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1  | INTRODUC TION

The Centers for Disease Control and Prevention defines a traumatic 
brain injury (TBI) as a disruption in normal brain function as a result 
of any blow to the head.1 It is a major health concern in the United 
States and around the world. According to the Health United States 
Report 2016, 2.8 million people in this country sustain this injury 
annually, and it is estimated that of these, ~50 000 die, ~282 000 
are hospitalized, and the remaining 2.5 million (or 89%) are treated 

and released from the emergency department.2 Long-term disability 
depends on the severity of the TBI,3 the presence of diffuse axonal 
injury on imaging,4 and the intensity of neurorehabilitation.5 Further, 
recovery may take an extended period of time6 and the patient 
may be left with neurobehavioral deficits including mental health 
disorders such as depression, anxiety or psychotic disorders, cog-
nitive disorders related to executive functioning, and aggression.7 
In a prospective study that followed TBI patients for up to 1 year, 
the distribution of mild, moderate, and severe TBI was comparable 
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Abstract
Traumatic brain injury (TBI) causes death and disability in the United States and 
around the world. The traumatic insult causes the mechanical injury of the brain and 
primary cellular death. While a comprehensive pathological mechanism of TBI is still 
lacking, the focus of the TBI research is concentrated on understanding the patho-
physiology and developing suitable therapeutic approaches. Given the complexities 
in pathophysiology involving interconnected immunologic, inflammatory, and neuro-
logical cascades occurring after TBI, the therapies directed to a single mechanism fail 
in the clinical trials. This has led to the development of the paradigm of a combination 
therapeutic approach against TBI. While there are no drugs available for the treat-
ment of TBI, stem cell therapy has shown promising results in preclinical studies. But, 
the success of the therapy depends on the survival of the stem cells, which are lim-
ited by several factors including route of administration, health of the administered 
cells, and inflammatory microenvironment of the injured brain. Reducing the inflam-
mation prior to cell administration may provide a better outcome of cell therapy fol-
lowing TBI. This review is focused on different therapeutic approaches of TBI and the 
present status of the clinical trials.
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to what is observed in the real-world population with 49% having 
mild TBI, 34% having moderate TBI, and 17% having a severe injury. 
About half of the study population did not return to their previous 
work after 1 year, and ~28% never returned to work of any kind.8 
Also, long-term disability is seen occasionally even in those with mild 
TBI.9 Thorough reviews of TBI epidemiology have recently been 
published.10,11

Thus, while TBI is a significant public health problem, unfortu-
nately there is no single therapy that has proved efficacious in its 
treatment. Similar to the situation with other brain injuries (such as 
the failure of neuroprotective glutamate receptor antagonists and 
antioxidant treatments in clinical trials for stroke12,13) and neuro-
degenerative diseases, there have been myriad-positive preclinical 
studies in TBI models and all of these promising therapies have failed 
in clinical trials. Various reasons have been advanced for these fail-
ures, including, but not limited to, differences in brain anatomy and 
physiology between rodents and humans, inadequate animal mod-
els, failure to test the treatment in a clinically relevant way coupled 
with failure to remain faithful to the preclinical testing parameters in 
the clinical trials, underpowered studies, heterogeneity of TBI injury, 
and insensitive outcome measures in both preclinical and clinical 
studies. There is no dearth of discussions in the literature identifying 
these shortcomings in the therapeutic development and testing of 
potential new treatments for TBI.14-18

What we are left with for treatments is a general approach that 
is akin to crisis management. According to the current Brain Trauma 
Foundation Guidelines, based on the best available medical evidence 
for the management of severe TBI, it is imperative to provide ad-
equate nutrition, support breathing by tracheostomy, and perform 
a large decompressive craniectomy.19 The underlying problems for 
developing an effective treatment for TBI are 2-fold. First, the injury 
can be unique to the patient, depending on the type of TBI and the 
region of the brain affected. Second, once that injury occurs, a com-
plicated neurodegenerative cascade is triggered; resolving any one 
of these pathological processes is not enough to prevent or termi-
nate the others. In this review, we will discuss the pathophysiology 
of TBI with emphasis on immune and inflammatory function. We 
will also discuss the evidence for the development of a mesenchy-
mal stem cell (MSC)-based treatment that can suppress immune and 
inflammatory/degenerative cascades and provide neuroprotection.

