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Simple Summary: Microvascular invasion is an important indicator for reflecting the prognosis
of hepatocellular carcinoma, but the traditional diagnosis requires a postoperative pathological
examination. This study is the first to propose an end-to-end deep learning architecture for predicting
microvascular invasion in hepatocellular carcinoma by collecting retrospective data. This method
can achieve noninvasive, accurate and efficient preoperative prediction only through the patient’s
radiomic data, which is very beneficial to doctors for clinical decision making in HCC patients.

Abstract: Microvascular invasion (MVI) in hepatocellular carcinoma (HCC) directly affects a patient’s
prognosis. The development of preoperative noninvasive diagnostic methods is significant for guid-
ing optimal treatment plans. In this study, we investigated 138 patients with HCC and presented a
novel end-to-end deep learning strategy based on computed tomography (CT) radiomics (MVI-Mind),
which integrates data preprocessing, automatic segmentation of lesions and other regions, automatic
feature extraction, and MVI prediction. A lightweight transformer and a convolutional neural network
(CNN) were proposed for the segmentation and prediction modules, respectively. To demonstrate the
superiority of MVI-Mind, we compared the framework’s performance with that of current, mainstream
segmentation, and classification models. The test results showed that MVI-Mind returned the best
performance in both segmentation and prediction. The mean intersection over union (mIoU) of the
segmentation module was 0.9006, and the area under the receiver operating characteristic curve (AUC)
of the prediction module reached 0.9223. Additionally, it only took approximately 1 min to output a
prediction for each patient, end-to-end using our computing device, which indicated that MVI-Mind
could noninvasively, efficiently, and accurately predict the presence of MVI in HCC patients before
surgery. This result will be helpful for doctors to make rational clinical decisions.

Keywords: microvascular invasion; radiomics; end-to-end; deep learning; clinical decision

1. Introduction

Hepatocellular carcinoma (HCC) is a major histological subtype of liver cancer, ac-
counting for 90% of primary liver cancers, and the third most common cause of cancer-
related mortality worldwide [1–3]. It is one of the most common malignant tumors world-
wide, especially in Asia, Africa, and southern Europe. Genetics; epigenetic changes; chronic
hepatitis B and hepatitis C virus infections; and unhealthy lifestyle habits, such as smoking,
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irregular diet, and sleep deprivation are the main risk factors for liver cancer [4–6]. The
early clinical symptoms of HCC are not obvious and mainly include liver pain, fatigue,
weight loss, low-grade fever, and loss of appetite. However, ascites, jaundice, anemia,
weight loss, and cachexia occur in the later stages. Additionally, complications such as
hepatic encephalopathy and tumor rupture can be induced [7]. The clinical decisions
made for individual patients with HCC greatly affect their prognosis. At present, the most
recognized treatment options are surgical resection [8] and liver transplantation [9], but
serious challenges remain in achieving precise planning for treatments. Therefore, it is
of great value for the treatment of HCC to make full use of clinical information, such as
radiological data before surgery.

At present, various clinical studies on HCC have been conducted, which are helpful
for the diagnosis and treatment of HCC. For example, studies have shown that gadolinium
magnetic resonance can enhance the sensitivity of noninvasive diagnoses for hepatocellular
carcinoma nodules in patients with liver cirrhosis, which is beneficial to the early diagnosis
of HCC [10]. Moreover, the latest Liver Imaging Reporting and Data System (LI-RADS)
classification was validated as a potential and readily applicable predictor of HCC patho-
logical features and tumor histology, and patient clinical characteristics had a significant
impact on postoperative recurrence outcomes [11]. The drug treatment of HCC has also
progressed, such as the use of regorafenib to obtain significant efficacy [12].

Microvascular invasion (MVI) in HCC refers to the nests of cancer cells (more than
50 cancer cells) observed under a microscope in a vascular lumen lined by endothelial cells,
and it is an important reason for the poor long-term survival rate after HCC surgery [13].
MVI is most common in the small branches of the portal vein in adjacent tissue, followed
by the branches of the hepatic vein, hepatic artery, bile duct, and lymphatic vessels. Sev-
eral studies have shown that MVI is an independent factor for postoperative tumor-free
survival, and it can be used to effectively predict intrahepatic metastasis, multi-nodular
recurrence, and can significantly reduce survival [14–16]. Adequate surgical margins such
as anatomical resection are an important methods for reducing postoperative recurrence
rates, which allow complete resection of the tumor-bearing portal vein branches, resulting
in more efficient eradication of intrahepatic MVI [17,18]. However, a large amount of
liver tissue needs to be removed during the operation, which leads to a high possibility of
postoperative liver insufficiency. Therefore, large-scale liver tissue removal is costly.

It is worth noting that the clinical method that is generally used for diagnosing MVI
is postoperative pathological detection, wherein the tissue specimens taken during the
operation are observed under a microscope; this is accurate but not helpful for preoperative
clinical decision making [19]. Preoperative prediction of MVI can help to guide surgical
strategies for liver transplantation and hepatectomy. For example, doctors would know
in advance whether a patient has MVI; this would help them to formulate precise sur-
gical strategies. Early prediction of MVI is also beneficial for doctors to take measures
to prevent recurrence and metastasis before surgery, including systemic therapy or im-
munotherapy [20]. Therefore, the use of cutting-edge technologies to develop preoperative
noninvasive MVI prediction tools can better guide clinical decision making in HCC patients.

