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The construction of artificial muscles is one of the most challenging developments in today’s biomedical science. The application
of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes
and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and
design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the
hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical
yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial
muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that
are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in
stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator.

1. Introduction

Research in muscle biomechanics, a vital and broad field for
over 80 years now (A.V. Hill 1922: Nobel prize in physiology
and medicine for his discovery relating to the production of
heat in the muscle), explains the function and design of real
biological muscles and therefore lays the fundament for the
development of functional artificial muscles. Nevertheless,
structure and functioning of biological muscles are not (yet)
fully understood.

In biology, microscopic muscle models are able to predict
muscle characteristics and functioning of biological muscles
quite well [1–9]. Unfortunately and as a tradeoff, they require
a large number of parameters. In a bionics approach it is
an enormous challenge to realise all these properties of
biological muscle in one artificial muscle at once [10].

Macroscopic muscle models are commonly based on
phenomenology. Macroscopic muscle models are indeed of
(limited) predictive character but do not incorporate any
structural knowledge. Recently, the nonlinear (hyperbolic-
like)Hill-type force-velocity relationwas derived from simple

mechanical components [11]. It was shown that a contractile
element (CE) consisting of a mechanical energy source
(active element AE), a parallel damper element (PDE), and a
serial element (SE) exhibits operating points with nonlinear
(hyperbola-like) force-velocity dependency. In this concept,
the force-velocity relation is no longer a phenomenological
outcome of a black box (i.e., the CE) but rather a physi-
cal outcome of the interaction of the three elements AE,
PDE, and SE. Based on this concept, it is now possible to
describe in detail which structural arrangement is necessary
to get a biology-like force-velocity relation on a macroscopic
level. Therefore, this concept can be interpreted as a basic
engineering design for the CE of a Hill-type artificial actu-
ator [12–15]. In this paper, the meaning of the structural
arrangement of the simple mechanical components already
published will be revisited. Furthermore, by taking one first
example of technical embodiment, it will be shown how this
concept can help to construct more biologically-motivated
artificial muscles. Most importantly, it can be shown that
the application of a Hill-type muscle model could improve
biomechanical stability. An antagonistic pair of our muscle
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Figure 1: (a) Theoretical construct of the CE [11]. The CE consists of three elements: active element AE, parallel damping element PDE, and
serial element SE. 𝑦

0
= 0 is the origin of the CE, 𝑦

1
the length of the AE/PDE, and 𝑦

2
the length of the whole CE. By choosing 𝜅V = 0.0 in

theory, we can turn the SE off in order to represent a contractile element without any compliance. (b) Hardware design. AE and PDE were
realised with an electric motor, SE with a mechanical spring. A second electric motor was used to exert a defined external force 𝐹ext on the
CE. The electromagnet held the muscle at constant length until release at time 𝑡 = 𝑡QR.

model theoretically shows a first demonstration of how an
artificial muscle could help in the stabilisation of a technical
machine. As a result, the control of an inverted pendulum can
be improved by the use of a muscle-like drive in favour of a
linear torque generator.

2. Material and Methods

2.1. Hill’s Original Formulation of Muscle Dynamics. In his
famous paper “The heat of shortening and the dynamic
constants of muscle” [16], Hill firstly formulated the simple
and convenient equation describing the muscle’s contraction
dynamics:

(𝑃 + 𝑎) ⋅ V = 𝑏 ⋅ (𝑃
0
− 𝑃) , (1)

where the symbol “𝑃” denotes the current muscle force, “V”
the respective contraction velocity of the muscle, “𝑃

0
” the

muscle’s maximum isometric force, and “𝑎” and “𝑏” Hill’s so-
called dynamic constants of muscle, which we call the Hill
parameters.

2.2. Derivation of the Hill Parameters. In a recent paper [11] it
was demonstrated that the phenomenologically found hyper-
bolic force-velocity relation of a concentrically contracting
assembly of activated muscle fibres [16] can be derived
from the simple mechanical arrangement (Figure 1(a)) of an
arbitrary force generating (active) element (AE) to which a
damper (PDE) is connected in parallel and a serial element
(SE) in series fulfilling the force equilibrium:

𝐹CE = 𝐹SE = 𝐹AE + 𝐹PDE, (2)

where the symbol “𝐹” denotes a force produced by the
element denoted by a corresponding index and the kinematic
relation for the lengths (symbols “𝑙”) of the elements AE,
PDE, and SE:

𝑙AE = 𝑙PDE = 𝑙CE − 𝑙SE (3)

with 𝑙CE representing the contractile element length. Note
that a dot symbol “ ̇𝑙” denotes the first time derivative of a
length 𝑙, that is, an element’s contraction velocity. Please refer
to the appendix or [13, 15] for a more detailed description.

