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Abstract: The exocyst, an evolutionarily conserved octameric protein complex, mediates tethering of
vesicles to the plasma membrane in the early stage of exocytosis. Arabidopsis Exo70, a subunit of the
exocyst complex, has been found to be involved in plant immunity. Here, we characterize the function
of OsExo70B1 in rice. OsExo70B1 mainly expresses in leaf and shoot and its expression is induced by
pathogen-associated molecular patterns (PAMPs) and rice blast fungus Magnaporthe oryzae (M. oryzae).
Knocking out OsExo70B1 results in significantly decreased resistance and defense responses to
M. oryzae compared to the wild type, including more disease lesions and enhanced fungal growth,
downregulated expression of pathogenesis-related (PR) genes, and decreased reactive oxygen species
accumulation. In contrast, the exo70B1 mutant does not show any defects in growth and development.
Furthermore, OsExo70B1 can interact with the receptor-like kinase OsCERK1, an essential component
for chitin reception in rice. Taken together, our data demonstrate that OsExo70B1 functions as an
important regulator in rice immunity.
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1. Introduction

Plants have evolved two layers of the innate immunity system, pattern-triggered immunity
(PTI) and effector-triggered immunity (ETI), to defend against pathogens [1–4]. In PTI and ETI,
many defense-related proteins must be transported to the suitable sites and then exercise their
function [5,6], which is partly dependent on the secretory trafficking system. In plants, the defense-related
secretory trafficking is associated with three types of membrane vesicles: the trans-Golgi network/early
endosome (TGN/EE), the multivesicular body (MVB), and the exocyst positive organelle (EXPO) [6].

EXPO is uniquely labeled by components of the exocyst complex, an evolutionarily conserved
octameric tethering factor, which mediates post Golgi vesicle fusion with the plasma membrane (PM)
and plays a major role in exocytosis [7–11]. The exocyst complex consists of eight subunits: Sec3,
Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84 [12]. Among them, Exo70 is a key member of the
exocyst complex and has been found to be widely present in yeast, mammals and plants [13,14].
In yeast and mammals, there is one Exo70 gene, while there are multiple copies of Exo70 genes in
plants [15] ranging from 21 to 47 Exo70 members in potatoes, Arabidopsis, Populus trichocarpa,
wheat and rice [16–20]. Exo70 genes have been duplicated independently in the moss, lycophyte and
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angiosperm lineages, and in the subsequent lineage-specific multiplications which are represented by
nine subgroups (Exo70A–Exo70I) [15] and their function ranges from growth, development to biotic
and abiotic stresses [21–28].

In recent years, increased evidence indicates that some exocyst complex members, especially
Exo70 family genes, are involved in plant immunity. For instance, in Arabidopsis, Exo70B2 and
Exo70H1 are upregulated after treatment with the elicitor elf18, and exo70B2 and exo70H1
mutants are more susceptible to Pseudomonas syringae pv. maculicola compared with the wild
type [29]. PUB22-mediated ubiquitination and degradation of Exo70B2 contribute to PAMP-triggered
responses [21]. Exo70B1 is implicated in autophagy-related transport to the vacuole. Loss of function of
Exo70B1 causes reduction in internalized autophagic bodies inside the vacuole [30], along with ectopic
hypersensitive responses [23,30] and enhanced resistance to several pathogens, including the powdery
mildew Golovinomyces cichoracearum, the bacterial pathogen Pseudomonas syringae pv. tomato (Pto)
DC3000, and the oomycete pathogen Hyaloperonospora arabidopsidis Noco2 [23]. Recently, it has been
found that Exo70B1-enhanced disease resistance and cell death in the exo70B1 mutant are dependent
on TIR-NBS2 (TN2) and calcium-dependent protein kinase 5 (CPK5) [23,31]. Moreover, OsSEC3A,
an important subunit of the exocyst complex in rice, participate in rice immunity by interacting with
rice SNAP025-type SNARE protein OsSNAP32 and phosphatidylinositol-3-phosphate (PI(3)P) [32].
Further studies showed that some pathogen effectors can exploit exocyst subunits as host targets to
modulate defense. For instance, Phytophthora infestans RXLR Effector AVR1 binds SEC5 to disturb
vesicle trafficking thereby suppressing host defense [33]. The effector AvrPtoB, an E3 ligase from Pto
DC3000, ubiquitinates Exo70B1 and mediates Exo70B1 degradation [34]. In addition, the effector
AVR-Pii forms a complex with two rice Exo70 proteins, OsExo70F2 and OsExo70F3. Remarkably,
OsExo70F3 was found to be necessary for Pii-dependent resistance [35]. Increased evidence shows that
exocyst complexes play important roles in plant immunity, but the functions and regulation of these
family genes are still largely unknown.

In rice, there are three Exo70B members, OsExo70B1, OsExo70B2 and OsExo70B3 [17],
but their functions are still unknown. Here, we characterize the function of OsExo70B1 in rice.
OsExo70B1 expression level is induced by pathogen-associated molecular patterns (PAMPs) and rice
blast fungus M. oryzae. Then, we generated rice exo70B1 mutants by CRISPER/Cas9 method and we
found that the exo70B1-1 and exo70B1-2 mutants both display enhanced susceptibility to M. oryzae.
Further study indicated that OsExo70B1 interacts with OsCERK1, which is essential for chitin-induced
defenses in plants [36–38]. Our results indicated that OsExo70B1 positively regulates disease resistance
in rice.

2. Results

2.1. Characterization of OsExo70B1

Previous studies indicated that the exocyst subunit Exo70B1 is involved in the immune response
to different pathogens in Arabidopsis thaliana [23,31]. However, the function of Exo70B1 in rice is still
unknown. In order to understand its function, we first examined the expression patterns of OsExo70B1
in different developmental stages using quantitative reverse transcription-PCR (qRT-PCR). As shown
in Figure 1, OsExo70B1 expressed in all tissues tested here, including root, shoot, leaf, panicle, seed and
callus, but it predominantly expressed in the leaf and shoot, then in panicle and seed.

Then, in order to examine the subcellular localization of OsExo70B1, the OsExo70B1 fused with the
green fluorescent protein (GFP) was expressed under the control of the 35S promoter in N. benthamiana
leaves by agrobacterium-mediated genetic transformation. We observed clear fluorescence signals in
the cytoplasm, nucleus, and plasma membrane (PM) (Figure 2), indicating that OsExo70B1 distributed
throughout the whole cell, which is similar to some Exo70 members in Arabidopsis and H. villosa,
such as AtExo70B1, Exo70D1-V and Exo70F2-V [20,39]. Interestingly, OsExo70B1 formed some strong
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dotted fluorescence in the cytoplasm and plasma membrane, which is similar to Exo70A1, Exo70B1
and Exo70E2 in Arabidopsis [24,30,40].
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Figure 1. Expression patterns of OsExo70B1. 

Determination of the expression patterns of OsExo70B1 via qRT-PCR. RNA samples were 
extracted from different tissues of ZH11, including roots, shoots and leaves of three different 
developmental stages, panicles of different length, germinating and mature seeds and callus. Data 
represent the mean and standard deviation of three biological replicates. Three technical replicates 
for each biological sample were used. The asterisk indicates significant differences (* p < 0.05; 
Student’s t-test). 
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Figure 1. Expression patterns of OsExo70B1.

