similarly,
miR482 and miR2118 initiate phasiRNA production from their NLR targets and function
as the principal regulators of various genes encoding NLRs [42,43,45,49]. Interestingly, an
invading pathogen can alter both the expression of R genes and miRNA-mediated R gene
turnover [43,50]. In B. rapa, miR1885 regulates both an immune receptor gene (BraTNL1)
and a growth-related gene (BraCP24) via the production of trans-acting small interfering
RNAs [18].

The mechanisms underlying the interplay between a pathogen infection and the
miRNA-mediated expression of R genes, especially those related to CR disease in Brassica
species, are still poorly understood. Recent studies explored the role of long non-coding
RNAs and mRNAs in Brassica napus [51,52] and Brassica campestris [17] responses to P.
brassicae, but there are no reports describing the roles of miRNAs in the response of B. rapa
to P. brassicae.

In this study, we investigated miRNAs that are structurally associated with a group
of candidate genes related to CR resistance on chromosome A03. These genes have been
consistently identified as being associated with stress resistance [19,20,25,53]. We predicted
the targets of miR1885a and miR1885b in B. rapa. Further analyses revealed that both
miR1885a and miR1885b are differentially expressed between resistant and susceptible
genotypes, and these miRNAs negatively regulate R genes in response to pathogens. Under
natural conditions, miR1885 expression is maintained at low levels to allow for normal
plant development and basal immunity. Its expression levels peak after pathogen infections,
indicative of the reallocation of energy between activities related to growth and immunity.
Our findings provide insights into how gene expression is precisely controlled during the
complex interaction between a pathogen and its host.

2. Results
2.1. Differences in the Responses of Resistant (CR Shinki) and Susceptible (94SK) B. rapa Inbred
Lines to P. brassicae Pathotypes

The responses of Chinese cabbage (B. rapa) lines to different P. brassicae pathotypes
were compared on the basis of the disease index (DI). More specifically, the responses of CR
Shinki and 94SK Chinese cabbage inbred lines to three well-known P. brassicae pathotypes
(Race 4, Uiryeong, and Banglim) were analyzed [8,54] (Figure 1). In response to Race 4, the
DI was significantly higher for the susceptible line (94SK) than for the resistant line (CR
Shinki) (Figure 1A). In contrast to CR Shinki roots, the 94SK roots were severely damaged
by CR. Both lines were similarly susceptible to pathotypes Uiryeong and Banglim (i.e.,
no significant difference in the DI) (Figure 1B,C). This suggests that CR Shinki exhibits
pathotype-specific resistance, that is, it is resistant to only Race 4. Plants were photographed
at 8 weeks post-inoculation. The DI values confirmed the resistance, and susceptibility, of
the investigated Chinese cabbage lines to different P. brassicae pathotypes.
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error of three replicates. Asterisks indicate a significant difference at p < 0.001. 
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Figure 1. Differences in the responses of CR Shinki (resistant) and 94SK (susceptible) Brassica rapa inbred lines to three
Plasmodiophora brassicae pathotypes. Disease symptoms on B. rapa roots infected with P. brassicae pathotypes (A) Race
4 [8], (B) Uiryeong, and (C) Banglim [54]. Disease severity was assessed according to the degree of root morphological
modifications using the following rating scale: 0 = no symptoms; 1 = very slight swelling, usually confined to the lateral
roots; 2 = a few small, separate globular clubs on the lateral roots; 3 = moderate clubbing on the lateral roots; 4 = large clubs
on the lateral roots and slight swelling of the main root; 5 = larger clubs on the main root than on the lateral roots; 6 = severe
clubbing on all roots. The mean disease index (n = 10) is presented to the right of the photos; the bar represents the standard
error of three replicates. Asterisks indicate a significant difference at p < 0.001.

2.2. P. brassicae Infection Induces miR1885a and miR1885b Expression

A 22-nucleotide miRNA, Bra-miR1885a, was initially identified as a B. rapa R gene-
derived novel miRNA during a response to turnip mosaic virus (TuMV) [55]. It was
subsequently revealed to be responsive to heat stress [56]. A recent study confirmed that
Bra-miR1885 is induced in B. rapa and B. napus by TuMV, but not by any other pathogen [18].
These previous studies demonstrated that Bra-miR1885a precisely regulates plant growth
and immunity in Brassica species, suggesting that this Brassica-specific miRNA may also
play roles in responses to biotic stresses. In this study, miR1885 was induced in B. rapa
infected with P. brassicae (Figure 2).