2  | PATHOPHYSIOLOGY OF TBI

The pathophysiologic mechanisms of TBI are poorly understood as 
the anatomy of the brain is uniquely complex with multiple cell types 
(neurons, astrocytes, oligodendrocytes, and microglia) and multi-
ple subtypes of these cells. While we now know that neural stem 
cells (NSC) exist within the adult brain and some degree of axonal, 
dendritic, and synaptic plasticity occurs, we have yet to fully exploit 
the brain's regenerative capacity to repair an injury. Add to this the 
complicated neuronal networks throughout the brain and neural re-
pair is a daunting task. Ramon Y Cajal, widely regarded as one of 

the fathers of modern neuroscience, stated in his treatise on neural 
development and regeneration “…once development was ended, the 
founts of growth and regeneration of the axons and dendrites dried 
up irrevocably. In the adult centers the nerve paths are something 
fixed, ended and immutable. Everything must die, nothing may be 
regenerated. It is for the science of the future to change, if possi-
ble, this harsh decree.”20 When we consider additional factors such 
as the confined space within the skull that contributes to increased 
intracranial pressure as edema develops and the blood-brain barrier 
(BBB), which can make therapeutic access to the brain difficult, the 
task of repairing the brain after TBI may seem insurmountable.

The pathophysiology of TBI occurs in two main phases—the pri-
mary insult and the secondary sequelae. The primary insult is the ini-
tial blow to the head. It can be a penetrating wound or a closed-head 
injury. The nature of the injury can be focal, involving a very circum-
scribed area of the brain, or it can be more diffuse causing widespread 
axonal injury. Then, there is the special case of the coup-counter-
coup injury as the brain impacts the skull in two sites on opposite 
sides of the brain; this is observed with trauma that involves deceler-
ation of the head. Depending on the nature of the trauma, neurons, 
astrocytes, and oligodendrocytes may be destroyed, bleeding may 
occur, axons may be severed, and a contusion may form.21 The im-
mediate pathological consequences of these injuries are similar to 
those observed with cerebral ischemia—excitotoxicity, changes in 
ion flux (Ca++, Na+, and K+) across the cell membrane, loss of ATP, lac-
tate production, induction of cortical spreading depression, cytokine 
production, and loss of barrier function at the BBB.22-24

The severity of the initial blow and the immediate pathophysio-
logic changes that occur determines the severity of any subsequent 
secondary degenerative processes. In the acute period, neurons and 
axons continue to die, and there is damage to the vascular endothe-
lium; this, in turn, allows blood components to leak into the brain pa-
renchyma, including peripheral immune cells, which then contribute 
to the pro-inflammatory environment. Astrocytes swell and tissue 
edema occurs. If edema is not controlled, intracranial pressure in-
creases, which can lead to compression of arteries and decreased 
cerebral blood flow; cerebral ischemia commonly occurs under these 
conditions leading to a vicious cycle of increasing edema, increasing 
intracranial pressure, and increased ischemia that can lead to death.

3  | INFL AMMATION IN TBI

The main architects of the local inflammation at the site of injury 
are the microglia. Once a TBI has occurred, it is the microglia that 
proliferate and migrate to the site of the damage. As these microglia 
work to remove the cellular debris at the lesion site, they produce 
cytokines and chemokines that activate pattern recognition recep-
tors to bind damage-associated molecular patterns, and attract and 
polarize peripheral immune cells. The first peripheral immune cells 
into the damaged tissue are neutrophils25 followed 24-48 hours later 
by monocytes or macrophage, and T cells all of which are releasing 
cytokines and chemokines. Once the peripheral immune cells have 
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established a strong pro-inflammatory response in the brain in the 
acute to subacute stage of TBI, then tissue damage is likely to be ex-
acerbated. Further, the T cells may become activated through antigen 
presentation by microglia and macrophage, mobilizing the adaptive 
immune system26 and potentially leading to autoimmunity.26,27