With the development of artificial intelligence (AI) technology, radiomics and machine
learning methods have gradually been applied to the preoperative prediction of MVI in liver
cancer, and excellent performance has been achieved [21,22]. For example, Jiang et al. [23]
included a study of 405 HCC patients and extracted 7302 radiomic features for predicting
MVI from their radiomics data. The area under the receiver operating characteristic curve
(AUC) of the extreme gradient boosting (XGBoost) algorithm reached 0.887. Nebbia et al. [24]
retrospectively collected preoperative multiparametric liver magnetic resonance imaging
(MRI) scans from 99 HCC patients and regions of interest (ROI) were manually segmented by
radiologists. First, the researchers extracted radiomic features in the region, which were then
fed into a machine learning model for predicting MVI. The best performance was obtained
when a combination of multiple MRI sequences was used, with an AUC of 0.8669. In recent
years, deep learning technology has gradually emerged and has been applied to various
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medical tasks. In related studies on the preoperative prediction of MVI, this technique has
also been shown to have a stronger generalization ability. Some researchers constructed a
3D convolutional neural network (-CNN), which was able to perform preoperative diagnosis
of MVI in HCC patients by inputting MRI sequences, with the highest AUC of 0.81 and a
sensitivity of 0.69 [25]. In addition, a 2D-CNN model was applied to this task [26] and showed
excellent performance. However, it should be emphasized that most published studies have
required the help of experienced radiologists to manually segment the ROI or volume of
interest (VOI), which is inefficient and cannot be automated and batched. Developing an
end-to-end deep learning method that integrates raw data preprocessing, automatic ROI
segmentation, and MVI prediction is conducive to promotion.

In this study, we propose an end-to-end deep learning strategy for preoperative MVI
prediction, named MVI-Mind. It can accurately predict the presence of MVI with only the
input of raw computed tomography (CT) images of patients with HCC. The transformer
architecture in the field of natural language processing (NLP) was introduced into the
segmentation of liver tumors and surrounding tissues, and the effect was better than that
of other supervised learning segmentation algorithms. An efficient convolutional neural
network (CNN) model was designed to achieve automatic feature extraction and prediction.
To the best of our knowledge, this is the first report of an end-to-end deep learning method
that integrates raw data preprocessing, automatic ROI segmentation, and MVI prediction.

2. Materials and Methods

The deep learning strategy proposed in this study included four modules: data pre-
processing, ROI segmentation module, MVI prediction module, and method evaluation and
comparison. The workflow is illustrated in Figure 1. Preprocessing included manual annotation,
data cropping, image dimension transformation, dataset partitioning, and data augmentation.
The segmentation module adopted a lightweight transformer supervised learning algorithm,
which made it more suitable for the segmentation of liver tumors and surrounding tissues. An
efficient CNN was designed in the prediction module to extract the features of the segmented
images and to perform accurate classification and was also compared with other deep learning
models to evaluate the superiority of the proposed method.

2.1. Patients

In this study, we followed the principles of the Declaration of Helsinki and the study
was approved by the hospital ethics committee (ethics number 20001-01). All patients
provided informed consent before surgery. The project was registered in the National
Hepatobiliary Standard Database of China (registration number CDR/20221019).

Data of patients with HCC who underwent liver surgery at Qingdao University be-
tween January 2014 and December 2018 were retrospectively collected. Tumor specimens
from each patient underwent postoperative pathological examination for MVI. The in-
clusion criteria were as follows: (1) HCC was diagnosed based on pathology; (2) partial
hepatectomy was the first treatment, and (3) contrast-enhanced CT examination was per-
formed within 1 month before surgery, and all periods were complete. Patients were
excluded from the study based on the following criteria: (1) chemotherapy, interventional
therapy, targeted therapy, and other treatments before partial hepatectomy; (2) history of
other tumors; (3) incomplete imaging and clinical medical records; (4) lesion had metas-
tasized. Ultimately, 138 patients were selected for the study and their radiological and
clinical data were obtained. The patient selection process is shown in Figure 2.
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Figure 1. The workflow of this study.

2.2. Imaging Acquisition and Preprocessing

The scanning equipment used in this experiment was a German CT (SOMATOM
Definition Flash, Siemens) and an American Discovery CT (GE Healthcare). The scan was
performed as a three-level contrast-enhanced scan of the upper abdomen, ranging from
the top of the liver to the lower edges of the two kidneys. Scanning parameters included a
voltage of 120 kV, current of 200–350 mA, scan layer thickness of 5 mm, layer spacing of
5 mm, and matrix size of 512 × 512. Furthermore, iohexol and 350 mg/m1 of iodine were
injected via a peripheral vein at a flow rate of 3.0 mL/s and a dose of 1.5 mL/kg using
a pressure syringe. The arterial phase (AP), portal venous phase (PVP), and equilibrium
phase (EP) delays were 30 s, 60 s, and 120 s, respectively. AP, PVP, and delay period (DP)
images were obtained.

Typically, CT scans store raw voxel intensities in Hounsfield units (HU). In this study,
the CT scans were normalized with thresholds of −1000 and 400 (normalization). The origi-
nal data contained many slices without an ROI, which increased the amount of unnecessary
computation. The slices were searched from the beginning to the end of the ROI based on
manually annotated data (mentioned below), and the rest were cropped. The input channel
of the deep learning framework designed in this paper was 2-dimensional; therefore, the
data were converted to the corresponding format. Additionally, the dataset was divided
before the automatic segmentation and MVI prediction tasks, in which the training set per-
formed data augmentation operations to balance the data categories, including horizontal
flipping, random rotation, and random blurring [27].
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Figure 2. The flowchart of the patient selection process.

2.3. Manual ROI Annotation

MVI-Mind employed supervised learning to train the segmentation model, which
means that CT images must be manually labeled with ROI first. In this study, all CT
data from 71 patients were manually labeled by two radiologists, each with more than
10 years of experience, considering the liver tumor and parts of the surrounding tissue
(extending 1 cm from the tumor boundary). One physician independently used the 3D
Slicer (Boston, MA, USA) software to delineate the ROI of each slice and finally formed a
VOI. Another physician reviewed the marked results and accepted them if there were no
disputes. It is worth noting that, in this study, we did not manually delineate the data of all
patients, which reduced the huge workload and highlighted the superiority of deep learning
segmentation, i.e., the automatic segmentation of all data with a limited number of labels.