According to the miRBase database [57], the Brassica miR1885 family has the following
two members: miR1885a (on chromosome 06: 25285096–25285118 [+]) and miR1885b
(on chromosome 06: 25285163–25285185 [+]). The pre-miR1885 structure is presented in
Supplementary Figure S1. The expression of both miR1885a and miR1885b in the root
tissue of the resistant (CR Shinki) and susceptible (94SK) inbred lines before the inoculation
with P. brassicae (0 h) as well as at 1.5 h, 3 h, 6 h, 12 h, 24 h, 48 h, 72 h, 96 h, and 15 days post-
inoculation (Figure 2A,B) were investigated. At 1.5 h post-inoculation, the miR1885a and
miR1885b expression levels increased significantly in CR Shinki, but decreased markedly
in 94SK. In CR Shinki and 94SK, the expression levels of both miRNAs decreased at 3 h
and 6 h post-inoculation but then increased at 12 h and 24 h. The miR1885a expression
level remained steady in CR Shinki at 48 h and 72 h post-inoculation, but it decreased at
these time-points in 94SK. At 96 h and 15 days post-inoculation, the miR1885a expression
level remained steady in CR Shinki, whereas it increased in 94SK (Figure 2A). Regarding
miR1885b, a slightly different expression pattern was observed from 48 h post-inoculation.
Its expression level was higher in CR Shinki than in 94SK at 48 h, and it peaked in CR Shinki
at 72 h at a level much higher than that in 94SK (Figure 2B). The miR1885b expression level
was markedly lower in CR Shinki than in 94SK at 96 h, whereas there were no significant
differences between the inbred lines at 15 days post-inoculation. Overall, the miR1885a and
miR1885b expression levels were generally higher in CR Shinki than in 94SK following the
inoculation with P. brassicae. Considered together, these findings suggest that Bra-miR1885
might contribute to the B. rapa response to P. brassicae.
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Bra019413) in this QTL region as candidates for the CR resistance trait [19,20,24,25,53,59]. 
Among the candidate genes within the QTL, Bra019410, Bra019412, and Bra020936 had an 
expectation value of 2, which was calculated on the basis of the affinity of miRNAs for 

Figure 2. Expression of (A) miR1885a and (B) miR1885b in the roots of inbred lines CR Shinki
(resistant) and 94SK (susceptible) inoculated with P. brassicae. The expression of both miRNAs
increased significantly in CR Shinki post-inoculation (* p < 0.01, ** p < 0.05, and *** p < 0.001).

2.3. Both miR1885a and miR1885b Target TIR-NBS Genes

The miRNA targets were predicted on the basis of several parameters, including
complementarities with miR1885a and miR1885b sequences and the unpaired energy (UPE)
required to unfold the target site. Using stringent criteria for target prediction (expectation
value of up to 2 and UPE value of up to 25), 11 targets were predicted for miR1885b and
five targets were predicted for miR1885a (Supplementary Table S1). Interestingly, gene
ontology analyses indicated that most of the target genes were on chromosome A03 and
encoded disease resistance proteins with TNL and TX structures. Twelve loci (CRa, CRb,
CRaki, PbBp3.1, PbBp3.2, CRk, CRd, Crr3, Rcr1, Rcr2, Rcr4, and Rcr5) related to disease
resistance are located on chromosome A03 [4,6,8–11,20,58,59]. The CRb resistance-related
quantitative trait locus (QTL) region in CR Shinki is located at the basal end of chromosome
A03, and several gene loci are located nearby. Even though these earlier studies were
performed using different resistant resources/germplasm (Chinese cabbage, pakchoi, and
turnip) for introgressing resistance loci as well as different pathotypes, they all consistently
detected certain genes (Bra019409, Bra019410, Bra019412, and Bra019413) in this QTL region
as candidates for the CR resistance trait [19,20,24,25,53,59]. Among the candidate genes
within the QTL, Bra019410, Bra019412, and Bra020936 had an expectation value of 2, which
was calculated on the basis of the affinity of miRNAs for their targets. Interestingly,
Bra020936, which is located in a different QTL region on chromosome A08 [20], was also
predicted as a miR1885b target, but it was excluded from further analyses because CR
Shinki lacks the corresponding resistance locus.