Determination of the expression patterns of OsExo70B1 via qRT-PCR. RNA samples were extracted
from different tissues of ZH11, including roots, shoots and leaves of three different developmental
stages, panicles of different length, germinating and mature seeds and callus. Data represent the mean
and standard deviation of three biological replicates. Three technical replicates for each biological
sample were used. The asterisk indicates significant differences (* p < 0.05; Student’s t-test).
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Confocal microscopy observation of OsExo70B1-GFP in N. benthamiana leaves. The results showed
that OsExo70B1-GFP was expressed in the nucleus, cytoplasm and plasma membrane. Bar = 20 µm.

2.2. Transcription of OsExo70B1 Is Induced by PAMPs and M. oryza

It has been reported that AtExo70B1 regulates immunity in Arabidopsis [21,34,41]. Pathogen-derived
elicitors, often called pathogen-associated molecular patterns (PAMPs), are recognized by
pattern-recognition receptors (PRRs) of hosts, and activate plant immune responses [1–4]. To test
whether Exo70B1 is involved in the immune response regulation in rice, the expression of
OsExo70B1 upon PAMPs treatment was analyzed. When the wild-type ZH11 seedings grew to
four weeks, leaf segments that were 2–3 cm in length were collected and treated with flg22 or chitin,
two well-characterized PAMPs. Then, the expression levels of OsExo70B1 at different time periods
were detected. The results showed that the expression level of OsExo70B1 was significantly increased
after flg22 and chitin treatments (Figure 3A,B). Furthermore, we also detected the transcription levels of
OsExo70B1 after M. oryzae inoculation and found that OsExo70B1 was also upregulated upon M. oryzae
infection (Figure 3C). The results above indicated that the expression of OsExo70B1 is induced by
PAMPs and M. oryzae, revealed its potential roles in rice immunity regulation.
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To further investigate the genetic role of OsExo70B1 in rice immunity, we generated the exo70B1 
mutant by CRISPR-Cas9 methods in the ZH11 background. As shown in Figure S1, we obtained two 
OsExo70B1 allelic mutants, designated exo70B1-1, which has a T base insertion at the 245 position that 
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Figure 3. Transcripts of OsExo70B1 are induced by pathogen-associated molecular patterns (PAMPs)
and M. oryzae. (A) Expression analysis of OsExo70B1 after chitin treatment, with H2O set as a control.
(B) Expression analysis of OsExo70B1 after flg22 treatment, with H2O set as a control. (C) Expression
analysis of OsExo70B1 after M. oryzae inoculation, with H2O set as a control. Data represent the mean
and standard deviation of three biological replicates. Three technical replicates for each biological
sample were used. The asterisk indicates significant differences (* p < 0.05; Student’s t-test).

2.3. Knocking out OsExo70B1 Compromises Plant Resistance to M. oryzae

To further investigate the genetic role of OsExo70B1 in rice immunity, we generated the exo70B1
mutant by CRISPR-Cas9 methods in the ZH11 background. As shown in Figure S1, we obtained two
OsExo70B1 allelic mutants, designated exo70B1-1, which has a T base insertion at the 245 position
that resulted in a code-shift mutation from Pro84, and exo70B1-2, which has a C base insertion at the
145 position that resulted in a code-shift mutation from His49, which are likely to be two loss-of-function
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mutants. Moreover, we also examined the transcripts of OsExo70B1 in both exo70B1-1 and exo70B1-2
mutants. The expression level of OsExo70B1 was not changed in the exo70B1 mutants compared to
the wild type (Figure S2). We then inoculated exo70B1-1, exo70B1-2 and the wild-type plants with the
M. oryzae isolate Guy11. Three days post-inoculation, the exo70B1-1 and exo70B1-2 mutants displayed
enhanced susceptibility and showed more and extended lesions, while the wild-type had only a few
lesions (Figure 4A). Consistent with this, the fungal biomass was accumulated at a higher level in the
infected exo70B1-1 and exo70B1-2 leaves than in the wild type.
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 17 

 
Figure 4. Knocking out Exo70B1 decreased plant resistance to M. oryzae. (A) exo70b1-1 and exo70B1-2 
produced more diseased lesions compared to the wild type after inoculation with Guy11 using the 
spraying method. Bar = 1 cm. (B) Relative fungal amounts as determined by qPCR of the M. oryzae 
Pot2 gene compared to the Ubiquitin gene and compared to ZH11. Data represent the mean and 
standard deviation of three biological replicates. Three technical replicates for each biological sample 
were used. Asterisks represent significant differences (* p < 0.05, Student’s t-test). (C,D) Transcripts of 
OsPR5 and OsPR10 were both significantly downregulated in exo70b1-1 and exo70B1-2 compared to 
the wild type. Data represent the mean and standard deviation of three biological replicates. Three 
technical replicates for each biological sample were used. Asterisks represent significant differences 
relative to wild-type ZH11 plants (* p < 0.05, ** p < 0.01, Student’s t-test). (E) Rice disease lesions caused 
by M. oryzae locally inoculated (105 spores/mL) on leaves of ZH11, exo70B1-1 and exo70B1-1 
complementary plants (CP). Bar = 1 cm. (F) Relative fungal amounts of ZH11, exo70B1-1 and exo70B1-
1 complementary plants (CP). Data represent the mean and standard deviation of three biological 
replicates. Three technical replicates for each biological sample were used. Asterisks represent 
significant differences (* p < 0.05, Student’s t-test). (G,H) Transcripts of OsPR5 and OsPR10 were 

Figure 4. Knocking out Exo70B1 decreased plant resistance to M. oryzae. (A) exo70b1-1 and exo70B1-2
produced more diseased lesions compared to the wild type after inoculation with Guy11 using the
spraying method. Bar = 1 cm. (B) Relative fungal amounts as determined by qPCR of the M. oryzae Pot2



Int. J. Mol. Sci. 2020, 21, 7049 6 of 17

gene compared to the Ubiquitin gene and compared to ZH11. Data represent the mean and standard
deviation of three biological replicates. Three technical replicates for each biological sample were used.
Asterisks represent significant differences (* p < 0.05, Student’s t-test). (C,D) Transcripts of OsPR5 and
OsPR10 were both significantly downregulated in exo70b1-1 and exo70B1-2 compared to the wild type.
Data represent the mean and standard deviation of three biological replicates. Three technical replicates
for each biological sample were used. Asterisks represent significant differences relative to wild-type
ZH11 plants (* p < 0.05, ** p < 0.01, Student’s t-test). (E) Rice disease lesions caused by M. oryzae locally
inoculated (105 spores/mL) on leaves of ZH11, exo70B1-1 and exo70B1-1 complementary plants (CP).
Bar = 1 cm. (F) Relative fungal amounts of ZH11, exo70B1-1 and exo70B1-1 complementary plants
(CP). Data represent the mean and standard deviation of three biological replicates. Three technical
replicates for each biological sample were used. Asterisks represent significant differences (* p < 0.05,
Student’s t-test). (G,H) Transcripts of OsPR5 and OsPR10 were examined in the wild type, exo70B1-1
and the exo70B1-1 complementary plants (CP). Data represent the mean and standard deviation of three
biological replicates. Three technical replicates for each biological sample were used. Asterisks represent
significant differences relative to wild-type ZH11 plants (* p < 0.05, Student’s t-test).

Moreover, we measured the transcription levels of pathogenesis-related genes using qRT-PCR.
OsPR5 and OsPR10, which are known to be involved in the salicylic acid (SA) signaling pathway [42],
were both significantly down-regulated in exo70B1-1 and exo70B1-2 compared to the wild type
(Figure 4C,D).