2.4. The Construction of the Segmentation Models
2.4.1. Transformer-Based Lightweight Design

Transformer-based neural networks have been used in the NLP field since 2018 and
have achieved remarkable results as compared with recurrent neural networks (RNNs) [28].
This architecture proposes a way to process sequential data in parallel, and therefore, it is
much faster than previous architectures, and it is also excellent at handling long-term de-
pendencies. A self-attention mechanism was used to capture contextual information better.
Transformers have been applied in the field of computer vision since 2021. Surprisingly, it
surpassed CNN in tasks such as image classification, semantic segmentation, and object
detection, becoming the most promising neural network [29–31].

However, traditional transformers have a large number of parameters and are difficult
to train, which puts high demand on computers. Based on this, for MVI-Mind, referring
to [32], we proposed a lightweight transformer architecture for automatic segmentation of
the liver ROI, which reduced the training difficulty, and also had better performance. To
the best of our knowledge, this is the first study to adopt this architecture for segmentation
of HCC lesions.

Figure 3 is a schematic diagram of the architecture of the model, including a novel
hierarchical transformer encoder, which outputs multiscale features and does not require
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positional embedding. This avoids the difference in resolution during testing and training
and results in performance degradation. The decoder adopts a lightweight multilayer
perceptron (MLP) decoder to aggregate information from different layers, thereby com-
bining the local and global attention. Specifically, the encoder removes the traditional
positional embedding and replaces it with a mix-feed-forward network (Mix-FFN), which
introduces a 3 × 3 depthwise convolution in the feed-forward network to transfer posi-
tional information. The decoder only introduces several MLP layers and does not perform
complex operations, which significantly reduces the number of parameters and compu-
tations. Moreover, for the patch embedding of the network, the patch with the overlap
operation is designed such that the non-independent design can ensure local continuity.
For traditional self-attention, we also refer to [32] to employ efficient self-attention, which
mainly increases the hyperparameter sr_ratio based on the original to control the size of
the parameter matrix.

Figure 3. Proposed lightweight transformer architecture.

In this study, the transformer architecture only allows the input of two-dimensional
images; therefore, we batched the CT data in the form of slices (image size was con-
verted to 512 × 512). To further improve the generalization ability of the model, we used
mix_vision_transformer_b5 as the pretraining model [32] for transfer learning, in which
the backbone selected MixVisionTransformer_B5, and the embedding_dim was set to 768.

2.4.2. Model Comparison—Swin Transformer

To reflect the superiority of the lightweight transformers adopted by MVI-Mind in the
liver ROI segmentation task, the Swin Transformer model was selected for comparison.
Swin transformers, proposed in 2021 [33], have achieved a mean intersection over union
(mIoU) of 53.5 on the semantic segmentation dataset ADE20K, which once led all deep
learning models.

Swin transformers adopt a common architecture based on moving panes and hierarchi-
cal representations. Moving windows limit self-attention to a certain range, which greatly
reduces the amount of computation and enables interactions between nonlocal windows.
Specifically, the model builds a hierarchical feature map of an image on the basis of linear
computational complexity, that is, a hierarchical feature representation is constructed by
merging neighborhoods layer-by-layer through patches. Such an architecture enables the
model to achieve dense prediction tasks, similar to architectures such as U-Net.

It was applied to the segmentation of areas, such as liver lesions, with slices of CT data
as input, and the image size was set to 512 × 512 pixels in this work. The training method
also adopted transfer learning and selected the pretraining model, swin_transformer_base_
patch4_window7_224_imagenet_1k. Meanwhile, we employed SwinTransformer_base_
patch4_window7_224 as the backbone.
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2.4.3. Baseline Models

The DeepLab v3+ model used atrous convolution operations and performs well in
semantic segmentation, object detection, and other fields [34]. This study selected this as
the baseline model. Additionally, U-Net has been adopted as a classic model for medical
image segmentation [35]. Slices of size 512 × 512 were input into the baseline models and
ResNet-101 was selected as the backbone of DeepLab V3+.

2.5. The Construction of the MVI Prediction Models
2.5.1. The Proposed CNN Model

We designed a CNN architecture for the segmented ROI to efficiently and accurately
predict whether a patient has MVI; its network diagram is shown in Figure 4. Four con-
volutional layers and four max pooling layers (the convolutional layer and pooling layer
are alternately arranged), two fully connected layers, and a softmax layer are included in
the model. The ReLU activation function was selected, the convolution kernel size was
set to 3 × 3, the padding was 2, and the stride was 2. To prevent overfitting, a dropout
technique was employed before the fully connected layers. The architecture of the CNN
model proposed in this paper is relatively simple and has no redundant layers; therefore,
the training difficulty is low and it can efficiently complete the MVI prediction task.

Figure 4. Convolutional neural network (CNN) designed to extract region-of-interest (ROI) features
and make predictions in this study.

Because the segmentation module took a 2-dimensional image input, the input channel
of this prediction model was also designed to be 2-dimensional, and the input image size
was 512 × 512. It is worth noting that although slices of CT data were used for training, the
evaluation and prediction of the model were performed on patients because the results were
clinically meaningful. Because liver tumors are three-dimensional and MVI positivity may
not be captured in every slice, it may not be the case that all slices are predicted to be the
same. The experiments aggregated predictions across all slices for each patient and followed
the clinical decision-making workflow guidelines adopted by radiologists. The guidelines
state that a patient is considered to have MVI if one of the slices is positive for MVI.
A patient was considered to be free of MVI only when all the slices were negative. Whether
a patient is positive or not depends on the slice with the highest predicted probability. Based
on this, we calculated the probability of MVI positivity for each patient. The rationality
and scientificity of this calculation method are confirmed in [26].

2.5.2. Comparison with Other CNN Models

Studies have been conducted using other CNN architectures to predict MVI [26,36]. Two
classic models, ResNet-34 and Inception V3, were compared. With the advantage of residual
learning, ResNet has performed well in many medical image-recognition tasks [37,38]. In this
work, a 34-layer ResNet was built. The inception architecture was proposed by Google and
has performed well in several data-mining competitions [39]. One of the improved versions,
Inception V3, was adopted. The main idea of this model is to employ dense components to
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approximate an optimal local sparse solution. We also calculated MVI predictions for each
patient using the clinical decision guidelines described above.