Our results indicated that miR1885b targets both Bra019412 and Bra019410 with
strict complementarity (expectation value approximately 2) and high free energy values,
whereas miR1885a only targets Bra019412 with relatively low complementarity (expectation
value approximately 5) (Supplementary Table S1). The prediction analysis indicated that
miR1885a inhibits target genes via the ‘translation’ process, whereas miR1885b inhibits
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target genes via the ‘cleavage’ process. These findings suggest that miR1885b is mainly
involved in the inhibition of target genes.

2.4. Structure of Proteins Encoded by Bra019412 and Bra019410

Next, the conserved domains of the putative encoded proteins and gene structures
of Bra019412 and Bra019410 (Figure 3) were identified. A Simple Modular Architecture
Research Tool (SMART) analysis of the Bra019410 protein revealed the following two major
domains: the TIR domain (amino acids 81 to 218) and the AAA domain (amino acids 276
to 417) (Figure 3B). A SMART analysis of the Bra019412 protein revealed only the TIR
domain (amino acids 74 to 211) (Figure 3A). The exon–intron distribution of both genes
was examined by comparing the coding and genomic sequences using the GSDS online
software (Figure 3). This analysis detected three introns in Bra019410, but no introns in
Bra019412. The characteristics of the putative proteins were determined using the ExPASy
ProtParam online tool. The predicted molecular weights of Bra019410 and Bra019412
were 130.82 kDa and 247.88 kDa, respectively. The aliphatic index of Bra019410 was 93.35
and the grand average of hydropathicity (GRAVY) value was −0.22, which confirmed its
hydrophilic nature. Similarly, the aliphatic index of Bra019412 was 81.67 and its GRAVY
value was −0.228, indicating that it is also hydrophilic in nature. The isoelectric point of
Bra019410 was 6.33, indicating it is an acidic protein, whereas that of Bra019412 was 8.74,
indicating it is an alkaline protein.
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Figure 3. Analyses of conserved domains in putative proteins as well as gene structures. (A) Bra019412 encodes only the
TIR domain, whereas (B) Bra019410 encodes the TIR and AAA domains.

2.5. Both miR1885a and miR1885b Negatively Regulate TIR-NBS Genes

The correlation between the expression levels of miRNAs and the transcript levels of
both target genes (Bra019412 and Bra019410) was investigated. As the miR1885b expression
level increased from 1.5 h onwards, it down-regulated Bra019412 expression until 15 days
post-inoculation, indicating that miR1885b acts as a negative regulator of Bra019412 in the
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resistant CR Shinki line (Figure 4A). In the susceptible 94SK line, miR1885b also appears to
function as a negative regulator, although the Bra019412 transcript level was lower in 94SK
than in CR Shinki (Figure 4B). The miR1885a expression level in CR Shinki also increased
at 1.5 h post-inoculation, but it was not as high as the miR1885b expression level and it
was not correlated with the down-regulation of Bra019412, implying that miR1885a might
be a partial negative regulator (Figure 4C). Additionally, miR1885a down-regulated the
expression of Bra019412 in 94SK, but only at the early post-inoculation time-points (up to
12 h). The expression pattern of miR1885a was dissimilar to that of miR1885b (Figure 4D).
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Figure 4. Analysis of the expression of Bra019412 with miR1885b or miR1885a in the root tissues of B. rapa infected with P.
brassicae. Correlation of the expression between (A) miR1885b and Bra019412 in CR Shinki, (B) miR1885b and Bra019412 in
94SK, (C) miR1885a and Bra019412 in CR Shinki, and (D) miR1885a and Bra019412 in 94SK as determined by qRT-PCR.
The transcript level of the B. rapa actin gene served as the internal control for target gene expression, whereas the U6
snRNA level served as the internal control for mature miRNA expression. The miRNA and gene expression levels over time
in inoculated plant samples were normalized against the corresponding expression levels in untreated plants. For each
time-point, more than six individual plants were pooled (n > 6) and independent experiments were replicated three times.
Standard error bars are presented for each time-point. Asterisks indicate a significant difference at *** p < 0.001.