In addition to local neuroinflammatory processes within the brain 
after TBI, systemic immune and inflammatory processes are also im-
pacted and have recently been reviewed.28,29 Peripheral immune cells 
are mobilized from the bone marrow,30 thymus,31 and spleen31 early 
after the TBI. While there is a brief recovery in thymocytes and classi-
cal monocytes in thymus and spleen within the first 2 weeks postinjury, 
over time these cell populations decline again and may be responsible 
for the post-TBI immune suppression that is observed in patients.29,31 
Also implicated in the peripheral immune response and long-term 
immune suppression is both the activation of the hypothalamus-pi-
tuitary-adrenal axis, through the release of glucocorticoids and the 
sympathetic nervous system, through release of catecholamines.29,32

Ideally, inflammation will be a self-limiting process. There are 
endogenously formed products of arachidonic acid metabolism 
that actively inhibit pro-inflammatory responses.33 These include 
the lipoxins, resolvins, protectins, and maresins, which decrease 
pro-inflammatory cytokine secretion,34 alter migratory signals for 
peripheral immune cells,35 and stimulate neuroprotective and tissue 
regeneration processes.36 There has been very little research on 
these resolving mediators in TBI, but administering the lipoxin, LXA4, 
into the lateral ventricles 10 minutes after a TBI induced by weight 
drop, reduced pro-inflammation, BBB disruption, and lesion size.34 
Further, its receptor, ALX/FPR2, is upregulated in astrocytes.37

Unfortunately, in many instances inflammation may not resolve 
and becomes chronic.38 In the aged brain, there is increased recruit-
ment of peripheral macrophage into the TBI brain.39 In addition to 
cellular infiltration of pro-inflammatory immune cells after TBI, sus-
tained complement C3 activation leads to chronic inflammation by 
activating microglia and astrocytes in the region around the initial 
lesion and contributes to further neuronal loss 30 days post-TBI.40 
Using a combination of magnetic resonance imaging, magnetic reso-
nance spectroscopy, and positron emission tomography in a rat lateral 
fluid percussion model, inflammation was shown to be present still 
6 months post-TBI.41 Even 12 months after a controlled cortical impact 
in mouse, there is increased immunolabeling for IBA1 (microglia) and 
glial fibrillary acidic protein (GFAP).42 What's more, this chronic inflam-
mation is associated with continued behavioral deficits.

4  | E XPERIMENTAL PHARMACEUTIC 
TRE ATMENTS FOR TBI

4.1 | Pharmaceuticals

The focus of current pharmacological interventions after TBI is to 
manage level of consciousness, neuropsychiatric, neurocognitive, 

and neurobehavioral symptoms that may arise.43 With the occurrence 
of so many interconnected neuro-immune-inflammatory pathologic 
cascades engaged after TBI, it is not surprising that therapies target-
ing one specific degenerative pathway have failed to demonstrate 
efficacy in clinical trials. Drug interventions that have been studied 
can generally be categorized by their therapeutic target. One class of 
drugs are those that prevent calcium ion flux. An example of such an 
approach is the calcium channel blocker, Nimodipine, which showed 
promising effects in rodents but exhibited only a small effect on TBI 
patients.44,45 Disruption of intracellular calcium signaling may also 
improve outcome after TBI. Cyclosporin is a T-cell immunosuppres-
sant that acts by binding to cyclophilin; the cyclosporine-cyclophilin 
complex binds to calcineurin preventing dephosphorylation of NFAT, 
translocation to the nucleus, and increased transcription of interleu-
kin (IL) 2.46 In the absence of cyclosporine, calcineurin is regulated by 
calcium and calmodulin. Cyclosporin prevents calcium ion transport 
into the mitochondria in animal models but not in TBI patients.47