2.3. Technical Embodiment. The hardware implementation
(Figure 1(b)) was done analogously. Both AE and PDE were
realised each with an electric motor (Maxon ECmax40) [14].
The motor torque (𝑇Motor) was controlled by Maxon digital
EC-motor control units (DEC 70/10). Both motors were
mounted from opposite sides to the same disc with the radius
𝑟disc = 0.05m. The disc was used to coil up a steel rope and
exert a force

𝐹AE + 𝐹PDE =
1

𝑟disc
⋅ (𝑇MotorAE + 𝑇MotorPDE) (4)

on the rope.The force characteristics of the PDE andAE (A.1)
and (A.4) were implemented in MATLAB Simulink through
Real-Time Workshop and Real-Time Windows Target. Thus,
the motors could exert the specified force on the steel
rope as required by the theoretical construct. For the SE,
a spring (𝑘SE = 2401Nm−1) was tied to a steel rope.
Another motor could exert a defined external force on the
CE construct. As sensor signals, the motor shaft positions
𝜑Motor were recorded by optical encoders (Scancon 2RMHF
5000 pulses/revolution), representing the internal degree of
freedom𝑦

1
and the total CE length𝑦

2
. A load cell (Transducer

Techniques MLP 25 with amplifier TM0-1-24) was used
to calibrate motor torques and exerted forces. All sensor
data were recorded with MATLAB Simulink via a Sensoray
626AD I/O at 1 kHz.

To investigate the force-velocity characteristics of the arti-
ficial CE, two types of experiments had to be performed.The
first experiment was an isometric contraction (contraction
with constant CE length: 𝑦

2
− 𝑦
0
= const.). For this purpose,

the CE end was fixed to the electromagnet guaranteeing
a constant CE length. Then the AE activation was set to
𝐴AE = 1 (maximum activation) and the shortening of the
AE (rotation of the motors) was recorded. The time from the
beginning of the activation until the end of AE shortening
𝑡isom and the maximum isometric force 𝐹CE(𝑡isom) = 𝐹CE,max
were evaluated.

Isotonic quick release experiments were performed to
guarantee a defined 𝜅V = 0 (velocity ratio; please see appendix
for a definition of 𝜅V). Each isotonic quick release contraction
experiment started like an isometric contraction, only that
the CE was released at 𝑡QR > 𝑡isom (𝑡QR = 3 s) by releasing
the electromagnet. CE contraction velocity and force were
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Table 1: Muscle parameters (𝐴, 𝐵, 𝐹max, 𝑙CE,opt) determined in experiments (see reference) andmuscle model parameters (𝑅PDE, (1−𝜅V)𝐷PDE),
respectively, calculated (see the appendix).

Muscle 𝐴 [N] 𝐵 [m/s] 𝐹max [N] 𝑙ce,opt [m] 𝑅PDE (1 − 𝜅V)𝐷PDE Reference
Piglet gastrocnemius 3.0 0.015 30.0 0.015 0.003 2200 [17]
Cat soleus 4.8 0.042 21.0 0.033 0.011 620 [18]
Cat tenuissimus 0.05 0.057 0.18 0.032 0.600 4 [19]
Rat gastrocnemius 2.68 0.042 13.4 0.013 0.167 386 [20]
Rat tibialis anterior 4.3 0.053 4.3 0.027 0.076 162 [19]
Frog sartorius 0.18 0.012 0.67 0.031 0.287 72 [19]

evaluated shortly after 𝑡QR at 𝑡eval = 3.5 s.The values VCE(𝑡eval)
and 𝐹CE(𝑡eval)were extracted.The experiment was performed
with different external forces, ten repetitions each. The curve
𝐹CE(𝑡eval) versus VCE(𝑡eval) for all external forces represents the
force-velocity characteristics of the artificial CE (Figure 3(a),
crosses).

2.4. Representing the Variety of Biological Muscles. In a
further evaluation of our theoretical approach we scaled the
model parameters to represent various biological muscles of
different animals (Figure 3(b)). The model parameters 𝑅PDE
and (1 − 𝜅V)𝐷PDE were calculated (A.6) from 𝐴 and 𝐵 values
determined in experiments for different biological muscles
(Table 1).