2.6. Model Evaluation Indicators
2.6.1. Segmentation Models

To evaluate the segmentation module, we selected mIoU, accuracy (Acc), Kappa
coefficient, and Dice similarity coefficient, and the corresponding calculation methods are
shown in Equations (1)–(4). Among them, the mIoU is often adopted as a standard measure
of semantic segmentation, and the other indicators can also reflect the performance of the
segmentation model.

mIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(1)

Acc =
TN + TP

TN + TP + FN + FP
(2)

Kappa =
P0 − Pe

1 − Pe
(3)

Dice =
2TP

FP + 2TP + FN
(4)

TN, TP, FN, and FP represent the true negative, true positive, false negative, and false
positive numbers, respectively; P0 is the overall classification accuracy; and Pe is the ratio of
the sum of the total number of samples multiplied by the predicted number to the square
of the total number.

2.6.2. MVI Prediction Models

Acc, recall rate (Rec), precision (Prec), and F1 score (the corresponding calculation
methods are given in Equations (2) and (5)–(7)) were selected as the evaluation indicators of
the prediction models. The MVI prediction in this study was a binary classification task and
the classification threshold was set to 0.5. To assess the robustness of the models, the mean
and 95% confidence interval (CI) of the statistical results were calculated. Moreover, the
receiver operating characteristic (ROC) curve was obtained by plotting the true positive rate
(TPR) and false positive rate (FPR) under different threshold settings, which could objectively
reflect the generalization ability of the model, as well as the AUC in the evaluation criteria:

Rec =
TP

TP + FN
(5)

Prec =
TP

TP + FP
(6)

F1 = 2 · Prec · Rec
Prec + Rec

(7)

TN, TP, FN, and FP represent true negative, true positive, false negative, and false
positive numbers, respectively.

3. Results
3.1. Experimental Setup

Before performing the segmentation task in this study, the datasets of the three periods
were randomly divided into training, validation, and test sets at a ratio of 8:1:1. At the
end of the training, the test set was employed to evaluate the model performance. When
performing the MVI prediction task, considering the small number of patient samples, the
5-fold cross-validation method was selected in this study, that is, the dataset was randomly
divided into five equal parts each time, four of the parts were used for training and the
remaining part was used for testing, the process was repeated five times, and finally, the
mean value and the corresponding 95% CI of five results were counted. This process was
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performed separately for the CTs at different time periods. It must be emphasized that
because the slices of the same patient may have a high degree of similarity, if all slices are
divided as a whole, data leakage would occur, resulting in increased artificial precision.
Therefore, we divided the patients. All the experiments were completed in the Windows
10 operating system, and the relevant computing equipment was configured with a CPU
AMD Ryzen 7 5800H with 16 GB memory and two GPUs, NVIDIA® GeForce RTX 3070 and
NVIDIA® Tesla V100 (32GB memory); both were supported by the compute unified device
architecture (CUDA) GPU acceleration. All work was implemented using Python 3.8, and
the PaddlePaddle deep-learning framework.

3.2. Statistics of Clinical Characteristics

Patient information and clinical indicators were grouped (MVI+ and MVI−) for sta-
tistical analysis, and the results are shown in Table 1. Patient information included sex,
age, and other clinical test indicators, including tumor size, tumor markers, and liver
function indicators. Most patients were men, with an average age of 56 years. Notably,
the maximum tumor diameter in MVI-positive patients was significantly larger than that
in MVI-negative patients (p = 0.0321). Additionally, the proportion of alpha-fetoprotein
(AFP) positivity in MVI patients was higher than that in non-MVI patients, but there was
no such pattern for hepatitis B surface antigen (HBsAg). In terms of liver function, there
was no significant difference between the two groups in the comparison of total bilirubin
(T-BIL) and alanine transaminase (ALT) (p = 0.1011 and 0.1241) and there were significant
differences in the comparison of aspartate transaminase (AST) levels (p = 0.0362). The
MVI-positive patients were generally higher than the MVI-negative patients.

Table 1. Statistics of clinical indicators of datasets employed in the study.

Clinical Indicator
Total Dataset (n = 138)

MVI Positive (n = 68) MVI Negative (n = 70)

Gender
Male 56 (82.35%) 57 (81.43%)

Female 12 (17.65%) 13 (18.57%)
Age 56.70 ± 11.48 56.34 ± 12.05 p = 0.4355

MTD(mm) 5.20 ± 3.48 4.30 ± 1.98 p = 0.0321
AFP

Positive 45 (66.18%) 39 (55.71%)
Negative 23 (33.82%) 31 (44.29%)
HBsAg
Positive 60 (88.24%) 63 (90.00%)

Negative 8 (11.76%) 7 (10.00%)
ALB(g/L) 40.79 ± 5.04 40.27 ± 4.81 p = 0.2718

T-BIL(mmol/L) 21.43 ± 9.55 17.85 ± 7.60 p = 0.1011
ALT(u/L) 63.99 ± 35.78 47.39 ± 25.92 p = 0.1241
AST(u/L) 60.70 ± 39.10 34.74 ± 18.35 p = 0.0362

Note: MTD, AFP, HBsAg, ALB, T-BIL, ALT, and AST represent maximum tumor diameter, alpha-fetoprotein,
Hepatitis B surface antigen, albumin, the total bilirubin, alanine aminotransferase and aspartate aminotrans-
ferase, respectively. Additionally, some indicators are represented by the mean values of the samples and the
corresponding 95% confidence intervals.

3.3. Segmentation Results and Model Comparisons

All CT slices of 71 patients (1861 samples in total) were manually annotated for training
and testing, and the trained model automatically segmented the slices of all patients to
obtain the ROIs. During this process, the lightweight transformers and other comparison
models were executed for 100,000 iterations, and finally, they all converged. The loss value
of the validation set remained constant, but there was no overfitting phenomenon. The
key hyperparameters were optimized during training. For convenience of the performance
comparisons, we set some parameters of each model to be consistent, as shown in Table 2.
The optimizer adopted momentum and the momentum factor was set to 0.9.
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Table 2. Configuration of key parameters of lesion segmentation module in MVI-Mind framework.