The target analysis with stringent settings predicted that miR1885b targets Bra019410.
However, the expression analysis demonstrated that miR1885b affects Bra019410 expression
only at post-inoculation time-points after 3 h (Figure 5). In CR Shinki, the Bra019410
transcript level was stable until 3 h post-inoculation, even though miR1885b expression
was up-regulated (Figure 5A,C). However, at the later time-points, there was a negative
correlation between miR1885b levels and the Bra019410 transcript levels. This result
suggests that miR1885b only partially controls Bra019410 expression (Figure 5A,C). In 94SK,
there were no correlations between miR1885b or miR1885a levels and Bra019410 transcript
levels (Figure 5B,D), suggesting that both miRNAs may only partially control Bra019410
expression.
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brassicae. Correlation of the expression between (A) miR1885b and Bra019410 in CR Shinki, (B) miR1885b and Bra019410 in
94SK, (C) miR1885a and Bra019410 in CR Shinki, and (D) miR1885a and Bra019410 in 94SK, as determined by qRT-PCR. The
transcript level of the B. rapa actin gene served as the internal control for target gene expression, whereas the U6 snRNA
level served as the internal control for mature miRNA expression. The miRNA and gene expression levels, over time,
in inoculated plant samples were normalized against the corresponding expression levels in untreated plants. For each
time-point, more than six individual plants were pooled (n > 6) and independent experiments were replicated three times.
Standard error bars are presented for each time-point. Asterisks indicate a significant difference at *** p < 0.001.

2.6. Expression Patterns of miR1885b, Bra019412, and Bra019410 in Multiple Resistant and
Susceptible Lines

To confirm the miR1885b, Bra019412, and Bra019410 expression patterns in CR-
resistant and CR-susceptible genotypes, their transcript levels in multiple genotypes with
contrasting responses to CR were investigated. On the basis of a DI analysis, three resistant
genotypes (CR Shinki, M7, and C-20) and three susceptible genotypes (94SK, Chiifu, and
HKC-002) (Figure 6A) were selected. After the inoculation with P. brassicae, miR1885b
expression increased significantly in all resistant lines (particularly at 48 h) (Figure 6B).
However, there were no significant changes in expression in the susceptible lines, suggest-
ing miR1885b may be involved in the regulation of disease development in the resistant
lines (Figure 6B). Overall, the root Bra019412 and Bra019410 transcript levels were signifi-
cantly higher in the three resistant lines than in the susceptible lines (Figure 6C,D). The
Bra019412 transcriptional pattern was similar in CR Shinki and M7; the transcript levels
gradually decreased from 0 h to 48 h post-inoculation (except at 12 h in M7), but then
increased at 96 h and 15 days post-inoculation (Figure 6C). The Bra019412 transcript levels
in C-20 also generally decreased over the first 48 h post-inoculation (except at 24 h), but
then increased at 96 h and 15 days post-inoculation, which was consistent with the expres-
sion pattern in the other two resistant lines (CR Shinki and M7). The expression profiles
indicate that 24–96 h post-inoculation is a critical period for the regulation of resistance.
The Bra019412 transcript levels were lower in the susceptible lines than in the resistant
lines at all time-points, with the exception of 24 h in HKC-002 (Figure 6C).
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Figure 6. Expression patterns of miR1885b, Bra019412, and Bra019410 in multiple resistant and susceptible lines. (A) Effects
of the P. brassicae Race 4 infection of resistant (CR Shinki, M7, and C-20) and susceptible (94SK, HKC-002, and Chiifu)
genotypes with the same alleles. Disease symptoms were examined at 8 weeks post-inoculation. For each line, the disease
index, calculated according to the disease severity, is provided to the right of the photos. Bars represent the standard error.
Significant differences are indicated with asterisks (** p < 0.05, and *** p < 0.001). Expression of (B) miR1885b, (C) Bra019412,
and (D) Bra019410 in resistant (CR Shinki, M7, and C-20) and susceptible (94SK, HKC-002, and Chiifu) genotypes. For each
time-point, the expression levels were calculated on the basis of three independent replicates.