2.5. Control of the Inverted Pendulum. Amodel of an inverted
pendulum was used to investigate what effect muscle-like
actuator characteristics could have on the control of robotic
stance. For quiet stance, the task was to keep an upright
posture while deflecting the ground to which the pendulum
was suspended with a hinge joint.Themodel consisted of two
rigid segments connectedwith a hinge joint (Figure 2). S1 had
a mass of𝑚 = 50 kg, a moment of inertia of 𝐽 = 45.125 kgm2
(calculated around hinge joint axis), and the center of gravity
was at ℎCOG = 0.95m.The initial orientation of the leg/trunk
segment S1 was vertical and horizontal for the foot segment
S2. The pendulum could be perturbed by rotating S2 about
the joint by the angle 𝛼.Three perturbations were considered:
(a) a linear ramp increase of 𝛼 = 1∘ ⋅ 𝑡 ≤ 1∘ (for 0 ≤ 𝑡 ≤ 1,
where 𝑡 is the time) and 𝛼 = 1

∘ (𝑡 > 1), (b) a sinusoidal
oscillation 𝛼 = 1∘ ⋅ sin(2𝜋𝑡), and (c) a sinusoidal oscillation
𝛼 = 1
∘
⋅ sin(0.2𝜋𝑡).

The hinge joint could be actuated either by a direct torque
generator or by an antagonistic pair of muscles (Figures 2(a),
and 2(b)). The muscles were represented by two macroscopic
muscle models of the same type. These muscle models
incorporate the contraction dynamics, as well as a serial and
a parallel elastic element representing the tendon and the
passive elastic properties of soft muscle tissue. The muscle
model was already described in detail in [11]. The parameters
used for themusclemodels are listed in Table 2. Bothmuscles
were connected to a simple geometry as depicted in Figure 2.

Muscles and direct torque generator were controlled
based on a feedback signal measuring the deviation of seg-
ment S1 from the vertical orientation. A physiological delay
of Δ𝑡 = 0.1 s was considered. Three different controllers were
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Figure 2: Model of the inverted pendulum. S1 represents the leg-
trunk segment; S2 represents the foot. COG indicates the center
of gravity location of S1. 𝛼 is the angle of the foot (perturbation)
and 𝛽 the deviation from the upright position of S2. (a) The joint
is actuated by a direct torque generator with linear characteristics.
(b) The joint is actuated by two antagonistic muscles.

applied: (1)no feedback is provided, (2) a simple proportional
feedback (P controller), and (3) a PID controller. MATLAB
Simulink embedded ODE5 (Dormand-Prince) solver with
1ms step size was used to solve the differential equations.

3. Results

The relation between muscle output force and its contraction
velocity is the common criterion for the comparison of
macroscopic muscle models. Therefore, we calculated the 𝐹-
V curve (Figure 3(a)) first. The 𝐹-V curve of the presented
functional artificial muscle shows a very good match with
both the prediction from theory and biological experiments.

By comparing our artificial muscle prototype’s force-
velocity relation as shown above, we consider our approach
as quite successful. The functional artificial muscle prototype
exhibits contraction dynamics similar to Hill’s model charac-
teristics (Figure 3(a) [13, 15]).

In a model of the inverted pendulum, muscle-like non-
linear actuator characteristics were compared against a direct
torque generator (linear characteristics). The muscle-driven
model did not topple, not even without feedback (first row,
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Table 2: Parameters for the muscle model were based on a human tibialis anterior muscle (see [21] for a detailed description). The muscle
model used for the study was described in detail in [17].

𝑙CE,opt 𝐹max Δ𝑊 𝑉CE 𝐴 rel,0 𝐵rel,0 𝑙SEE,0 Δ𝑈SEE,nll Δ𝑈SEE,𝑙 Δ𝐹SEE,0 𝐷SE 𝑅SE

0.1m 10000N 0.57 4.0 0.25 2.25 s−1 0.23m 0.1825 0.073 10000N 0.3 0.01
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Figure 3: (a) Ten𝐹(𝑡) and V(𝑡) plots for quick-release contraction experiments using 19 different external forces were recorded. Based on those
𝐹(𝑡) and V(𝑡) plots the force-velocity curve (crosses) was calculated. In direct comparison with the biological experiments (rat gastrocnemius
muscle [20]) and the predictions from theory, the artificial muscle data shows a good match for both, with 𝜅V = 0. A hyperbola fit of the
artificial muscle data results in𝑅2 = .97 [13, 15]. (b)The strength of the presented approach is shown by a comparison of𝐹(V) curves calculated
for different biological muscle parameters. The respective 𝐹-V curve can be plotted by just taking 𝐴 and 𝐵 values from experiments and
calculating the parameters 𝑅PDE and (1 − 𝜅V)𝐷PDE. The latter two parameters are necessary to build a technical muscle of that respective type.