Parameter Name Parameter Value

num_classes 2
base_learning rate 0.005

momentum 0.9
weight_decay 4.0 × 10−5

batch_size 2

The trained models were selected for testing. Figure 5 shows the segmentation criteria
and visualization results for each model. The green area represents the ROI that was either
manually annotated or considered by the model. From the visualization results, the segmenta-
tion effect of the proposed transformer is the closest to that of the standard, followed by the
Swin transformer, which highlights the superiority of the transformer architecture in the field
of HCC segmentation. The effects of DeepLab V3+ and U-Net are not particularly satisfactory.
Table 3 shows the evaluation of the performance of each model. It can be found that MVI-Mind
performs the best, where mIoU is 0.9006, Acc is 0.9947, Kappa is 0.8903, and Dice is 0.9451.
The Swin transformer performance is similar, with an mIoU of 0.8971. The performances of
the baseline models were significantly different from that of the former. DeepLab V3+ and
U-Net only had mIoU values of 0.7778 and 0.7521, respectively.

Figure 5. Visualization of manual annotation and segmentation of each model, in which the green
area is the ROI, and the rest are the original slices: (A) Represents manual annotation; (B–E) represent
MVI-Mind, Swin Transformers, DeepLab V3+, U-Net segmentation, respectively.
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Table 3. Performance comparisons of various deep automatic segmentation models.

Model mIoU Acc Kappa Dice

MVI-Mind (our work) 0.9006 0.9947 0.8903 0.9451
Swin transformer 0.8971 0.9943 0.8860 0.9430

DeepLab V3+ 0.7778 0.9871 0.7185 0.8592
U-Net 0.7521 0.9863 0.6758 0.8378

Table 4 compares the number of parameters, total training time, and convergence
time of all models. Although the performance of the Swin transformer is not significantly
different from that of MVI-Mind, the number of parameters, training time, and conver-
gence time are all larger than those of MVI-Mind. In particular, the convergence time is
nearly three times that of the proposed method, which indicates that the training of the
Swin transformer is difficult under the same conditions. The baseline models have lower
convergence times than the transformer architecture owing to their architectures.

Table 4. Performance comparisons of various deep automatic segmentation models.

Model Num_params Num_iters Total Training Time/s Convergence Time/s

MVI-Mind (our work) 84,596,418 100,000 63,075 about 6550
Swin transformer 108,235,650 100,000 78,420 about 15,680

DeepLab V3+ 45,871,090 100,000 40,218 about 3890
U-Net 13,404,354 100,000 18,930 about 1520

3.4. MVI Prediction Results and Models Comparison

The CNN was selected as the MVI prediction model, which can automatically extract
the texture features of the ROI in depth and can predict the MVI. This study adopted a
5-fold cross-validation method, and each fold was iterated until the model converged. This
was repeated five times, and the mean and 95% CI were calculated. During training, we
selected the Adam optimizer, and the key hyperparameters of each model were optimized
(for convenience of comparison, some parameter settings of the models were set to be
consistent, as shown in Table 5). The verification results of the patients are presented
in Table 6. It can be seen that MVI-Mind has the best performance, and the evaluation
indicators of the three scanning periods are better than those of other deep learning models
with the highest Prec of 0.8750 and F1 of 0.8488. ResNet-34 outperformed Inception V3,
which could be related to its model architecture. Interestingly, the results of MVI-Mind and
ResNet-34 showed that AP predicted the best.

Table 5. Configuration of key parameters of the MVI prediction module in MVI-Mind framework.

Parameter Name Parameter Value

num_classes 2
learning_rate 1.0 × 10−6

optimizer Adam
weight_decay 3.0 × 10−3

batch_size 64
verbose 1
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Table 6. The performance of each deep learning model in the MVI prediction task.

Model Scan Time Period Acc Rec Prec F1 Score

MVI-Mind

AP (avg ± 95%CI) 0.8678 0.8269 0.8750 0.8488
±0.0458 ±0.0767 ±0.0490 ±0.0566

PP (avg ± 95%CI) 0.8534 0.7760 0.8972 0.8241
±0.0484 ±0.1060 ±0.0651 ±0.0645

DP (avg ± 95%CI) 0.8434 0.7637 0.8823 0.8150
±0.0547 ±0.0802 ±0.0816 ±0.0660

ResNet-34

AP (avg ± 95%CI) 0.8283 0.6988 0.9089 0.7875
±0.0242 ±0.0372 ±0.0676 ±0.0303

PP (avg ± 95%CI) 0.7844 0.6684 0.8313 0.7356
±0.0474 ±0.0905 ±0.0732 ±0.0688

DP (avg ± 95%CI) 0.7889 0.6848 0.8271 0.7409
±0.0653 ±0.1242 ±0.0834 ±0.0919

Inception-V3

AP (avg ± 95%CI) 0.7940 0.7256 0.8061 0.7599
±0.0269 ±0.0738 ±0.0478 ±0.0439

PP (avg ± 95%CI) 0.7728 0.6949 0.7911 0.7380
±0.0525 ±0.0450 ±0.0787 ±0.0512

DP (avg ± 95%CI) 0.7947 0.7423 0.8133 0.7682
±0.0501 ±0.0793 ±0.0948 ±0.0494

Note: Each model’s results are the mean of 5 predictions and the corresponding 95% confidence interval.

To reflect the performance of each model more intuitively, we plotted the ROC curves
for different periods and calculated the corresponding AUC values (Figure 6). MVI-Mind had
the highest AUC, which was 0.9223 for AP, 0.8962 for PVP, and 0.9100 for DP, indicating that
the method proposed in this paper has the best generalization ability. This was followed by
ResNet-34 (with the highest AUC of 0.8985), and Inception V3 (with the highest AUC of 0.8561).

