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New therapeutic monoclonal antibodies targeting the IL-5/IL-5 receptor pathway
are extremely efficient in depleting blood eosinophils from subjects with asthma. In
asthma, these anti-IL-5 therapies reduce exacerbations by 50% in eosinophilic severe
asthma, but they are not available for patients with milder eosinophilic asthma. In addition,
it is well known that these therapies do not totally deplete lung eosinophils and do
not seem to change their phenotype [1,2]. Eosinophils are produced in IL-5 knock-out
mice, and patients receiving neutralizing anti-IL-5 therapies retain a stable population of
residual blood eosinophils closely similar to those of healthy individuals [3,4]. In fact, it is
uncertain whether the lack of complete depletion of either residual or activated eosinophils
is beneficial or detrimental for patients. Despite the advantage of the anti-IL-5 specificity
on eosinophils, the redundancy of the three beta chain receptor cytokines (IL-3, IL-5 and
GM-CSF) on eosinophils is well known and may explain the lack of complete depletion
of eosinophils [5]. However, in mouse, blockade of the common beta chain receptor
did not completely deplete the presence of terminally differentiated eosinophils in the
blood [6], suggesting that other factors can differentiate and mature eosinophils. Of note,
asthma is only one of numerous eosinophilic diseases, and anti-IL-5 therapies have not
yet proven their clinical efficacy to treat most of these devastating diseases. In this Special
Issue, several original studies and reviews point out the necessity to continue our efforts
to better characterize the heterogeneity of precursor and mature eosinophil populations
and to provide new insights regarding other therapeutic targets, which would act on the
differentiation and activation of general and specific eosinophil populations.

Among the original studies, Coden et al. [7] report the development of a new protocol
to differentiate a functional and long-lived tissue-resident type of eosinophils using IL-5-
independent steps. These steps require the presence of stromal cells that develop during
eosinophil differentiation. While the stromal cell mediators leading to this eosinophil
phenotype and their metabolic reprogramming remain unknown, the authors discuss
tenascin-C and GM-CSF as possible candidates to explain these changes.

Polarization and migration are critical steps for eosinophils to be recruited from
the blood to tissues and to navigate in tissues. Related to this subject, Son et al. [8]
describe that mechanical stress leads to eosinophil flattening and membrane protrusions,
which are both important events during eosinophil extravasation. They demonstrate
mechanisms and cause–effect relationships between fluid shear stress (mechanical stress)-
activated eosinophils, intracellular calcium release and cytoskeleton reorganization during
cell migration using state-of-the-art real-time confocal microscopy and pharmacological
inhibitors. Their data call attention to new extra- and intracellular mechanisms leading
to eosinophil trafficking and accumulation into tissues. In the same topic, Shen et al. [9]
identify the peptidyl-prolyl cis–trans isomerase, Pin-1, as an inducer of cytoskeletal re-
organization, eosinophil morphology change and cell migration through the modulation
of Rho GTPase activity. While IL-5 was used to activate Pin-1 in this article, both GM-CSF
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and IL-3, as well as matrix proteins such as hyaluronic acid, are known activators of Pin-1
in eosinophils [10,11].

The main effective functions of eosinophils are preceded by release of their intracellular
factors by piecemeal release, exocytosis (degranulation) and cytolysis. The degranulation
consequences on microbes, cells and tissues are potentiated by release of DNA (extracellular
trap). Germic et al. [12] demonstrate that eosinophil degranulation is not concomitant with
release of DNA, which occurs later after degranulation. In that study, degranulation was
triggered by IL-5, GM-CSF or IFNG priming followed by activation with either complement
factor 5 or eotaxin. In another study, Bernau et al. [13] use IL-3-primed eosinophils followed
by an interaction with complexed IgG to reveal that products from degranulated and lysed
eosinophils activate pulmonary fibroblasts to produce IL-6 and IL-8 in an IL-1-dependent
manner.