Figure 4). Also, when using the simple P controller (middle
row) the muscle-driven model performed better during all
perturbations and was able to cope better with the feedback
delay of Δ𝑡 = 0.1 s. Using the PID controller solutions were
only found, where the direct torque controller performed
better (bottom row, Figure 4). Here, a solution with high
gain for the integral part of the PID controller is presented.
Therefore, slow perturbations could be compensated very
effectively.

4. Discussion

4.1. Element Representation. A brushless dc electric drive was
used for the active element (AE) which was formulated in
theory [11]. The tradeoffs of these actuators are the torque-
to-weight ratio and the necessity of a power supply, either
over cable or by battery. Madden [22] gives an overview of
the current state of the art of technical artificial muscles, their
potential, and their tradeoffs. For our concept as of today,
we are planning to use translational drives. Translational
drives directly couple the driving forces to the movement
direction and they are commercially available. However, for
all electric drives one challenge remains: the storage of energy.
Fortunately (or unfortunately), this is also a big issue in the
automotive industry for the construction of electric vehicles.

Therefore, we think that it is likely to see great improvement
in the storage technology in the near future. This would
also facilitate the use of electric drives as active element in
functional artificial muscles.

The passive damping element (PDE) develops forces
during the contraction, which may exceed over a very short
period of time, the muscle output forces several times over.
The question remains whether there are comparable forces
internal to the artificial muscle in other technical embodi-
ments. Unfortunately, this is commonly not reported in the
literature. In our approach, we use an electric drive to produce
the damping forces that are in fact a nonpassive damper.
Are there any materials or other approaches possible instead
of using an electric drive as presented in this approach? A
magnetorheological damping element, for example, [23]?

Fortunately, the serial element (SE) seems to be the sim-
plest challenge for a technical representation. This element
should imply nonlinear force-displacement characteristics.
Even a steel rod would show the dynamic characteristics
similar to that of the serial element predicted in theory.
However, as a must-have, this element needs to incorporate
damping characteristics, yet very small [17]. It is to see how
the artificial muscle prototype behaves when including a
serial element like that observed in biology and postulated
in theory [11].
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Figure 4: Model reactions to perturbations in foot orientation 𝛼. Control target is the upright posture (𝛽 = 0∘). Left column shows the
reaction to a ramp perturbation, middle column to a 1Hz, and right column to a 0.1 Hz sinusoidal perturbation. Top row is without feedback,
middle row with a simple P controller (direct torque controller gain: P 500; muscle controller gain: P 1), and bottom rowwith a PID controller
(direct torque controller gains: P 500, I 50, D 500; muscle controller gains: P 1, I 0.3, D 0.3). The feedback signal is delayed by Δ𝑡 = 0.1 s.

4.2. What is Gained Using This Approach? Understanding
biological muscle characteristics and design is of great
interest in biological science. Muscle models in general
help to mathematically formulate muscle characteristics.
The structure of our model is in essence purely mechan-
ical. Therefore, it can serve as a functional starting point
of bionic muscle design. Phenomenological models based
on biological experiments were the first to define muscle
characteristics, for example, [16]. Constantly improving lab
techniques allowed to observe muscle phenomena (even) in
greater detail, for example, [5]. Microscopic muscle models

deduced from basic assumptions of muscle structure and/or
functional relationships of single variables come into play
shortly after, for example, [24]. However, the benchmark
of muscle dynamics used for those microscopic models is
still the phenomenological Hill relation [16]. One approach
just recently succeeded in defining the macroscopic muscle
characteristics without the need of any phenomenological
information. In contrast, this approach was validated against
the well-known experiments instead of being based on it [11].
Here, we used those findings to build a technical muscle and
succeeded in the reproduction of crucial characteristics of
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biological muscle. With this approach, now, the macroscopic
model can be iteratively improved accompanied by the
technical muscle. In that, technical models can partly replace
biological experiments.

4.3. Hill-Type Models for Control. Hill-type muscle models,
as an alternative to joint torque generators, have been imple-
mented in (multibody) computer models in order to generate
movement. In this regard different control theories, that
is, physiologically motivated ones, for example, equilibrium
point hypothesis [25, 26], virtualmodel control [27], and oth-
ers described above, come into operation. Hence, multibody
models with Hill-type muscles as actuators allow for using
control theories to generate movement. This way, control
approaches [28, 29] are quantitatively tested and relevant con-
trol parameters [30] are determined. Furthermore, existing
and/or newly developed control theories are compared.