The Bra019410 transcriptional patterns in the resistant and susceptible lines were
similar to those of Bra019412 (Figure 6D). In general, the Bra019410 transcript levels post-
inoculation were higher in the resistant lines than in the susceptible lines. The Bra019410
transcript level gradually decreased from 0 h to 48 h post-inoculation in CR Shinki (except at
3 h) and M7 (Figure 6D, Figure 4A), but then increased at 96 h and 15 days post-inoculation.
The Bra019410 and Bra019412 transcriptional patterns were identical in C-20 (Figure 6C).
The Bra019410 transcript levels were lower in the susceptible lines than in the resistant
lines, except at 24 h (i.e., HKC-002).

2.7. Confirmation of miR1885b-Mediated Cleavage of Bra019412 by 5′ Rapid Amplification of
cDNA Ends (RACE)

To confirm whether the decrease in the target gene transcript level was due to
miR1885b/miR1885a-guided cleavage, the 5′ end of the cleaved Bra019412 sequences
was analyzed by 5′ RACE (Figure 7). The RNA extracted from the roots and leaves was
subjected to a 5′ RACE analysis to identify the cleavage products of the target gene. In the
root samples, a cleavage site (12th nucleotide) was detected in the miRNA-binding region
of the target gene, confirming that Bra019412 is a target of miR1885b (Figure 7).
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A second cleavage site 47 bases upstream of the predicted cleavage site was also
detected. Regarding the RNA extracted from the leaves, no cleavage was detected at the
predicted cleavage site of the target gene. The 5′ RACE analysis confirmed that cleavage
products were derived from the interaction between the target gene and miR1885b, but not
miR1885a. Thus, only miR1885b contributes to mRNA degradation and CR resistance.

3. Discussion

Clubroot is a devastating disease of Brassica crops worldwide. The CR resistance
trait is reportedly controlled by various genes at both dominant (mostly in B. rapa) and
recessive loci. Although numerous CR resistance-related loci/genes have been identified
over the last few decades, the associated gene expression and regulation remain relatively
uncharacterized. MicroRNAs are vital post-transcriptional regulators of R genes, including
those related to disease resistance. Therefore, in the current study, the regulation of R gene
expression by miRNAs, in Chinese cabbage lines infected with P. brassicae, was investigated.
In the absence of pathogen infections, the detection of self-antigens by R proteins typically
leads to autoimmunity and adversely affects plant survival. Accordingly, maintaining a
balance between defense responses and plant development is critical. In plants, to minimize
fitness costs, it is essential that R protein activities are stringently regulated [38,60,61]. The
miRNA-mediated regulation (or turnover) of R genes allows plants to control the potential
fitness consequences in the absence of pathogen infections. Thus, coordinating disease
resistance and yield has become a key objective in plant breeding. Several miRNAs
targeting R genes have been identified in various plant species in the last decade [35,41–43].
However, the roles of these miRNAs in plant defense responses and how they are regulated
during pathogen infections are still unexplored in plants, in general, but especially in
Brassica crops. Previously, we conducted a genome-wide investigation of miRNAs from
B. rapa [62]. Additionally, Kim et al. [56] investigated heat stress-responsive miRNAs in
B. rapa. To the best of our knowledge, the present study is the first to analyze the miRNA
roles related to CR resistance in B. rapa.

Clubroot decreases the productivity of Brassica crops worldwide. A previous study on
B. napus revealed the differential expression of miRNAs in plants infected with P. brassicae
as well as several miRNAs targeting genes related to auxin signaling and transcription
factors for hormone homeostasis during disease development [51]. Recently, Zhu et al. [17]
analyzed long non-coding RNA and mRNA profiles after a P. brassicae infection of pakchoi
(susceptible line) to elucidate the molecular basis of pathogenesis. The long non-coding
RNAs responsive to P. brassicae in both resistant and susceptible genotypes were reported
by Summanwar et al. [52], and several P. brassicae-responsive long non-coding RNAs that
mainly target genes on chromosome A08 were identified.

In this study, miR1885, which is associated with CR resistance, was characterized.
Initially, miR1885 was identified as an R gene-derived novel miRNA in B. rapa by He
et al. [55] and Kim et al. [56]. It has since been confirmed to contribute to the regulation
of the resistance to TuMV [18]. On the basis of sequence complementarity, miRNAs
interact with their target genes to initiate their regulatory functions. The target genes
of miR1885 were predicted using a plant-specific psRNA target prediction program [63].
Further analyses confirmed that miR1885 binds to the predicted targets in the region
encoding the TIR domain. The TIR domain plays a vital role in the recognition of pathogen
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effectors [32,64]. It is a signaling domain involved in inducing cell death and it plays
a major role in basal defense mechanisms [65]. Nandety et al. [66] proved that the TIR
domain alone is sufficient for pathogen recognition.