There are also a number of studies that have targeted excito-
toxicity, specifically glutamate release and overstimulation of the 
NMDA receptor. For example, Selfotel is a NMDA antagonist and 
the first glutamate antagonist to enter into Phase III clinical trial. 
This trial was discontinued because of high mortality and a failure to 
improve Glasgow Outcome Score.48 The results from clinical stud-
ies of other NMDA receptor antagonists also failed to demonstrate 
any efficacy of treatment.49 While not a true antagonist, magnesium 
blocks the NMDA receptor calcium channel. Increasing available 
magnesium also had no effect on TBI outcome.50

Another approach has been to target oxidative stress produced 
by oxygen radical formation and lipid peroxidation. The lipid per-
oxidation inhibitor, Tirilazad mesylate, which is an approved drug 
in Europe to treat aneurismal subarachnoid hemorrhage, showed 
promising neuro- and vaso-protective responses in animal models 
of moderate-to-severe TBI but failed to show improvement over 
placebo control in Phase III clinical trials involving human TBI pa-
tients.51,52 Pegylated superoxide dismutase, a free radical scavenger, 
was found to be effective in preventing secondary injury in preclin-
ical and Phase I clinical studies but failed to show reduction in mor-
tality or improve neurologic outcome in Phase III trials.53,54 Another 
antioxidant that may be promising is N-acetylcysteine. When admin-
istered to patients within 24 hours of mild TBI, symptoms were sig-
nificantly better compared to a placebo-controlled group.55

Another target that has been examined is the treatment of 
inflammation with corticosteroids, statins,56 cannabinoids, and 
bradykinin B2 receptor antagonists.50 In addition, the gonadal hor-
mones, estrogen and progesterone, both showed promising results 
in preclinical studies but failed to show beneficial effects in clinical 
trials.57-59

The more recent approach has been to search for potential ther-
apies that target more than one pathway. One such strategy is to use 
a pharmacologic that interacts with multiple receptor types, which, 
thereby, produces more than one effect. For example, sigma recep-
tor agonists selective for either sigma 1 (σ1) or σ2 receptors (or both) 
have both neuroprotective and anti-inflammatory effects in rodent 
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models of stroke.60 More recently, σ1-selective agonists have been 
shown to decrease neuroinflammation,61 while σ2-selective agonists 
are neuroprotective after TBI.62

4.2 | Combination drug treatment regimens for TBI

In an effort to increase treatment efficacy, multiple drug combina-
tions have been administered together to target multiple neurode-
generative pathways. Based on reported success in the treatment 
of HIV/AIDS with HAART,63 recently a combination drug therapy 
was designed for the treatment of TBI64 combining vitamin D3, 
progesterone, omega 3 fatty acids, and glutamine administration 
for the first 72 hours for TBI patients with a poor prognosis; all pa-
tients improved beyond original expectations. However, these case 
studies included only three patients, there were no controls, and a 
larger study has not been performed to validate these observations. 
Another example of a combination of drug therapy is the progester-
one and 1,25-dihydroxyvitamin D3 combination, which was effec-
tive in reducing neuroinflammation as compared to treatment with 
the drugs separately.65,66

5  | CELL THER APY IN TBI

A number of different cell types have been examined as potential 
therapeutics for TBI. The first studies in the field focused on replac-
ing neurons in order to rebuild the neural circuitry. The earliest cells 
examined were already postmitotic neurons,67-69 and there was vari-
able therapeutic success. Gradually, these studies were replaced by 
studies using stem cells. In a mouse model, NSC survived, differen-
tiated, migrated to the lesion site, and improved motor and cogni-
tive function after TBI.70 Also, embryonic stem cells were shown to 
improve functional outcome after TBI in rodents, but tumors also 
formed.71 Later studies involved predifferentiating stem cells into 
more lineage-restricted precursors in order to reduce the likelihood 
of tumorigenesis.72,73 In an effort to reduce reliance on embryonic or 
fetal tissue, there have been a number of studies more recently fo-
cused on induced pluripotent stem cells derived from adult somatic 
cells.74-76