Figure 6. Cont.
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Figure 6. Receiver operating characteristic curves (ROCs) of all CNN models and their corresponding
AUC values. (A–C) Represent the prediction results of MVI-Mind during AP, PVP, DP, respectively;
(D–F) represent the prediction results of ResNet-34 during AP, PVP, DP, respectively; (G–I) represent the
prediction results of Inception V3 during AP, PVP, and DP, respectively.

3.5. The End-to-End Prediction Pipeline of MVI-Mind

The MVI-mind decision process based on the trained segmentation and prediction model
was designed (Figure 7). After inputting the original CT data of each patient, it is preprocessed
to obtain slices first, and then automatically segmented to obtain ROIs. The prediction model
is then input to automatically extract features for the probability prediction for each patient
according to the clinical decision guideline. If the predicted probability exceeds the threshold,
the MVI is considered to be positive; otherwise, it is considered to be negative. The process
is fully automated and batched, and it can perform end-to-end MVI prediction using certain
scanning period (AP, PVP, or DP) CT images of HCC patients in a short time (the prediction
speed reaches 45.8–62.4 s/person in this computing device).

Figure 7. End-to-end prediction pipeline of MVI-Mind.
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4. Discussion

In this paper, for the first time, we proposed MVI-Mind, an end-to-end deep-learning
method, integrating image preprocessing, automatic segmentation, automatic feature
extraction, and prediction for MVI prediction in HCC patients. Using imaging to efficiently
and accurately assess the presence of MVI before surgery would help doctors to make
better clinical decisions. A lightweight transformer was adopted to automatically segment
liver tumors and their surrounding ROIs, and an mIoU of 0.9006 was achieved. A CNN
model was also designed to automatically extract segmented ROI features and accurately
predict MVI, with the highest AUC of 0.9223. The results show that the proposed method
outperforms current mainstream models.

Among the segmentation modules, owing to the superiority of its architecture, our
proposed transformers achieved the best performance. First, the encoder did not use the
traditional positional embedding and instead added a 3 × 3 convolution kernel to the
feed-forward network, which could better transmit positional information while avoiding
performance degradation. Patch embedding added an overlap operation, which was
beneficial for enhancing local continuity. Based on traditional self-attention, we added the
hyperparameter sr_ratio to control the size of the parameter matrix, thereby, making self-
attention more efficient. The decoder designed multiple MLPs to aggregate the information
of different layers, thus, combining local and global attention, while greatly reducing the
model parameters, thus, further reducing the weight of the model. These improvements
further highlight the superiority of transformers in liver ROI segmentation tasks. The
model splits the image into patches and maps them into a sequence of linear embeddings
encoded by an encoder. This method captures the contextual information of images better
than a CNN. Moreover, the number of model parameters is greatly reduced as compared
with traditional transformers, and thus, the training difficulty is reduced.

A CNN architecture with four convolutional layers, four pooling layers, and two
fully connected layers was designed for prediction, which employed the ReLU activation
function and added a dropout to prevent overfitting. The results show that the above CNN
performs excellently in predicting the MVI task, even surpassing mainstream models of
medical image classification, such as ResNet-34 and Inception V3. Although the proposed
CNN architecture is simple, the 4-layer convolution kernel can deeply extract liver ROI
features and can achieve an accurate prediction of MVI, and the appropriate number of
network layers is not prone to overfitting. In contrast, the network complexity and depth of
ResNet-34 and Inception V3 were much higher than those of the aforementioned CNN, but
the effect was not as good as that of the latter. A possible reason for this is that the extracted
features are too deep owing to the complexity of the model, which leads to overfitting in
the classification stage. On the one hand, the texture features of the segmented HCC lesion
slices are not complicated as compared with others, such as the mirror image of skin cancer.
On the other hand, the small amount of data (138 patients) may also lead to overfitting
of the complex models. Therefore, it is very important to design a suitable deep learning
model based on the characteristics of the image and amount of data.

During AP, the contrast agent passes through the human arterial blood vessels, and
therefore, the arterial blood vessels and the tissues, organs, and lesions rich in arterial
blood vessels appear to enhance imaging. In patients with primary HCC, the arterial blood
supply of the lesions is rich; therefore, when performing liver-enhanced CT examination for
AP, the lesions often show obvious enhancement, and the contrast agent flows out rapidly
with the arterial blood. In this study, it was found that the model effect during AP was
generally better than that during PVP and DP, and the reasons and application scenarios
need to be further discussed in the future.

In recent years, radiomics studies based on deep learning have mostly used 3D
methods, that is, 3D segmentation or 3D classification [23,25], but there are also studies that
have chosen 2D methods [26]. MVI-Mind designed a 2D input channel, which converted
CT images into slices in the preprocessing module, and finally summarized the slice results
and predicted the presence of MVI in HCC patients before surgery, according to clinical
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decision guidelines. There are two reasons for this finding. First, the number of data studied
is only 138 cases. If a 3D method was adopted, the amount of data for the segmentation and
classification model would be extremely low, which would lead to the failure of the model
to effectively learn the data features. In addition, a transformer model was employed for
image segmentation. If it was changed to a 3D input channel, the number of parameters
would be significantly increased, which would place extremely high demands on the
training equipment. Based on the analysis above, the 2D method is more suitable for the
actual situation in this study.

Compared with previous similar reports, Jiang et al. [23] included 405 patients for
their study. They extracted 7302 radiomics features for lesions and developed machine
learning models and 3D-CNN based on radiomics features and clinical baseline data to
predict the presence of MVI. The results showed that the AUCs of the machine learning and
3D-CNN models on the validation set were 0.887 and 0.906, respectively, which were both
lower than those in our study. Zhang et al. [25] also developed a 3D-CNN to predict MVI in
237 patients with HCC, achieving an AUC of 0.81, a recall of 0.69, and a specificity of 0.79.
Obviously, this result was inferior to our work. Yang et al. [40] studied 283 HCC patients,
extracted lesion features through a CNN, and integrated radiomics and clinical features
for preoperative identification of MVI status, with the highest AUC of 0.909. In [41], the
radiology images of 160 patients with HCC were manually segmented into ROIs, after
which the authors trained a supervised learning model for predicting MVI with the highest
AUC of 0.85 and specificity of 0.762. In this study, only 138 patients were selected, but the
highest AUC achieved was 0.9223, which indicates the best performance of the MVI-Mind.