In addition to stromal cells, mechanical stress, immune soluble factors and extracel-
lular matrix proteins, Tiwary et al. [14] show evidence that eosinophil exposure to virus
triggers their activation. They found that eosinophil survival and adhesion molecules were
dynamically regulated when exposed to influenza A virus. Influenza-activated eosinophils
migrated out of the lungs efficiently to lymphoid organs and also participated in improv-
ing epithelial barrier responses to mitigate influenza pathogenesis. Finally, Koenderman
et al. [15] describe that patients with COVID-19 display eosinopenia as well as blood
eosinophils with refractory microbe-associated molecular pattern peptide (formyl pep-
tide) activation. This study suggests that formyl peptide-sensitive blood eosinophils are
recruited to the tissue in a non-T2 viral/microbial environment during infection.

Taken together, these original articles demonstrate the existence of multiple different
eosinophil differentiators and activators as well as the heterogeneity of the eosinophilic
response depending on the type of activator and the environment.

In one of the review articles, Salter et al. [16] discuss new potential drug targets to
reduce eosinophilopoesis and eosinophil recruitment to airway tissues. They detail the
intracellular molecular mechanisms and factors that lead to the development of eosinophil
progenitors and mature eosinophils. Non-IL-5 factors include the other β-chain cytokines
IL-3 and GM-CSF, CCR3 and the epithelial-derived alarmin cytokines IL-33, TSLP and
IL-25. They also comment on evidence of eosinophilopoeisis occurring locally in airway
tissue. In the same vein, Cusack et al. [17] detail the therapies that are used or are evaluated
for treatment of eosinophilic asthma, including corticosteroids, the IL-3/5/GM-CSF axis,
CCR3, type-2 cytokines and CRTH2, as well as Siglec-8, which is the focus of the article
by Youngblood et al. [18]. That article relates to the history leading to the development
of the humanized therapeutic antibody directed against Siglec-8 to deplete eosinophils.
Siglec-8 is exclusively produced on the cell surface of eosinophils, mast cells and basophils,
and the binding of the antibody leads to eosinophil death, e.g., by antibody-dependent
cellular cytotoxicity (ADCC), in a caspase-dependent manner, as well as in cytokine-
primed eosinophils. The therapeutic antibody is now in phase 2/3 clinical development
for multiple eosinophilic diseases.

Although eosinophils have some negative effects on numerous gastrointestinal dis-
eases, in their review, Masterson et al. [19] stress the danger of depleting populations of
eosinophils with beneficial anti-inflammatory and homeostatic functions, particularly in
the intestine. They provide a remarkable detailed description of the eosinophil varieties
(endotypes) regarding responses to in vivo environments and their numerous functions in
tissues. Finally, Lype et al. [20] emphasize the unappreciated importance of basophils in
the late phase of the allergic reaction and their influence on eosinophils. The article reviews
the literature on the interplay between eosinophils and basophils in type-2 immunity in
different tissues. Basophils act on eosinophil recruitment by producing IL-4. Furthermore,
the authors discuss the advantage of targeting the IL-3/5/GM-CSF axis, particularly a
product from basophils, IL-3, which is a major activator of basophils, eosinophils and
plasmacytoid dendritic cells.
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Thus far, only asthma patients with severe eosinophilic asthma receive treatment with
anti-IL-5 pathway therapies. The efficacy in a few additional eosinophilic diseases has been
established, such as eosinophilic granulomatosis with polyangiitis and hypereosinophilic
syndrome. Their efficacy on numerous other eosinophilic diseases is under investigation. It
remains to be seen whether approaches of blocking eosinophil activities that may be shared
with other inflammatory cells is a more effective approach to manage eosinophil-associated
diseases. Research should continue on alternative therapeutics to more specifically control
eosinophil populations or activities that contribute to disease versus eosinophils with
protective and homeostatic functions. Unlike other types of immune cells (i.e., lymphocytes
and antigen-presenting cells), for which our knowledge is more advanced regarding their
heterogeneity, many basic questions remain regarding the heterogeneity of eosinophils and
specific mechanisms that lead to their damaging functions.
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