In addition, we expressed the full-length coding sequence of OsExo70B1 under the control of
the native promoter in the exo70B1-1 mutant. We then used the positive T1 complementary plants,
which were identified by PCR with specific primers before use (Figure S3), for blast resistance analysis.
After inoculating with the M. oryzae isolate Guy11, the complementary transgenic plants of exo70B1-1
were similar to those in the wild type in the lesion area and fungal biomass analysis (Figure 4E,F),
as well as the expression level of OsPR5 and OsPR10 (Figure 4G,H).

Taken together, the results above indicate that knocking out Exo70B1 decreased plant resistance to
M. oryzae in rice.

2.4. Accumulation of H2O2 Is Lower and the Infection Progress Is Faster in exo70B1-1 Mutant Compared to the
Wild Type

Accumulation of H2O2 is a common defense response to M. oryzae in rice [43–45]. To test whether
H2O2 accumulation is different in exo70B1 mutants compared to the wild type, staining of the inoculated
leaf cells with 3,3′-diamino-bezidine (DAB) for H2O2 revealed that the two allelic mutants exo70B1-1
and exo70B1-2 both produced much lower amounts of H2O2 in the inoculated leaf sheath cells than
the wild type (Figure 5). This result suggests that decreased reactive oxygen species (ROS) burst may
be part of the reason why exo70b1-1 and exo70b1-2 mutants display enhanced susceptibility to rice
blast fungus.
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Figure 5. Accumulation of H2O2 is lower in exo70B1-1 and exo70B1-2 mutants compared to the wild
type. (A) DAB (3,3′-diamino-bezidine) staining at infection sites of exo70b1-1, exo70B1-2 and ZH11
plants 2 days post-inoculation (dpi). Darker staining indicates accumulation of H2O2. (B) Relative
amount of H2O2 was calculated based on pixels taken with ImageJ using the following formula:
H2O2 area per rectangle = pixel of H2O2 area per leaf/pixel of rectangle. Data are represented as the
mean ± standard error of mean (SEM). Asterisks represent significant differences (* p < 0.05, Student’s
t-test). Bar = 10 µm.

To gain more insight into how exo70B1-1 mutants are more susceptible to blast fungi compared
to the wild type, the formation and expansion of invasive hyphae in leaf sheath cells were observed
and quantified. Consistent with the decreased disease phenotypes, the infection progress occurred
significantly earlier in exo70B1-1 and exo70B1-2 compared with the wild type (Figure 6). After leaf
sheath injection with the eGFP-tagged M. oryzae strain Zhong1, we found that in ZH11, 41.1% of the
spores of M. oryzae formed appressoria and 58.9% of the spores did not form appressoria at 12 hpi,
while 61.6% of the spores in exo70B1-1 and 56.3% in exo70B1-2 formed appressoria and 38.4% in
exo70B1-1 and 43.7% in exo70B1-2 did not form appressoria. At 24 hpi, only 24.8% of spores formed
invasive hyphae, while the remaining 75.2% of appressoria did not invade cells in ZH11; however,
in exo70B1-1, 76.6% of spores formed infective hyphae, and 23.4% of them expanded into neighbor
cells. Similarly, 65.0% spores formed infective hyphae in exo70B1-2 and 35.0% of them expanded into
neighbor cells. Moreover, 78.3% of the infected hyphae in ZH11 had expanded to neighboring cells,
while 96.1% of infective hyphae in exo70B1-1 and 97.9% in exo70B1-2 had expanded to more adjacent
cells at 48 hpi. In conclusion, the infection progress is significantly faster in the exo70B1-1 mutant
compared to the wild type.
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Figure 6. The infection progress of the enhanced green fluorescent protein (eGFP)-tagged M. oryzae
isolate Zhong1 in exo70B1-1, exo70B1-2 and ZH11 leaf sheath cells at different time periods after
inoculation. (A) Representative laser scanning microscopy images of ZH11, exo70B1-1 and exo70B1-2
leaf sheath cells infected by the eGFP-tagged M. oryzae isolate Zhong1. Bar = 10 µm. (B) Distribution of
fungal infection progression at 12, 24, and 48 hpi. At least 30 single-cell interaction sites were examined
per replication. Each bar represents the mean of three replications. Asterisks represent significant
differences (* p < 0.05, Student’s t-test).
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2.5. Knocking out OsExo70B1 Does Not Alter Plant Architecture or Grain Yield

In Arabidopsis, it has been reported that exo70B1-1 grew normally up to approximately 4 weeks
after germination and then became smaller than the wild type and displayed HR-like cell death
lesions [23,30,41]. Therefore, we also investigated the phenotypes of the rice exo70B1 mutant in growth
and development. As shown in Figure 7, exo70B1-1 and exo70B1-2 grew normally until the ripening
phase (Figure 7A), and no cell death lesions appeared in exo70B1-1 and exo70B1-2 leaves (Figure 7C).
Moreover, exo70B1-1 showed no significant differences in plant height, tiller number, seed size and
grain weight per plant compared to the wild type (Figure 7), indicating that knocking out Exo70B1
does not affect growth and development in rice.
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Figure 7. Growth and development phenotypes of the exo70B1-1 and exo70B1-2 mutants. (A) The plant
architecture of ZH11, exo70B1-1 and exo70B1-2 at the heading stage. Bar = 15 cm. (B) Photograph
of the seeds of ZH11, exo70B1-1 and exo70B1-2. Bar = 1 cm. (C) Photograph of the flag leaf and top
second leaf of the 4-week-old ZH11, exo70B1-1 and exo70B1-2. Bar = 2 cm. (D) The plant height,
tiller number and grain weight per plant of ZH11, exo70B1-1 and exo70B1-2. Each bar represents the
mean of twenty plants.
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2.6. OsExo70B1 Associates with OsCERK1

It has been shown that the exocyst complex plays important roles in vesicle trafficking, specifically
tethering and spatially targeting post-Golgi vesicles to the plasma membrane prior to vesicle fusion.
Recently, Wang et al. showed that Arabidopsis Exo70B1 regulates the trafficking of FLS2, the receptor of
bacterial flagellin, to the PM, thus mediating the immunity responses in Arabidopsis [46]. We speculate
that OsExo70B1 may also be responsible for the membrane location of some defense-related proteins
in rice. As OsCERK1 is a well-characterized receptor-like kinase (RLK) and mediates the signal of
chitin reception by coordinating with a lysin motif (LysM)-containing protein CEBiP [37], we first
performed a split-luciferase complementation imaging (LCI) assay in N. benthamiana. As shown in
Figure 8A, luminescent signals were detected when OsCERK1 was co-transformed with OsExo70B1,
but not with the negative controls. Then, a bimolecular fluorescence complementation (BiFC) assay
also showed that OsExo70B1 can interact with OsCERK1 in the plasma membrane predominantly
(Figure 8B). Taken together, the results above showed that OsExo70B1 associated with OsCERK1 in
BiFC and LCI assays.
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Figure 8. OsExo70B1 associates with OsCERK1. (A) The interaction between OsExo70B1 and OsCERK1
was examined with the split-luciferase complementation assay in N. benthamiana. Co-infiltrated of
OsExo70B1 fused with N-terminus of the Renilla luciferase fragment and OsCERK1 fused with the
C-terminus of the Renilla luciferase fragment in N. benthamiana leaves by agrobacterium tumefaciens
strain GV3101 mediated transformation. At the second day after injection, the infiltrated leaves
were sprayed with 1 mM luciferin and the fluorescence signal was captured by a cooled charge
coupled device (CCD) camera. The combinations of OsExo70B1-CaCC and OsCERK1-EDR2 were
used as the controls. (B) The interaction between OsExo70B1 and OsCERK1 was examined with
the BiFC assay in N. benthamiana. OsExo70B1 and OsCERK1 were fused to the N-terminus of
the yellow fluorescent protein (YFP) fragment (YN) or the C-terminus of the YFP fragment (YC),
respectively, and agrobacterium tumefaciens strain GV3101 containing the indicated construct pairs
were co-infiltrated into N. benthamiana leaves. YFP fluorescence was detected by confocal microscopy.
Bar = 20 µm.