Genes at the CRb locus were predicted to be specific targets of miR1885b. Various
studies conducted worldwide using different genetic materials and without shared re-
sources identified several gene loci at CRb and adjacent regions [19,20,25,53,58,59]. These
studies revealed the importance of this locus for CR resistance and consistently identified a
common set of genes, including Bra019409, Bra019410, Bra019412, and Bra019413.

Although these earlier studies identified various candidate R genes, the underlying
regulatory mechanisms were not elucidated. Shivaprasad et al. [43] demonstrated that the
miRNA-mediated silencing of disease resistance-related mRNAs in plants infected with
viruses and bacteria ultimately leads to the pathogen-induced expression of genes encoding
NBS-LRR defense-related proteins. They also identified a member of the miR483/2118
superfamily as the master regulator of disease resistance in tomato. Similarly, in this study,
the role of miR1885, which targets Bra019412, in disease resistance was investigated. A
structural analysis indicated Bra019412 consists of a single exon and encodes a protein with
only a TIR domain. MiR1885 also targets Bra019410, but its expression was not perfectly
negatively correlated with Bra019410 transcript levels. Consequently, further analyses
were focused on the control of Bra019412 expression. To understand the differences in
defense mechanisms between inbred lines resistant and susceptible to CR, B. rapa plants
were infected with P. brassicae and then gene expression levels at different time-points
were analyzed. Consistent with the findings of an earlier transcriptome analysis of a
segregating F1 population containing the Rcr1 locus [25], Bra019412 was differentially
expressed between the CR-resistant (overall up-regulation) and CR-susceptible (down-
regulation) lines. Our results indicate that the observed diversity in the expression patterns
was at least partly due to miRNAs.

In the current study, miR1885 was expressed at low levels under control conditions to
maintain basal active immunity and Bra019412 was stably transcribed to facilitate normal
plant development (Figure 8A). The miR1885 levels increased only during the pathogen
infection (Figure 8B). These results imply that a low miR1885 level is required for basal
defense. Similar to our findings, Zou et al. [5] reported that Arabidopsis miR172b, which
increases in abundance during seedling development, indirectly promotes the transcription
of the gene encoding the immune receptor FLS2 through the post-transcriptional silencing
of TOE1 and TOE2, which encode suppressors of FLS2 transcription. In another study
on B. rapa infected by TuMV, an increase in miR1885 levels promoted precursor process-
ing, suggesting that a TuMV infection increases the accumulation of miRNA-processing
proteins [18].

In the present study, target gene expression increased substantially only in response
to the Race 4 pathogen, consistent with the idea that each resistance locus has a dif-
ferent effect on CR development [9,20]. Shivaprasad et al. [43] noted that many genes
encoding NBS-LRR proteins are associated with race-specific effector-triggered immu-
nity. Additionally, Bra019412 may interact with these genes and activate the associated
disease resistance genes/clusters during pathogen infections, ultimately leading to quan-
titative resistance [67–70]. The TIR domain of Bra019412 likely acts as a link between the
pathogen and the signaling function of the R protein [65,66,71]. Our results demonstrate
that Bra019412 plays a major role only in CRb-mediated CR resistance, which is consistent
with the findings of previous studies, in which Bra019412 was identified as a defense
response-related candidate gene at a CR resistance locus in B. rapa [20,25,59]. Our obser-
vations suggest that the miRNA-mediated active regulation of immune receptors plays
dynamic roles in the modulation of plant immunity.
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MicroRNAs targeting NBS-LRR genes have distinct characteristics enabling them
to target highly conserved motifs. Thus, they may regulate the expression of multiple
members of gene families. This involves evolutionarily conserved interactions between
small RNAs and their targets [55,72]. In the present study, miR1885b specifically targeted
a gene encoding a protein with a TIR domain (Figure 3). The expression of TIR/TIR-
NBS genes may be regulated by miRNAs in various ways. For example, the target sites
may be expanded or lost and/or there may be feedback regulation between miRNAs
and their target genes (Park and Shin, 2018). Recently, Cui et al. (2020) demonstrated
that miR1885 targets NBS-LRR genes to activate phasiRNA generation when there is an
excess of NBS-LRR proteins, indicative of self-regulation. This type of gene regulation
prevents the undesirable production of TIR-NBS-LRR proteins. Similarly, we revealed that
miR1885 regulates R gene turnover, thereby affecting disease resistance possibly through
trans-acting RNA silencing [18]. Other studies confirmed the involvement of miR1885a in
heat stress responses [56] and TuMV resistance [18]. This is the first report describing the
role of miR1885b in a biotic stress response (i.e., CR disease).