In addition to these embryonic and NSC for which there are di-
rect developmental pathways to produce neurons, astrocytes, and 
oligodendrocytes, another source of stem cells that has received 
a great deal of attention is MSCs. Originally, MSCs were isolated 
from bone marrow where they support hematopoiesis. However, it 
has become clear that MSCs reside in many tissues in the body,77 
which may explain why they appear to be efficacious for treating 
so many different injuries and diseases. Because of their pleiotro-
pic characteristics, these cells have significant therapeutic potential 
for various diseases including TBI. Following administration, MSCs 
have shown to penetrate the BBB, migrate to the site of injury, and 
secrete several growth factors including brain-derived neurotrophic 
factor (BDNF), glial-derived neurotrophic factor (GDNF), vascular 

endothelial growth factor (VEGF), nerve growth factor (NGF), and 
regenerate BBB and neuronal and glial tissues.78-81 MSCs also mod-
ulated inflammation by inhibiting interleukin six (IL-6) and IL1-β and 
enhancing IL-10.82 The anti-inflammatory effect of MSC was re-
ported in a study involving combined administration of MSC and 
NSC that led to increased recovery from stroke-induced cerebral 
damage in rats as compared to MSC or NSC alone.83 Early studies 
demonstrated that intravenous,84 intraarterial,85 and intracerebral 
86 administration of these cells improved motor and neurologi-
cal outcome after TBI. Other methods of MSC delivery that have 
been used since include intranasal,87-89 intrathecal,90 and intracis-
ternal.91 The postulated mechanism of repair in these early studies 
was transdifferentiation of the cells into neural cells. A number of 
studies were able to demonstrate that some of the transplanted 
MSCs expressed neuronal and astrocytic markers in vivo, but few 
cells survived.84,85,92-94 The results of in vitro studies were more 
positive95; however, the transformation from MSC to mature neuron 
occurred within hours,96 was reversible when the initiating stimuli 
were removed, and occurred in the presence of protein synthesis 
inhibition.97 It has been suggested that the “transdifferentiation” of 
MSCs into neurons requires MSCs to be in a toxic, stressful environ-
ment.96,97 However, the ultimate proof that the cells transdifferen-
tiate into neurons is still lacking; these “neurons” have never been 
shown to produce an action potential.98

In the ensuing years, several other putative mechanisms of re-
pair for these cells have been studied. Thus, it has been suggested 
that MSCs may induce brain repair through the production of tro-
phic factors or stimulating release of trophic factors from endoge-
nous cells.99-101 These paracrine mechanisms of repair have recently 
been reviewed in some detail.102-104 More recently, MSC-derived 
exosomes have been examined as the paracrine source of neuro-
protection and anti-inflammation. These exosomes improved cogni-
tive function and reduced inflammation as determined by decreased 
IL-1 and increased IL-10 in the brain after TBI.105 Later studies are 
consistent with these results.106,107 MSC-derived exosomes have 
also been tested in porcine model of TBI coupled with hemorrhagic 
shock; consistent with the rodent data, the pigs had fewer cognitive 
deficits as determined with a neurological severity score and recov-
ered faster than nontreated pigs.108 There is also evidence for MSC 
inducing immune suppression109,110 and anti-inflammation106,111-113; 
stimulating neurogenesis88,114,115 and angiogenesis107,116,117; activat-
ing survival pathways118 and inhibiting apoptotic pathways101,119; 
and enhancing neuroplasticity through neurite outgrowth120,121 and 
synaptogenesis.78,107

5.1 | Clinical translation of cell therapy for TBI

As described in the previous section, many different approaches 
have shown promise for treating TBI-induced pathologies and stimu-
lating tissue regeneration in animal models. However, none of these 
have thus far translated into therapeutic benefit in human patients 
and the early clinical trials have not used pure MSC. Table 1 shows 
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the current comprehensive status of clinical trials of stem cell ther-
apy for TBI. The earliest clinical studies reported in the literature 
used bone marrow-derived mononuclear cells (BMMNCs), which 
is a heterogeneous mixture of immune cells and stem cells includ-
ing MSCs. The first major cell therapy trials for TBI using BMMNCs 
were conducted on children by Cox and colleagues in 2011.122 In the 
preclinical studies and Phase 1 clinical trial, treatment reduced BBB 
permeability and neuroinflammation after TBI. In a second pediatric 
study from the same research group, the TBI-induced increase in in-
tracranial pressure was reduced in the cell treatment group.123