3. Discussion

EXO70B1 is a component of the exocyst complex and belongs to the EXO70 protein subfamily.
In this study, we characterized the expression pattern and function of OsExo70B1 in rice, revealing its
important roles in plant immune response in rice. OsExo70B1 mainly expressed in leaves and its
expression level can be induced by PAMPs and rice blast fungus (Figures 1 and 3). Knocking out
OsExo70B1 resulted in decreased plant resistance to M. oryzae, as well as decreased H2O2 accumulation,
downregulation of PR genes and more fungi growth (Figures 4 and 5). However, we did not observe
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any defects associated with growth and development in exo70B1 mutant (Figure 7), indicating that
OsExo70B1 mainly plays important roles in rice immunity regulation.

Several studies have shown the important roles of Exo70B1 in immune regulation in
Arabidopsis [21,23,30,31,41]. However, there are some differences of Exo70B1 in rice and Arabidopsis.
First, under standard short-day conditions, Arabidopsis exo70B1 mutants grew normally up to 4 weeks
of age. At this time point, exo70B1 plants started to become smaller compared to the wild type,
and displayed hypersensitive response-like cell death after 5 weeks [23,30,41]. However, the rice
exo70B1 mutant grew normally throughout its life cycle and no cell death appeared in its leaves
(Figure 7). Second, Arabidopsis exo70B1 loss-of-function mutants emerged activated defense responses
upon infection and enhanced resistance to fungal, oomycete and bacterial pathogens [23]. By contrast,
knocking out OsExo70B1 compromises plant resistance in rice, and the rice exo70B1 mutants displayed
enhanced susceptibility to M. oryzae. Further study showed that enhanced disease resistance and cell
death in Arabidopsis exo70B1 mutant are dependent on TN2, a truncated TIR-NBS-LRR intracellular
immune receptor. TN2 interacted with Exo70B1 directly, and TN2 transcripts accumulate at much higher
levels in the exo70B1 mutant [23]. TN2 belongs to the TIR-NBS (TN) family, which has 21 members
in Arabidopsis ecotype Col-0 [47], but TIR-NBS-LRR and TIR-NBS proteins are absent from cereal
species, including rice [48], which may explain why no cell death occurred in rice exo70B1 mutant.
Thirdly, Arabidopsis Exo70B1 is reported to be involved in autophagy-related membrane traffic to the
vacuole, and the exo70B1 mutant displays ectopic hypersensitive reaction mediated by salicylic acid
(SA) accumulation, as well as defects in autophagy-related phenotypes [30], but no cell death appeared
in rice exo70B1 mutants, and although we did not examine the autophagy-related phenotypes of rice
exo70B1 mutants, those mutants did not show growth defects, suggesting that there is no defect in
autophagy-related pathways in rice exo70b1 mutants. Therefore, OsExo70B1 may not participate in
autophagy-related membrane traffic in rice or some other proteins, such as OsExo70B2 and OsExo70B3,
function redundantly. In addition, Exo70B1 also participates in ABA mediated stomatal closure
and light-induced stomatal opening in Arabidopsis [24,49]. It would be interesting to know whether
OsExo70B1 is also involved in stomatal opening and closure regulation in rice.

How Exo70B1 functions in plant immunity has been extensively studied in Arabidopsis. It is
reported that RIN4 can recruit Exo70B1 to the plasma membrane and AvrRpt2 can release both RIN4
and Exo70B1 to the cytoplasm, indicating that the localization of Exo70B1 at PM may be required for
plant immunity [39]. The plant U-box-type ubiquitin ligase 18 (PUB18) ubiquitinates and degrades
Exo70B1 in ABA-mediated stomatal movement regulation [24]. Exo70B1 is also ubiquitinated by
bacterial effector AvrPtoB after Pto DC3000 infects Arabidopsis [34]. Furthermore, the activated immune
responses in the Arabidopsis exo70B1 mutant require TN2 and CPK5 [23,31]. Most recently, Wang et al.
(2020) found that both Exo70B1 and Exo70B2 are involved in the regulation of FLS2 accumulation at
the PM. Moreover, Exo70B1 is also responsible for the membrane accumulation of BRI1 and CERK1,
but not of RLK902-GFP, indicating that the exocyst complex subunits can regulate the trafficking of
some defense-related proteins to the PM, thus mediating the immunity responses [46]. In this study,
we detected the interaction between OsExo70B1 and OsCERK1 in LCI and BiFC assays (Figure 8),
suggested that OsExo70B1 may also be involved in rice immunity by affecting the accumulation of
some important PRRs, including OsCERK1, to the plasma membrane. However, the mechanisms
of how OsExo70B1 regulates immunity are still largely unknown. It would be interested to examine
whether OsExo70B1 contributes to the accumulation of OsCERK1 and other receptors of PAMPs at
the PM.

Interestingly, there are only two Exo70B family genes in Arabidopsis, Exo70B1 and Exo70B2,
while there are three Exo70B family genes in rice [17]. In Arabidopsis, Exo70B2 also has been reported to
function in immunity regulation [21,29]. Exo70B2 also contributes to the accumulation of FLS2 at the
PM [46]. However, the FLS2 accumulation level at the PM in the exo70B1-3exo70B2-1 double mutant
was not further reduced relative to that in exo70B1-3 and exo70B2-1 single mutants and Exo70B1 can
form a heterodimer with Exo70B2, indicating that Exo70B1 and Exo70B2 cooperatively function in
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trafficking FLS2 to the PM [46]. In rice, the role of three Exo70B family genes is not studied, and their
functions are still unknown. Here, we showed that OsExo70B1 positively regulates rice immunity.
Though whether OsExo70B2 and OsExo70B3 have a similar function, and whether the three Exo70B
genes function redundantly, still require further studies. In addition, whether the HR-like cell death not
observed in the rice exo70B1 mutant is due to the redundancy of rice Exo70Bs remains to be determined.
It would be interesting to examine the triple mutant of OsExo70B1, OsExo70B2 and OsExo70B3, and the
characterization of the phenotypes of the triple mutants will help us to understand the functions of
Exo70B genes in rice.

Our data collectively indicate the positive regulation roles of OsExo70B1 in rice immunity,
and they may function by mediating the trafficking and enrichment of OsCERK1 on the membrane.
Then OsCERK1 mediated immune responses, including ROS burst and PTI-related defense genes
expression, were activated, which ultimately lead to enhanced disease resistance in rice.