In this study, different control approaches, that is, no feed-
back, P controller, and PID controller (see Section 2), were
implemented and compared in two different inverted pendu-
lumsmodels, that is, one withmuscles and the other one with
direct torque generators. From this comparison of control
and actuators, it can be concluded that the implementation
of muscle-like characteristics changes the model’s inherent
stability. Thus, it leads to a modification of successful control
strategies to generate a similar movement. Furthermore, the
presented arrangement of technical elements for the CE also
allows for the investigation of structural changes in biological
muscle used for movement control.

For further and more detailed conclusion, the presented
approach will be implemented as muscle-like actuators in
more complex (human) models to investigate (physiologi-
cal motivated) control strategies and structural changes of
muscle.

Appendix

A. Model Derivation

In order to end up with a hyperbolic relation, two further
assumptions had to be made. First, the force of the PDE was
assumed to be

𝐹PDE = 𝑑PDE ⋅
̇𝑙PDE = 𝑑PDE ⋅

̇𝑙AE = 𝑑PDE ⋅ (
̇𝑙CE −

̇𝑙SE) , (A.1)

where the damping coefficient of the PDE depends linearly
on the current muscle force 𝐹CE = 𝐹SE:

𝑑PDE (𝐹CE) = 𝐷PDE,max ⋅ ((1 − 𝑅PDE) ⋅
𝐹CE
𝐹AE,max

+ 𝑅PDE) .

(A.2)

𝐷PDE,max is the maximum (at 𝐹CE = 𝐹AE,max) and 𝑅PDE
the normalised (to 𝐷PDE,max) minimum (force independent)
value of 𝑑PDE(𝐹CE). Second, the gearing ratio

𝜅V =

̇𝑙SE
̇𝑙CE

(A.3)

between internal (SE) and external (muscle) velocities was
represented by an arbitrary parameter value 𝜅V.

The characteristics of the SE did not have to be specified.
The AE is the source of mechanical energy. It may depend on
length and on the macroscopic chemical state of the muscle,
that is, the relative number of actively force-producing cross-
bridges quantified by the normalised muscle activation 0 ≤
𝑞 ≤ 1.

In order to meet the conditions of our artificial muscle
experiments presented in this paper, we had to modify the
just reviewed model [11] with respect to only one feature.
In contrast to (6) in [11], which related the isometric force
𝐹CE(

̇𝑙CE = 0) = 𝐹CE,0 (see (2) for ̇𝑙CE = 0) as a linear function
of contraction velocity ̇𝑙CE to theAE force𝐹AE,wenowassume
the identity

𝐹CE,0 = 𝐹AE. (A.4)

Equation (A.4) is as consistent to the set of model equations
(2), (3), (A.1), (A.2), and (A.3) as is (6) in [11] to this very set.

Substituting (A.1), the explicit dependency of 𝑑PDE(𝐹CE)
on force 𝐹CE and model parameters (A.2), and (A.3) into (2)
makes the latter force equilibrium (2) constitute a hyperbola

(𝐹CE + 𝐴) ⋅
̇𝑙CE = −𝐵 ⋅ (𝐹CE,0 − 𝐹CE) (A.5)

with the Hill parameters 𝐴, 𝐵 and the isometric force 𝐹CE,0
being positive and ̇𝑙CE consistently being negative in the
shortening (concentric) case. The Hill parameters are

𝐴 =
𝑅PDE

1 − 𝑅PDE
⋅ 𝐹AE,max

𝐵 =
1

1 − 𝑅PDE
⋅

1

1 − 𝜅V

⋅
𝐹AE,max

𝐷PDE,max

=
𝑅PDE

1 − 𝑅PDE
⋅
𝐹AE,max

𝐹AE
⋅ ̇𝑙CE,max,

(A.6)

with the corresponding maximum shortening velocity

̇𝑙CE,max =
𝐵

𝐴
⋅ 𝐹CE,0 =

𝐵

𝐴 rel

=
1

𝑅PDE
⋅

1

1 − 𝜅V

⋅
𝐹AE

𝐷PDE,max
.

(A.7)

The unloaded contractile element (𝐹CE = 0) would contract
concentrically with ̇𝑙CE = −

̇𝑙CE,max:

𝐴 rel =
𝐴

𝐹CE,0
=
𝐹AE,max

𝐹AE
⋅
𝑅PDE

1 − 𝑅PDE
, (A.8)

which is defined as the Hill parameter 𝐴 normalised to the
current isometric force 𝐹CE,0 = 𝐹AE. Note that, for given
𝐹CE,0 = 𝐹AE, a concurrent parameter variation fulfilling
𝐵/𝐴 = const meets the constraint ̇𝑙CE,max = const,
whereas solely the curvature is changed. In our model, this
is equivalent to (1 − 𝜅V) ⋅ 𝐷PDE,max ⋅ 𝑅PDE = const.
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