This study had certain shortcomings. For example, the lack of multicenter imaging
data has led to further validation of the applicability of this method. The 2D approach
adopted also has limitations because segmenting and predicting lose spatial information
between slices, which may affect the model’s decision-making performance. The study only
built models through radiomics without considering the clinical data of patients, which
improved the convenience of practical application but might also lose accuracy. Moreover,
the small sample size is also a limitation, as it does not reflect the generalization ability of
the proposed method on other patients.

5. Conclusions

A traditional diagnosis of MVI requires postoperative pathological detection. In this
study, we proposed an end-to-end deep learning strategy based on CT radiomics, which
could quickly preprocess raw data, automatically segment the ROI of the liver, automati-
cally extract relevant features, and achieve accurate prediction of MVI. In the segmentation
module, the proposed lightweight transformers achieved an mIoU of 0.9006, outperforming
other deep-learning algorithms. The prediction results show that the AP works best, and
the accuracy of the designed CNN is 0.8678, surpassing that of the mainstream model. In
the future, the dataset will be expanded further to verify the generality of the method and
apply it to clinical practice.
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19. Ünal, E.; İdilman, İ.S.; Akata, D.; Özmen, M.N.; Karçaaltıncaba, M. Microvascular invasion in hepatocellular carcinoma.
Diagn. Interv. Radiol. 2016, 22, 125–132. [CrossRef]

20. Yang, L.; Gu, D.; Wei, J.; Yang, C.; Rao, S.; Wang, W.; Chen, C.; Ding, Y.; Tian, J.; Zeng, M. A Radiomics Nomogram for Preoperative
Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Liver Cancer 2019, 8, 373–386. [CrossRef]

21. Wang, G.; Jian, W.; Cen, X.; Zhang, L.; Guo, H.; Liu, Z.; Liang, G.; Zhou, W. Prediction of Microvascular Invasion of Hepatocellular
Carcinoma Based on Preoperative Diffusion-Weighted MR Using Deep Learning. Acad. Radiol. 2021, 28 (Suppl. S1), S118–S127.
[CrossRef] [PubMed]

22. Zhang, J.; Huang, S.; Xu, Y.; Wu, J. Diagnostic Accuracy of Artificial Intelligence Based on Imaging Data for Preoperative
Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front. Oncol. 2022,
12, 763842. [CrossRef]

http://doi.org/10.1016/j.xinn.2020.100032
http://www.ncbi.nlm.nih.gov/pubmed/32914142
http://doi.org/10.1016/j.bbcan.2019.188314
http://www.ncbi.nlm.nih.gov/pubmed/31682895
http://doi.org/10.1146/annurev-med-090514-013832
http://www.ncbi.nlm.nih.gov/pubmed/26473416
http://doi.org/10.1038/s41586-019-0987-8
http://www.ncbi.nlm.nih.gov/pubmed/30814741
http://doi.org/10.1017/S0007114520001208
http://doi.org/10.1016/j.jhep.2018.12.001
http://doi.org/10.3390/cells9061370
http://doi.org/10.4097/kja.d.19.00010
http://doi.org/10.1590/S1679-45082015RW3164
http://doi.org/10.1111/apt.12166
http://doi.org/10.3390/diagnostics12010160
http://doi.org/10.1177/17562848211016959
http://doi.org/10.1245/s10434-019-07227-9
http://doi.org/10.1007/s12029-020-00487-9
http://doi.org/10.1097/SLA.0000000000003268
http://doi.org/10.1111/jgh.13843
http://doi.org/10.3389/fonc.2021.621622
http://doi.org/10.1016/j.asjsur.2021.02.023
http://doi.org/10.5152/dir.2015.15125
http://doi.org/10.1159/000494099
http://doi.org/10.1016/j.acra.2020.11.014
http://www.ncbi.nlm.nih.gov/pubmed/33303346
http://doi.org/10.3389/fonc.2022.763842


Cancers 2022, 14, 2956 17 of 17

23. Jiang, Y.Q.; Cao, S.E.; Cao, S.; Chen, J.N.; Wang, G.Y.; Shi, W.Q.; Deng, Y.N.; Cheng, N.; Ma, K.; Zeng, K.N.; et al. Preoperative
identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning. J. Cancer Res. Clin. Oncol.
2021, 147, 821–833. [CrossRef] [PubMed]

24. Nebbia, G.; Zhang, Q.; Arefan, D.; Zhao, X.; Wu, S. Pre-operative Microvascular Invasion Prediction Using Multi-parametric
Liver MRI Radiomics. J. Digit. Imaging 2020, 33, 1376–1386. [CrossRef]

25. Zhang, Y.; Lv, X.; Qiu, J.; Zhang, B.; Zhang, L.; Fang, J.; Li, M.; Chen, L.; Wang, F.; Liu, S.; et al. Deep Learning With 3D
Convolutional Neural Network for Noninvasive Prediction of Microvascular Invasion in Hepatocellular Carcinoma. J. Magn.
Reson. Imaging 2021, 54, 134–143. [CrossRef] [PubMed]

26. Liu, S.C.; Lai, J.; Huang, J.Y.; Cho, C.F.; Lee, P.H.; Lu, M.H.; Yeh, C.C.; Yu, J.; Lin, W.C. Predicting microvascular invasion in
hepatocellular carcinoma: A deep learning model validated across hospitals. Cancer Imaging 2021, 21, 56. [CrossRef] [PubMed]