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

Rice and Nicotiana benthamiana (N. benthamiana) plants were used in this study. The exo70B1-1 and
exo70B1-2 mutants were constructed with the CRISPR/Cas9 system in Zhonghua 11 (ZH11) [50],
and the sgRNA for exo70B1-1 is 5′-GATCTCGCAGTTCGTGACGA-3′ and for exo70B1-2 is
5′-GGGACAAACTCTACGCCACG-3′. All rice plants used in this study were grown in paddy fields of
the Fujian Agriculture and Forestry University in Fuzhou, Fujian province, paddy fields of the Institute
of Crop Science in Sanya (China), or a greenhouse at 25–28 ◦C with a 16 h:8 h, light:dark photoperiod.
N. benthamiana plants were growth in a greenhouse at 22 ◦C with 12 h:12 h, light:dark photoperiod.

4.2. Subcell Localization Analysis

The full-length cDNA sequence of OsExo70B1 was amplified and inserted between EcoRI and
SmaI sites of the pCMABIA2300-35S-eGFP vector with an in-fusion PCR cloning kit, thus producing
the 35S-OsExo70B1-eGFP construct. Then, the constructs were transformed into agrobacterium strain
GV3101 and injected into N. benthamiana leaves. A GFP signal was observed and photographed with a
Zeiss 880 confocal microscope at 3 days after injection.

4.3. Construction of Complementary Transgenic Plant of exo70B1-1

To produce the OsExo70B1pro:OsExo70B1-GFP construct, 1511 bp of the OsExo70B1 promoter
sequence, together with the full length of the OsExo70B1 cDNA sequence without the stop codon,
was amplified and inserted between EcoRI and KpnI, and KpnI and SpeI sites of the pCAMBIA2300
vector with in-fusion PCR cloning kit, respectively. Then, the construct was introduced into
Agrobacterium tumefaciens strain EHA105 and then transferred into the exo70B1-1 mutant as described
previously [51].

4.4. Gene Expression Analysis

Total RNA was isolated using TRIzol (Invitrogen) according to the manufacturer’s instructions,
and then was synthetized into cDNA with an RT reagent Kit (code number is RR047A; Takara,
Dalian, China) for qRT-PCR and 1st Strand cDNA Synthesis Kit for RT-PCR (code number is 6110A;
Takara, Dalian, China). All qRT–PCR assays were performed with the Premix Ex TaqKit (code number
is RR420A; TaKaRa, Dalian, China) in a CFX Connect Real-time PCR System (BIO-RAD, Hercules, CA,
USA). RT-PCR assays were performed with the Ex Taq DNA Polymerase (code number is RR001A;
TaKaRa, Dalian, China) in a T100 PCR System (BIO-RAD, Hercules, CA, USA). All of the primers
used here are listed in Supplementary Table S1. qRT-PCR analysis was performed as previously
described [52] with three independent biological replicates.
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4.5. Chitin and flg22 Treatments

Chitin and flg22 treatment assays were performed as described previously [53]. When the wild-type
ZH11 seedings grew to four weeks, the leaf segments that were 2–3 cm in length were collected and
balanced in ddH2O for 12 h, and then they were treated with 1 µM flg22 (synthesized by Sangon
Biotech Co., Ltd., Shanghai, China) or 20 µg/mL chitin (Sigma, St. Louis, MO, USA). The samples were
collected at 6 h and 12 h after treatment for further analysis.

4.6. Rice Blast Fungus Incubation and Rice Sheath Penetration Assay

Blast fungus inoculation and a rice sheath penetration assay were performed as described
previously with minor modification [54,55]. Briefly, two-week-old seedlings were sprayed with a spore
suspension (1 ×105 spores/mL) of the M. oryzae isolate Guy11. The inoculated plants were placed
into dark and humid containers for 24 h. The plants were then transferred to a humidity growth
chamber and grown under a 12 h:12 h, light:dark photoperiod. The disease lesions were examined
and scored at 3 or 4 days after inoculation. The fungal biomass assay was performed as described
previously [42,45,53]. Total DNA was extracted from ten diseased leaves of both ZH11 and exo70B1
mutants, respectively, and then the fungal biomass was calculated by comparing the total DNA of
M. oryzae Pot2, an inverted repeat transposon and represents one of the major repetitive DNAs in
M. oryzae [56], to the Ubiquitin DNA of rice. Moreover, for rice sheath inoculation assays, spores of
Zhong1 tagged with GFP were diluted to a concentration of 1 × 10 5 spores/mL and injected into the
inner leaf sheath of 3-week-old ZH11 plants. Then the inoculated leaf sheaths were incubated in a
dark and humid container at 28 °C. At 12 h, 24 h and 48 h after infection, the fungal growth in rice leaf
sheath cells was observed under a fluorescence microscope.

4.7. DAB Staining

DAB staining was performed as described before [54]. Briefly, the leaf sheaths were immersed in
1 mg/mL DAB (pH = 3.8) at the indicated time after inoculation with M. oryzae. After vacuum infiltration
for 30 min, the samples were incubated at room temperature for 12 h in the dark. When the brown
spots appeared clearly, samples were bleached by boiling in ethanol:lactic acid:glycerol (1:1:1, v/v/v) for
15 min. Images were captured using a microscope with a CCD camera (Olympus BX51, Tokyo, Japan).

4.8. Split-Luciferase Complementation Assay

For the split-luciferase complementation assay, the full-length CDSs of OsExo70B1 and OsCERK1
were amplified with specific primers (Supplementary Table S1) and then cloned into both the KpnI
and SalI sites of NLuc and CLuc vectors, respectively [57], producing the 35Spro-OsExo70B1-NLUC
and 35Spro-OsCERK1-CLUC constructs. Pairs of Agrobacterium tumefaciens GV3101 strains containing
the desired plasmid combinations were co-transformed into 4-week-old N. benthamiana leaves and
incubated in the green room for 72 h. The assay was then performed as previously described [58].
The N. benthamiana leaves were sprayed with 1 mM luciferin and placed in darkness for 5 min.
Subsequently, LUC images were captured with a low-light cooled CCD imaging apparatus.

4.9. Bimolecular Fluorescence Complementation (BiFC) Assay

The BiFC assay was performed as previously described [57]. Briefly, the coding sequences
of OsExo70B1 and OsCERK1 were cloned into pDONR207 ENTRY vector first, and then into the
pSPYNE and pSPYCE vectors respectively, in-frame with the N- and C-terminus of the yellow
fluorescent protein (YFP) with the gateway cloning system, thus producing 35Spro-OsExo70B1-YN
and 35Spro-OsCERK1-YC constructs. Then, agrobacterium strain GV3101 containing the respective
plasmids was injected into the leaves of 4-week-old N. benthamiana plants. YFP signal was detected
with a Zeiss 880 confocal microscope on the third day after injection.
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5. Conclusions

In this study, we characterized the function of OsExo70B1, the subunit of exocyst in rice, revealing its
important roles in plant immune response. Knocking out OsExo70B1 resulted in enhanced susceptibility
to M. oryzae, decreased H2O2 accumulation, and downregulation of PR genes. However, we did not
observe any defects associated with growth and development in exo70B1 mutant, which is in contrast
to the autoimmune phenotypes in Arabidopsis exo70B1 mutant. Moreover, we find OsExo70B1 interacts
with OsCERK1, an essential component for chitin reception in rice. Our findings reveal the positive
roles of OsExo70B1 in rice immunity regulation, as well as the functional differentiation of Exo70B1 in
Arabidopsis and rice.
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7049/s1

Author Contributions: D.T. and S.L. conceived and designed the research. H.H., J.F., J.L. and Z.D. carried out
most of the experiments. S.L., H.H., W.W., D.Y. and D.T. wrote the manuscript. H.H., S.L. and D.T. analyzed the
data. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Natural Science Foundation of Fujian Province (2019J01424) and the
National Natural Science Foundation of China (31761133017).