There are also clinical trials of BMMNCs in the adults with severe 
TBI. In this population, treatment with BMMNCs resulted in struc-
tural preservation of the corpus callosum and corticospinal tract and 
these changes were correlated to neurocognitive outcomes; in ad-
dition, there was a reduction in the pro-inflammatory cytokine re-
sponse to injury (NCT01575470).124 A Phase 2 (NCT02525432) and 
Phase IIb (NCT02416492) follow-up studies are currently underway.

Of the currently registered clinical trials specifically investigat-
ing MSCs, there are two. Hope Bioscience has a safety and efficacy 
clinical trial of its adipose-derived MSCs. In another clinical trial 
(NCT02416492), the safety and efficacy of San Bio's proprietary 
adult bone marrow-derived MSCs genetically modified to express 
the intracellular domain of human Notch-1 to treat chronic TBI. 
Clinical trial of these cells in stroke patients demonstrated that the 
cells were safe and induced significant motor function improvement 
in adults according to European Stroke Scale, the NIH Stroke Scale, 
and the Fugl-Meyer scale.125

5.2 | Potential of MSC and anti-inflammatory 
combination treatments for TBI

Because of inflammation and other ongoing neurodegenerative cas-
cades, the brain environment post-TBI is a hostile environment for 
transplanted cells. Without some adjunctive treatment, cell survival 
is limited. For NSC and neurons, where the cells are needed to re-
build neural circuitry, survival is critical. For MSCs, whether survival 
is necessary depends on where and how the cells are having their 
effects. The immune-suppressive effects of the cells are systemic, so 
delivery to the brain is not critical.113,126,127 Their anti-inflammatory 
effects are both systemic and local within the brain, so some cells 
need to enter the brain.111,112 These functions have led to studies 
of these cells as cotransplants to enhance the survival of other cells; 
an example from the spinal cord injury literature demonstrated that 
MSCs cotransplanted with NSC in injured spinal cord resulted in 
increased survival of the NSC.128 While MSCs do have anti-inflam-
matory properties, the noxious environment may decrease their 
survival as well,129 which may limit their neuroprotective effects. To 
deal with the problem of a toxic, degenerative environment in the 
brain post-TBI, investigators have adopted multiple approaches to 
enhance cell survival.

One approach has been to delay transplantation so that the 
pathophysiology can stabilize; for example, in a study comparing TA
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MSCs with MSCs in a scaffold,130 MSCs were administered two 
months post-TBI so that regenerative and repair physiologic pro-
cesses would dominant in the parenchyma around the TBI lesion. 
Another approach has been to administer a drug treatment along 
with the cells or prior to cell transplantation. For example, Mahmood 
and associates administered MSCs intravenously 24 hours after 
TBI.131,132 At the same time, statin treatment was started and con-
tinued for 14 days. Combination treatment with either atorvasta-
tin or simvastatin improved recovery on the modified Neurological 
Severity Score (mNSS). In another study, investigators combined an 
early (1 hour post-TBI) injection of the β adrenergic antagonist, pro-
pranolol, with an intravenous administration of MSCs at 72 hours 
post-TBI.133 The underlying premise of the study was that propran-
olol decreases the TBI-induced Sympathetic Nervous System hy-
peractivity; this decreased activity then helps to maintain cerebral 
perfusion, thereby decreasing post-TBI ischemia and cell death. The 
MSCs were administered to manage the secondary inflammatory 
state. Unfortunately, the combined effects of propranolol and MSCs 
were not synergistic or additive; favorable outcomes (decreased 
serum norepinephrine, BBB permeability, microglial activation, cog-
nitive function) could be achieved solely by the MSCs. In another 
study, investigators administered a calpain inhibitor 30 minutes after 
TBI and then transplanted the MSCs at 24 hours post-TBI.134 There 
were significant decreases in pro-inflammatory cytokines around 
the lesion, increased survival of the MSCs, and improvements on the 
mNSS.