4. Materials and Methods
4.1. Plant Materials and Pathogen Inoculation

Brassica rapa CR Shinki (CR resistant) and 94SK (CR susceptible) plants were grown in
a growth chamber for 4 weeks and then inoculated with three P. brassicae pathotypes (Race
4, Uiryeong, and Banglim). Inbred line CR Shinki is resistant to the Race 4 pathotype [8],
but susceptible to the Uiryeong (unpublished data) and Banglim [54] pathotypes. Plant
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samples were collected at two different infection stages. Samples for the initial infection
stage were collected at 1.5, 3, 6, 12, 24, 48, 72, and 96 h post-inoculation, whereas samples
for the late infection stage were collected at 15 days post-inoculation. The collected samples
were immediately frozen in liquid nitrogen and then stored frozen until used for the gene
expression analysis.

A P. brassicae suspension (2 × 106 CFU mL−1) was used to infect plants via irrigation
(i.e., injected into the soil). Briefly, a 5 mL aliquot of the spore suspension was added to
the soil around 4-week-old plants. The differences in gene expression were verified in
additional CR-resistant inbred lines (M7 and C-20) and CR-susceptible inbred lines (Chiifu
and HKC002). The CR symptoms on plants were evaluated at 5 weeks post-inoculation
as described by Choi et al. [54]. The DI was calculated according to a 0–6 scale, with 0
indicating the absence of disease symptoms and 6 indicating severe gall formation all over
the roots. Ten plants per line were inoculated, and the experiments were performed in
triplicate.

4.2. Prediction of the Target Genes of miR1885a and miR1885b

The target genes of miR1885a and miR1885b were predicted using psRNA Target [63].
This software predicts targets based on the reverse complementarity between miRNAs
and target transcripts using the proven scoring scheme. It also evaluates the target site
accessibility by calculating the UPE required for unwinding the secondary structure around
the miRNA target site on the mRNA. The data were collected and then manually checked to
remove repeated or irrelevant information. Finally, targets with an E-value < 4, a UPE < 25,
and with significant matches in the seed region (7/8 for the second to eighth bases and 3/5
for the 12th to 16th bases from the 5′ end of the miRNA) were selected.

4.3. Validation of miRNA and Target Gene Expression by a qRT-PCR Analysis

Total RNA was isolated from the leaves and roots of plants at different growth stages
using the Plant RNeasy kit (Qiagen, Hilden, Germany). The RNA quality and quantity were
estimated by gel electrophoresis and by using a NanoDrop spectrophotometer (Agilent,
Santa Clara, CA, USA). The miRNA expression levels were verified by stem-loop qRT-
PCR. The forward and reverse stem-loop primers for each miRNA were designed and
synthesized (Bioneer, Daejeon, Korea) (Table S1). First-strand cDNA was synthesized from
1 µg RNA using the SuperScript III First-Strand Synthesis System (Invitrogen, Carlsbad,
CA, USA); the manufacturer-recommended procedure was slightly modified. To increase
the efficiency of the reverse transcription, a pulsed reverse transcription reaction was
completed using the following PCR program: 16 ◦C for 30 min, 60 cycles of 30 ◦C for 30 s,
42 ◦C for 30 s, and 50 ◦C for 1 s (Varkonyi-Gasic et al. 2007). The reverse transcriptase
was inactivated by incubating the mixture at 85 ◦C for 5 min. The qRT-PCR analysis was
performed using the QuantiSpeed SYBR Kit (PhileKorea, Seoul, Korea) and the CFX96
Touch Real-Time PCR Detection System (Bio-Rad, Berkeley, CA, USA). The PCR program
was as follows: 95 ◦C for 3 min, 40 cycles of 95 ◦C for 15 s, 58 ◦C for 20 s, and 72 ◦C for 15 s.
Immediately after the final PCR cycle, a melting curve analysis was conducted (increase
from 65 ◦C to 95 ◦C in increments of 0.2 ◦C) to check the PCR product specificity. The
reactions were completed in triplicate, and the experiment was repeated at least twice.
A control reaction without the template and reverse transcriptase was included for each
miRNA. The B. rapa U6 snRNA gene served as the internal reference control.