Acknowledgments: We thank Xuewei Chen and Wenming Wang, who provided M. oryzae isolates Guy11 and
Zhong1 for us.

Conflicts of Interest: The authors declare no conflict of interest.

Gene Accession Numbers

Sequence data from this article can be found in Rice Genome Annotation
Project databases under the following accession numbers:
OsExo70B1 (LOC_Os01g61180)
OsCERK1 (LOC_Os08g425880)
Ubiquitin (LOC_Os03g13170)
Actin (LOC_Os03g50885)
PR5 (LOC_Os03g46070)
PR10 (LOC_Os12g36880)
Pot2 (EMBL accession Z33638)

References

1. Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [CrossRef] [PubMed]
2. Dodds, P.N.; Rathjen, J.P. Plant immunity: Towards an integrated view of plant-pathogen interactions.

Nat. Rev. Genet. 2010, 11, 539–548. [CrossRef] [PubMed]
3. Dangl, J.L.; Horvath, D.M.; Staskawicz, B.J. Pivoting the plant immune system from dissection to deployment.

Science 2013, 341, 746–751. [CrossRef] [PubMed]
4. Wang, W.; Feng, B.; Zhou, J.M.; Tang, D. Plant immune signaling: Advancing on two frontiers. J. Integr.

Plant Biol. 2020, 62, 2–24. [CrossRef] [PubMed]
5. Wang, W.M.; Liu, P.Q.; Xu, Y.J.; Xiao, S. Protein trafficking during plant innate immunity. J. Integr. Plant Biol.

2016, 58, 284–298. [CrossRef]
6. Gu, Y.; Zavaliev, R.; Dong, X. Membrane Trafficking in Plant Immunity. Mol. Plant 2017, 10, 1026–1034.

[CrossRef]
7. Zarsky, V.; Cvrckova, F.; Potocky, M.; Hala, M. Exocytosis and cell polarity in plants—Exocyst and recycling

domains. New Phytol. 2009, 183, 255–272. [CrossRef]
8. Zarsky, V.; Kulich, I.; Fendrych, M.; Pecenkova, T. Exocyst complexes multiple functions in plant cells

secretory pathways. Curr. Opin. Plant Biol. 2013, 16, 726–733. [CrossRef]
9. Pecenkova, T.; Sabol, P.; Kulich, I.; Ortmannova, J.; Zarsky, V. Constitutive Negative Regulation of R Proteins

in Arabidopsis also via Autophagy Related Pathway? Front. Plant Sci. 2016, 7, 260. [CrossRef]
10. Pecenkova, T.; Markovic, V.; Sabol, P.; Kulich, I.; Zarsky, V. Exocyst and autophagy-related membrane

trafficking in plants. J. Exp. Bot. 2017, 69, 47–57. [CrossRef]

http://www.mdpi.com/1422-0067/21/19/7049/s1
http://www.mdpi.com/1422-0067/21/19/7049/s1
http://dx.doi.org/10.1038/nature05286
http://www.ncbi.nlm.nih.gov/pubmed/17108957
http://dx.doi.org/10.1038/nrg2812
http://www.ncbi.nlm.nih.gov/pubmed/20585331
http://dx.doi.org/10.1126/science.1236011
http://www.ncbi.nlm.nih.gov/pubmed/23950531
http://dx.doi.org/10.1111/jipb.12898
http://www.ncbi.nlm.nih.gov/pubmed/31846204
http://dx.doi.org/10.1111/jipb.12426
http://dx.doi.org/10.1016/j.molp.2017.07.001
http://dx.doi.org/10.1111/j.1469-8137.2009.02880.x
http://dx.doi.org/10.1016/j.pbi.2013.10.013
http://dx.doi.org/10.3389/fpls.2016.00260
http://dx.doi.org/10.1093/jxb/erx363


Int. J. Mol. Sci. 2020, 21, 7049 15 of 17

11. Saeed, B.; Brillada, C.; Trujillo, M. Dissecting the plant exocyst. Curr. Opin. Plant Biol. 2019, 52, 69–76.
[CrossRef] [PubMed]

12. Mei, K.; Guo, W. The exocyst complex. Curr. Biol. 2018, 28, R922–R925. [CrossRef] [PubMed]
13. Ma, W.; Wang, Y.; Yao, X.; Xu, Z.; An, L.; Yin, M. The role of Exo70 in vascular smooth muscle cell migration.

Cell Mol. Biol. Lett. 2016, 21, 20. [CrossRef]
14. Cvrckova, F.; Zarsky, V. Old AIMs of the exocyst: Evidence for an ancestral association of exocyst subunits

with autophagy-associated Atg8 proteins. Plant Signal. Behav. 2013, 8, e27099. [CrossRef]
15. Elias, M.; Drdova, E.; Ziak, D.; Bavlnka, B.; Hala, M.; Cvrckova, F.; Soukupova, H.; Zarsky, V. The exocyst

complex in plants. Cell Biol. Int. 2003, 27, 199–201. [CrossRef]
16. Chong, Y.T.; Gidda, S.K.; Sanford, C.; Parkinson, J.; Mullen, R.T.; Goring, D.R. Characterization of the

Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular
localization studies. New Phytol. 2010, 185, 401–419. [CrossRef]

17. Cvrckova, F.; Grunt, M.; Bezvoda, R.; Hala, M.; Kulich, I.; Rawat, A.; Zarsky, V. Evolution of the land plant
exocyst complexes. Front. Plant Sci. 2012, 3, 159. [CrossRef]

18. Tu, B.; Hu, L.; Chen, W.; Li, T.; Hu, B.; Zheng, L.; Lv, Z.; You, S.; Wang, Y.; Ma, B.; et al. Disruption of
OsEXO70A1 Causes Irregular Vascular Bundles and Perturbs Mineral Nutrient Assimilation in Rice. Sci. Rep.
2015, 5, 18609. [CrossRef]

19. Du, Y.; Overdijk, E.J.R.; Berg, J.A.; Govers, F.; Bouwmeester, K. Solanaceous exocyst subunits are involved in
immunity to diverse plant pathogens. J. Exp. Bot. 2018, 69, 655–666. [CrossRef]

20. Zhao, J.; Zhang, X.; Wan, W.; Zhang, H.; Liu, J.; Li, M.; Wang, H.; Xiao, J.; Wang, X. Identification and
Characterization of the EXO70 Gene Family in Polyploid Wheat and Related Species. Int. J. Mol. Sci. 2018,
20, 60. [CrossRef] [PubMed]

21. Stegmann, M.; Anderson, R.G.; Ichimura, K.; Pecenkova, T.; Reuter, P.; Zarsky, V.; McDowell, J.M.; Shirasu, K.;
Trujillo, M. The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP-triggered
responses in Arabidopsis. Plant Cell 2012, 24, 4703–4716. [CrossRef]

22. Drdova, E.J.; Synek, L.; Pecenkova, T.; Hala, M.; Kulich, I.; Fowler, J.E.; Murphy, A.S.; Zarsky, V. The exocyst
complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis. Plant J.
2013, 73, 709–719. [CrossRef]