We have taken a similar approach, but instead of modifying 
sympathetic activity in conjunction with targeting inflammation, we 
combined two inflammation-modulating treatments. Based on ear-
lier studies in which we identified chemokine (C-C motif) ligand 20 
(CCL20) as being significantly elevated after TBI,135,136 we combined 
treatment with pioglitazone, a peroxisome proliferator-activated 
receptor gamma agonist that inhibits CCL20, with treatment with 
MSCs.88 The pioglitazone was administered once a day for 5 days 
after TBI. On day 5, MSCs were administered intranasally. The com-
bination of pioglitazone and MSCs was significantly better than ei-
ther treatment alone on measures of anxiety, inflammation in the 
brain, and endogenous NSC proliferation. A similar approach was 
taken by Peruzzaro and associates when they engineered MSC's to 
overexpress IL-10137 before transplantation in a TBI model.

Growth or trophic factor delivery in conjunction with cell admin-
istration is another approach that has been studied. These growth/
trophic factors may favorably condition the environment in the TBI 
brain, or they may protect the transplanted cells from cell death. 
GDNF, epidermal growth factor, and VEGF have been shown to 
protect the brain from neuronal injury and increase regeneration of 
different cell types.138-140 However, growth factor delivery can be 
problematic. Growth factors have very short half-lives, necessitating 
continual local delivery.141 Further, systemic delivery is often asso-
ciated with side effects.142 As a result, it is imperative to deliver the 
growth factors into the brain near the injury. Liu et al143 showed that 
intracerebroventricular administration of fibroblast growth factor 
2 (FGF2) for 7 days beginning at the time of MSC transplantation 

resulted in faster improvement in the forelimb placing and balance 
beam tests compared to the no treatment TBI group and the cell-
only group. Insulin-like growth factor-1 known to have a crucial role 
in MSC proliferation and putative differentiation to neuronal cells.144 
This approach has shown to improve cell injury and motor activity of 
injured rats and improved metabolic and nutritional outcomes fol-
lowing TBI.145,146 However, even growth factor delivery directly into 
the central nervous system (CNS) can lead to adverse effects. In a 
recent review of NGF trials for CNS diseases, the authors point out 
significant adverse effects such as pain and weight loss led to the 
discontinuation of the studies.142,147

The most common procedure for combining a growth factor 
treatment with the delivery of MSCs has been to transfect the cells 
with specific growth factors. For example, overexpressing FGF21 in 
MSC resulted in improved performance on the Morris water maze, 
increased hippocampal neurogenesis and dendritic outgrowth.148 
Other investigators have focused on the neurotrophins. Wu and 
associates overexpressed NT3 in MSCs and observed decreased 
glial activation, a smaller brain lesion, and decreased edema in the 
brain,149 while a number of investigators have focused on increas-
ing BDNF expression in the cells, essentially improving functional 
outcome.150,151

More recently, transplanting MSCs with a bioactive scaffold or 
biomaterial that secretes growth factors has been used to enhance 
survival, migration, and differentiation of transplanted cells.152 In 
one version of a scaffold, Bhang and associates suspended MSCs 
in a fibrin gel laced with FGF2.153 The MSCs in the fibrin glue with 
FGF2 decreased lesion size and apoptotic cell death more than MSCs 
in glue alone. When a functional peptide derivative of BDNF was 
incorporated in a self-assembling hydrogel scaffold prior to seeding 
with MSCs and activated astrocytes, the resulting structure was able 
to reduce TBI lesion size.154