27. Chaitanya, K.; Karani, N.; Baumgartner, C.F.; Erdil, E.; Becker, A.; Donati, O.; Konukoglu, E. Semi-supervised task-driven data
augmentation for medical image segmentation. Med. Image Anal. 2021, 68, 101934. [CrossRef]

28. Graterol, W.; Diaz-Amado, J.; Cardinale, Y.; Dongo, I.; Lopes-Silva, E.; Santos-Libarino, C. Emotion Detection for Social Robots
Based on NLP Transformers and an Emotion Ontology. Sensors 2021, 21, 1322. [CrossRef]

29. Dai, Y.; Gao, Y.; Liu, F. TransMed: Transformers Advance Multi-Modal Medical Image Classification. Diagnostics 2021, 11, 1384.
[CrossRef]

30. Tao, R.; Liu, W.; Zheng, G. Spine-transformers: Vertebra labeling and segmentation in arbitrary field-of-view spine CTs via 3D
transformers. Med. Image Anal. 2022, 75, 102258. [CrossRef]

31. Pacal, I.; Karaboga, D. A robust real-time deep learning based automatic polyp detection system. Comput. Biol. Med. 2021, 134, 104519.
[CrossRef]

32. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic
Segmentation with Transformers. arXiv 2021, arXiv:2105.15203.

33. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. arXiv 2021, arXiv:2103.14030.

34. Czajkowska, J.; Badura, P.; Korzekwa, S.; Płatkowska-Szczerek, A. Automated segmentation of epidermis in high-frequency
ultrasound of pathological skin using a cascade of DeepLab v3+ networks and fuzzy connectedness. Comput. Med. Imaging Graph.
2022, 95, 102023. [CrossRef]

35. Wan, C.; Wu, J.; Li, H.; Yan, Z.; Wang, C.; Jiang, Q.; Cao, G.; Xu, Y.; Yang, W. Optimized-Unet: Novel Algorithm for Parapapillary
Atrophy Segmentation. Front. Neurosci. 2021, 15, 758887. [CrossRef]

36. Gao, F.; Qiao, K.; Yan, B.; Wu, M.; Wang, L.; Chen, J.; Shi, D. Hybrid network with difference degree and attention mechanism
combined with radiomics (H-DARnet) for MVI prediction in HCC. Magn. Reson. Imaging. 2021, 83, 27–40. [CrossRef]

37. Zhou, L.-Q.; Wu, X.-L.; Huang, S.-Y.; Wu, G.-G.; Ye, H.-R.; Wei, Q.; Bao, L.-Y.; Deng, Y.-B.; Li, X.-R.; Cui, X.-W.; et al. Lymph Node
Metastasis Prediction from Primary Breast Cancer US Images Using Deep Learning. Radiology 2020, 294, 19–28. [CrossRef]

38. Paladini, E.; Vantaggiato, E.; Bougourzi, F.; Distante, C.; Hadid, A.; Taleb-Ahmed, A. Two Ensemble-CNN Approaches for
Colorectal Cancer Tissue Type Classification. J. Imaging 2021, 7, 51. [CrossRef]

39. Al Husaini, M.A.S.; Habaebi, M.H.; Gunawan, T.S.; Islam, M.R.; Elsheikh, E.A.A.; Suliman, F.M. Thermal-based early breast cancer
detection using inception V3, inception V4 and modified inception MV4. Neural. Comput. Appl. 2021, 34, 333–348. [CrossRef]

40. Yang, Y.; Zhou, Y.; Zhou, C.; Ma, X. Deep learning radiomics based on contrast enhanced computed tomography predicts
microvascular invasion and survival outcome in early stage hepatocellular carcinoma. Eur. J. Surg. Oncol. 2021, 48, 1068–1077.
[CrossRef]

41. Feng, S.-T.; Jia, Y.; Liao, B.; Huang, B.; Zhou, Q.; Li, X.; Wei, K.; Chen, L.; Li, B.; Wang, W.; et al. Preoperative prediction of
microvascular invasion in hepatocellular cancer: A radiomics model using Gd-EOB-DTPA-enhanced MRI. Eur. Radiol. 2019, 29,
4648–4659. [CrossRef]

http://doi.org/10.1007/s00432-020-03366-9
http://www.ncbi.nlm.nih.gov/pubmed/32852634
http://doi.org/10.1007/s10278-020-00353-x
http://doi.org/10.1002/jmri.27538
http://www.ncbi.nlm.nih.gov/pubmed/33559293
http://doi.org/10.1186/s40644-021-00425-3
http://www.ncbi.nlm.nih.gov/pubmed/34627393
http://doi.org/10.1016/j.media.2020.101934
http://doi.org/10.3390/s21041322
http://doi.org/10.3390/diagnostics11081384
http://doi.org/10.1016/j.media.2021.102258
http://doi.org/10.1016/j.compbiomed.2021.104519
http://doi.org/10.1016/j.compmedimag.2021.102023
http://doi.org/10.3389/fnins.2021.758887
http://doi.org/10.1016/j.mri.2021.06.018
http://doi.org/10.1148/radiol.2019190372
http://doi.org/10.3390/jimaging7030051
http://doi.org/10.1007/s00521-021-06372-1
http://doi.org/10.1016/j.ejso.2021.11.120
http://doi.org/10.1007/s00330-018-5935-8

	Introduction 
	Materials and Methods 
	Patients 
	Imaging Acquisition and Preprocessing 
	Manual ROI Annotation 
	The Construction of the Segmentation Models 
	Transformer-Based Lightweight Design 
	Model Comparison—Swin Transformer 
	Baseline Models 

	The Construction of the MVI Prediction Models 
	The Proposed CNN Model 
	Comparison with Other CNN Models 

	Model Evaluation Indicators 
	Segmentation Models 
	MVI Prediction Models 


	Results 
	Experimental Setup 
	Statistics of Clinical Characteristics 
	Segmentation Results and Model Comparisons 
	MVI Prediction Results and Models Comparison 
	The End-to-End Prediction Pipeline of MVI-Mind 

	Discussion 
	Conclusions 
	References