23. Zhao, T.; Rui, L.; Li, J.; Nishimura, M.T.; Vogel, J.P.; Liu, N.; Liu, S.; Zhao, Y.; Dangl, J.L.; Tang, D. A truncated
NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant. PLoS Genet. 2015,
11, e1004945. [CrossRef]

24. Seo, D.H.; Ahn, M.Y.; Park, K.Y.; Kim, E.Y.; Kim, W.T. The N-Terminal UND Motif of the Arabidopsis
U-Box E3 Ligase PUB18 Is Critical for the Negative Regulation of ABA-Mediated Stomatal Movement
and Determines Its Ubiquitination Specificity for Exocyst Subunit Exo70B1. Plant Cell 2016, 28, 2952–2973.
[CrossRef]

25. Synek, L.; Vukasinovic, N.; Kulich, I.; Hala, M.; Aldorfova, K.; Fendrych, M.; Zarsky, V. EXO70C2 Is a Key
Regulatory Factor for Optimal Tip Growth of Pollen. Plant Physiol. 2017, 174, 223–240. [CrossRef]

26. Vukasinovic, N.; Oda, Y.; Pejchar, P.; Synek, L.; Pecenkova, T.; Rawat, A.; Sekeres, J.; Potocky, M.; Zarsky, V.
Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis.
New Phytol. 2017, 213, 1052–1067. [CrossRef]

27. Kulich, I.; Vojtikova, Z.; Sabol, P.; Ortmannova, J.; Nedela, V.; Tihlarikova, E.; Zarsky, V. Exocyst Subunit
EXO70H4 Has a Specific Role in Callose Synthase Secretion and Silica Accumulation. Plant Physiol. 2018,
176, 2040–2051. [CrossRef]

28. Kulich, I.; Vojtikova, Z.; Glanc, M.; Ortmannova, J.; Rasmann, S.; Zarsky, V. Cell wall maturation of Arabidopsis
trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiol. 2015,
168, 120–131. [CrossRef]

29. Pecenkova, T.; Hala, M.; Kulich, I.; Kocourkova, D.; Drdova, E.; Fendrych, M.; Toupalova, H.; Zarsky, V.
The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. J. Exp. Bot.
2011, 62, 2107–2116. [CrossRef]

30. Kulich, I.; Pecenkova, T.; Sekeres, J.; Smetana, O.; Fendrych, M.; Foissner, I.; Hoftberger, M.; Zarsky, V.
Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to
the vacuole. Traffic 2013, 14, 1155–1165. [CrossRef]

http://dx.doi.org/10.1016/j.pbi.2019.08.004
http://www.ncbi.nlm.nih.gov/pubmed/31509792
http://dx.doi.org/10.1016/j.cub.2018.06.042
http://www.ncbi.nlm.nih.gov/pubmed/30205058
http://dx.doi.org/10.1186/s11658-016-0019-8
http://dx.doi.org/10.4161/psb.27099
http://dx.doi.org/10.1016/S1065-6995(02)00349-9
http://dx.doi.org/10.1111/j.1469-8137.2009.03070.x
http://dx.doi.org/10.3389/fpls.2012.00159
http://dx.doi.org/10.1038/srep18609
http://dx.doi.org/10.1093/jxb/erx442
http://dx.doi.org/10.3390/ijms20010060
http://www.ncbi.nlm.nih.gov/pubmed/30586859
http://dx.doi.org/10.1105/tpc.112.104463
http://dx.doi.org/10.1111/tpj.12074
http://dx.doi.org/10.1371/journal.pgen.1004945
http://dx.doi.org/10.1105/tpc.16.00347
http://dx.doi.org/10.1104/pp.16.01282
http://dx.doi.org/10.1111/nph.14267
http://dx.doi.org/10.1104/pp.17.01693
http://dx.doi.org/10.1104/pp.15.00112
http://dx.doi.org/10.1093/jxb/erq402
http://dx.doi.org/10.1111/tra.12101


Int. J. Mol. Sci. 2020, 21, 7049 16 of 17

31. Liu, N.; Hake, K.; Wang, W.; Zhao, T.; Romeis, T.; Tang, D. CALCIUM-DEPENDENT PROTEIN KINASE5
Associates with the Truncated NLR Protein TIR-NBS2 to Contribute to exo70B1-Mediated Immunity. Plant Cell
2017, 29, 746–759. [CrossRef] [PubMed]

32. Ma, J.; Chen, J.; Wang, M.; Ren, Y.; Wang, S.; Lei, C.; Cheng, Z.; Sodmergen. Disruption of OsSEC3A increases
the content of salicylic acid and induces plant defense responses in rice. J. Exp. Bot. 2018, 69, 1051–1064.
[CrossRef] [PubMed]

33. Du, Y.; Mpina, M.H.; Birch, P.R.; Bouwmeester, K.; Govers, F. Phytophthora infestans RXLR Effector AVR1
Interacts with Exocyst Component Sec5 to Manipulate Plant Immunity. Plant Physiol. 2015, 169, 1975–1990.
[CrossRef] [PubMed]

34. Wang, W.; Liu, N.; Gao, C.; Rui, L.; Tang, D. The Pseudomonas Syringae Effector AvrPtoB Associates With
and Ubiquitinates Arabidopsis Exocyst Subunit EXO70B1. Front. Plant Sci. 2019, 10, 1027. [CrossRef]

35. Fujisaki, K.; Abe, Y.; Ito, A.; Saitoh, H.; Yoshida, K.; Kanzaki, H.; Kanzaki, E.; Utsushi, H.; Yamashita, T.;
Kamoun, S.; et al. Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered
immunity. Plant J. 2015, 83, 875–887. [CrossRef]

36. Kaku, H.; Nishizawa, Y.; Ishii-Minami, N.; Akimoto-Tomiyama, C.; Dohmae, N.; Takio, K.; Minami, E.;
Shibuya, N. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor.
Proc. Natl. Acad. Sci. USA 2006, 103, 11086–11091. [CrossRef]

37. Shimizu, T.; Nakano, T.; Takamizawa, D.; Desaki, Y.; Ishii-Minami, N.; Nishizawa, Y.; Minami, E.; Okada, K.;
Yamane, H.; Kaku, H.; et al. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate
chitin elicitor signaling in rice. Plant J. 2010, 64, 204–214. [CrossRef]

38. Carotenuto, G.; Chabaud, M.; Miyata, K.; Capozzi, M.; Takeda, N.; Kaku, H.; Shibuya, N.; Nakagawa, T.;
Barker, D.G.; Genre, A. The rice LysM receptor-like kinase OsCERK1 is required for the perception of
short-chain chitin oligomers in arbuscular mycorrhizal signaling. New Phytol. 2017, 214, 1440–1446.
[CrossRef]

39. Sabol, P.; Kulich, I.; Zarsky, V. RIN4 recruits the exocyst subunit EXO70B1 to the plasma membrane. J. Exp. Bot.
2017, 68, 3253–3265. [CrossRef]

40. Wang, J.; Ding, Y.; Wang, J.; Hillmer, S.; Miao, Y.; Lo, S.W.; Wang, X.; Robinson, D.G.; Jiang, L.
EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates
cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 2010, 22, 4009–4030. [CrossRef]