6  | FUTURE PERSPEC TIVES

Over the last two decades, there is a wealth of preclinical data, 
suggesting that MSCs may be an effective treatment, either alone 
or in combination, to improve outcome after TBI. Clinical trials are 
still in the early stages. Even with an abundance of data, there are 
still questions that should be addressed before these cells are rou-
tinely used to treat TBI or other CNS injuries or disease. Perhaps, 
most important is the issue of dosing. All studies in TBI to date have 
used a single dose of MSCs and doses used in the clinical studies 
have ranged from a total of 2.5 × 106 cells up to 12 × 106 cells per 
kilogram.124,125 Not only do different research groups use different 
cell doses, in those studies using combination treatments, there is 
no indication whether dosing of the cell and/or the pharmacologic 
changes when the two are used in combination. To complicate is-
sues further, patients may be taking a plethora of medications either 
prophylactically (such as baby aspirin or statins) or to treat common 
chronic diseases (beta blockers). For example, aspirin altered the 
immune and inflammatory profile of both endogenous monocytes 
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harvested from stroke patients or healthy controls and MSCs in cul-
ture.155 When rats were treated with aspirin and cord blood-derived 
MSCs singly or in combination, outcome tended to be somewhat 
worse with the combination treatment.156 These considerations 
are especially important as the population ages, since the elderly 
are at risk for TBI and polypharmacy is an issue in this population. 
In another example, when type I diabetic rats underwent a middle 
cerebral artery occlusion followed by MSC transplantation 24 hours 
later, the cells induced hemorrhagic transformation of the stroke 
and increased BBB leakage.157 The addition of niacin to the MSC 
therapy prevented these adverse effects.158 It is, therefore, essential 
that MSCs alone or in combination with other drugs must be tested 
for efficacy against a background of commonly prescribed drugs or 
medical conditions.

Another consideration with dosing is whether or not a single in-
jection of cells is enough to maintain long-term improvements in the 
functional outcome. As mentioned previously, TBI is accompanied 
by chronic inflammation.38,40-42 As of yet, there are no studies in 
rodent models of TBI that have examined repeated administration 
of MSCs. There are indications from small clinical studies in other 
neurologic diseases or injuries that may hint at the potential efficacy 
of this dosing approach in TBI. For example, in patients with incom-
plete spinal cord injury, 30 × 106 cells were administered into the 
subarachnoid space four times at three-month intervals 159; while 
improvements in function were noted, the improvements were dif-
ferent for each individual patient. Patients with amyotrophic lateral 
sclerosis (ALS) were injected twice intrathecally with autologous 
MSCs (1 × 106 cells/kg) 28 days apart and followed for 1 year.160 
These patients had no severe adverse events and function as mea-
sured with the ALS Functional Rating Scale-Revised stabilized.

Another issue that needs to be addressed in this field is the re-
liance on rodents in the early testing of potential new therapeutics. 
While using mice and rats is cost-effective and allows manipulation 
of the genome, there are significant differences in the structure of 
the rodent brain and the human brain, not only in size, but also in, 
cerebrovascular volume, oxygen and glucose requirements, lissen-
cephalic vs gyrencephalic architecture, and the amount of white 
matter present.161 It is imperative that larger animal models are used 
for the testing of new therapies including cell therapies so that we 
can distinguish good candidate therapies that are likely to succeed in 
clinical trials from those that will not. There has been some work in 
the development and characterization of porcine and ovine models 
of TBI, but there are currently no studies of MSC therapies and only 
a handful of MSC-derive exosome studies108 in these larger animal 
models TBI models.161,162

7  | SUMMARY
The preclinical data on MSCs both alone and in conjunction with 
other treatment strategies are promising. These cells have entered 
at least Phase I (safety) clinical trials for multiple nervous system 
diseases and injuries, most notably cerebral ischemia,163-166 multiple 
sclerosis,167-174 Alzheimer's disease,175 and TBI.133,150,176 While we 
have a better understanding of the pathologic cascades triggered 

after TBI and the mechanisms by which MSCs repair the brain and 
improve functional outcomes, we are still years away from realiz-
ing an effective regenerative medicine therapy for TBI that is widely 
available to patients.
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