To analyze target gene expression, cDNA was synthesized from 1 µg RNA using
the Topscript RT DryMIX kit (Enzynomics, Daejeon, Korea). The qRT-PCR analysis was
performed in triplicate using the QuantiSpeed SYBR Kit (PhileKorea, Seoul, Korea) and
the CFX96 Touch Real-Time PCR Detection System (Bio-Rad). The PCR program was as
follows: 95 ◦C for 10 min, 40 cycles of 95 ◦C for 15 s, and 60 ◦C for 1 min. Immediately
after the final PCR cycle, a melting curve analysis was conducted (increase from 65 ◦C to
95 ◦C in increments of 0.2 ◦C). Data were acquired during the annealing/extension step
and were analyzed using the CFX manager software (version 2.1) (Bio-Rad, CA, USA). The
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B. rapa actin gene served as the internal reference control. The primers used to amplify
the miRNA and gene sequences are listed in Supplementary Table S2. The comparative
Ct method (2−∆∆Ct) was used to quantify the relative miRNA and target gene expression
levels (Livak and Schmittgen 2001). Significant differences were detected using Student’s
t-test. The miRNA and target gene expression levels were quantified using three replicates.
Mean miRNA and target gene expression levels were normalized against the U6 snRNA
and actin gene expression levels, respectively.

4.4. Target Gene Validation by 5′ RACE

The predicted targets were validated by 5′ RACE using a SMARTer RACE Kit (Clon-
tech Laboratories, Takara Korea Biomedical Inc., Seoul, Korea). Briefly, 1 µg total RNA
samples extracted from the roots and leaves of CR Shinki and 94SK plants infected with P.
brassicae as well as non-infected (control) plants were used for the 5′ RACE assay. For the
infected samples, the RNA samples extracted from plants at different infection stages were
pooled. These total RNA samples were ligated with SMARTer II A oligonucleotides from
the SMARTer RACE Kit and then the RNA was reverse transcribed using the supplied
CDS Primer. Next, a PCR amplification was performed twice, using the long universal
primer mix (UPM) and gene-specific primers in the first reaction and the short UPM and
nested gene-specific primers in the second reaction. The PCR amplification was performed
using 2× Advantage Taq Pre-mix. Amplified PCR products were purified and ligated
into pRACE vectors using an In-Fusion HD Cloning Kit (Clontech, Laboratories, Takara
Korea Biomedical Inc., Seoul, Korea). An AccuPrep® Gel Purification Kit (Bioneer, Daejeon,
Korea) was used to purify the target PCR products. The ligated products were inserted
into competent cells. Plasmids were isolated from individual transformed clones using
an AccuPrep® Plasmid Mini Extraction Kit and then sequenced (Bioneer, Daejeon, Korea).
The sequences were analyzed using BioEdit software version 7.2.

5. Conclusions

The current study demonstrated that miR1885a and miR1885b are differentially ex-
pressed between CR-resistant and CR-susceptible B. rapa genotypes. These miRNAs target
TIR-NBS genes, specifically Bra019412 and Bra019410. Overall, the target genes were ex-
pressed at higher levels in the resistant plants than in the susceptible plants. A negative
correlation between miR1885b and Bra019412 expression was detected, and a 5′ RACE
analysis confirmed the cleavage of Bra019412 by miR1885b. These findings revealed that
miR1885b is critical for CR tolerance/resistance because it regulates Bra019412 expres-
sion, especially in response to a P. brassicae infection. Future research should clarify how
miR1885b regulates gene expression in plants infected with P. brassicae. The findings of this
study are relevant for future investigations of miRNA-based regulation of CR development
in B. rapa and related species. Additionally, the data presented herein will form the basis of
the future functional characterization of the miRNAs, controlling the expression of disease
resistance genes, in important vegetable and oilseed crops.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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