41. Stegmann, M.; Anderson, R.G.; Westphal, L.; Rosahl, S.; McDowell, J.M.; Trujillo, M. The exocyst subunit
Exo70B1 is involved in the immune response of Arabidopsis thaliana to different pathogens and cell death.
Plant Signal Behav. 2013, 8, e27421. [CrossRef] [PubMed]

42. Park, C.H.; Chen, S.; Shirsekar, G.; Zhou, B.; Khang, C.H.; Songkumarn, P.; Afzal, A.J.; Ning, Y.; Wang, R.;
Bellizzi, M.; et al. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to
suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell 2012, 24, 4748–4762.
[CrossRef] [PubMed]

43. Shimono, M.; Koga, H.; Akagi, A.; Hayashi, N.; Goto, S.; Sawada, M.; Kurihara, T.; Matsushita, A.;
Sugano, S.; Jiang, C.J.; et al. Rice WRKY45 plays important roles in fungal and bacterial disease resistance.
Mol. Plant Pathol. 2012, 13, 83–94. [CrossRef] [PubMed]

44. Wang, Y.; Wu, J.; Kim, S.G.; Tsuda, K.; Gupta, R.; Park, S.Y.; Kim, S.T.; Kang, K.Y. Magnaporthe oryzae-Secreted
Protein MSP1 Induces Cell Death and Elicits Defense Responses in Rice. Mol. Plant Microbe. Interact. 2016,
29, 299–312. [CrossRef]

45. Li, Y.; Cao, X.L.; Zhu, Y.; Yang, X.M.; Zhang, K.N.; Xiao, Z.Y.; Wang, H.; Zhao, J.H.; Zhang, L.L.; Li, G.B.; et al.
Osa-miR398b boosts H2O2 production and rice blast disease-resistance via multiple superoxide dismutases.
New Phytol. 2019, 222, 1507–1522. [CrossRef]

46. Wang, W.; Liu, N.; Gao, C.; Cai, H.; Romeis, T.; Tang, D. The Arabidopsis exocyst subunits EXO70B1 and
EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytol. 2020, 227, 529–544. [CrossRef]

47. Nandety, R.S.; Caplan, J.L.; Cavanaugh, K.; Perroud, B.; Wroblewski, T.; Michelmore, R.W.; Meyers, B.C.
The role of TIR-NBS and TIR-X proteins in plant basal defense responses. Plant Physiol. 2013, 162, 1459–1472.
[CrossRef]

48. McHale, L.; Tan, X.; Koehl, P.; Michelmore, R.W. Plant NBS-LRR proteins: Adaptable guards. Genome Biol.
2006, 7, 212. [CrossRef]

http://dx.doi.org/10.1105/tpc.16.00822
http://www.ncbi.nlm.nih.gov/pubmed/28351987
http://dx.doi.org/10.1093/jxb/erx458
http://www.ncbi.nlm.nih.gov/pubmed/29300985
http://dx.doi.org/10.1104/pp.15.01169
http://www.ncbi.nlm.nih.gov/pubmed/26336092
http://dx.doi.org/10.3389/fpls.2019.01027
http://dx.doi.org/10.1111/tpj.12934
http://dx.doi.org/10.1073/pnas.0508882103
http://dx.doi.org/10.1111/j.1365-313X.2010.04324.x
http://dx.doi.org/10.1111/nph.14539
http://dx.doi.org/10.1093/jxb/erx007
http://dx.doi.org/10.1105/tpc.110.080697
http://dx.doi.org/10.4161/psb.27421
http://www.ncbi.nlm.nih.gov/pubmed/24389869
http://dx.doi.org/10.1105/tpc.112.105429
http://www.ncbi.nlm.nih.gov/pubmed/23204406
http://dx.doi.org/10.1111/j.1364-3703.2011.00732.x
http://www.ncbi.nlm.nih.gov/pubmed/21726399
http://dx.doi.org/10.1094/MPMI-12-15-0266-R
http://dx.doi.org/10.1111/nph.15678
http://dx.doi.org/10.1111/nph.16515
http://dx.doi.org/10.1104/pp.113.219162
http://dx.doi.org/10.1186/gb-2006-7-4-212


Int. J. Mol. Sci. 2020, 21, 7049 17 of 17

49. Hong, D.; Jeon, B.W.; Kim, S.Y.; Hwang, J.U.; Lee, Y. The ROP2-RIC7 pathway negatively regulates
light-induced stomatal opening by inhibiting exocyst subunit Exo70B1 in Arabidopsis. New Phytol. 2016,
209, 624–635. [CrossRef]

50. Lu, Y.; Ye, X.; Guo, R.; Huang, J.; Wang, W.; Tang, J.; Tan, L.; Zhu, J.K.; Chu, C.; Qian, Y. Genome-wide
Targeted Mutagenesis in Rice Using the CRISPR/Cas9 System. Mol. Plant 2017, 10, 1242–1245. [CrossRef]

51. Hiei, Y.; Ohta, S.; Komari, T.; Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by
Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994, 6, 271–282. [CrossRef]

52. Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.;
Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time
PCR experiments. Clin. Chem. 2009, 55, 611–622. [CrossRef]

53. Wang, J.; Shi, H.; Zhou, L.; Peng, C.; Liu, D.; Zhou, X.; Wu, W.; Yin, J.; Qin, H.; Ma, W.; et al.
OsBSK1-2, an Orthologous of AtBSK1, Is Involved in Rice Immunity. Front. Plant Sci. 2017, 8, 908.
[CrossRef]

54. Yang, C.; Li, W.; Cao, J.; Meng, F.; Yu, Y.; Huang, J.; Jiang, L.; Liu, M.; Zhang, Z.; Chen, X.; et al. Activation of
ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in
rice. Plant J. 2017, 89, 338–353. [CrossRef]

55. Li, Y.B.; Xu, R.; Liu, C.; Shen, N.; Han, L.B.; Tang, D. Magnaporthe oryzae fimbrin organizes actin networks
in the hyphal tip during polar growth and pathogenesis. PLoS Pathog. 2020, 16, e1008437. [CrossRef]

56. Kachroo, P.; Leong, S.A.; Chattoo, B.B. Pot2, an inverted repeat transposon from the rice blast fungus
Magnaporthe grisea. Mol. Gen. Genet. 1994, 245, 339–348. [CrossRef]

57. Chen, H.; Zou, Y.; Shang, Y.; Lin, H.; Wang, Y.; Cai, R.; Tang, X.; Zhou, J.M. Firefly luciferase complementation
imaging assay for protein-protein interactions in plants. Plant Physiol. 2008, 146, 368–376. [CrossRef]

58. Zhao, Y.; Wu, G.; Shi, H.; Tang, D. Receptor-like kinase 902 associates with and phosphorylates
brassinosteroid-signaling kinase1 to regulate plant immunity. Mol. Plant 2019, 12, 59–70. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/nph.13625
http://dx.doi.org/10.1016/j.molp.2017.06.007
http://dx.doi.org/10.1046/j.1365-313X.1994.6020271.x
http://dx.doi.org/10.1373/clinchem.2008.112797
http://dx.doi.org/10.3389/fpls.2017.00908
http://dx.doi.org/10.1111/tpj.13388
http://dx.doi.org/10.1371/journal.ppat.1008437
http://dx.doi.org/10.1007/BF00290114
http://dx.doi.org/10.1104/pp.107.111740
http://dx.doi.org/10.1016/j.molp.2018.10.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Characterization of OsExo70B1 
	Transcription of OsExo70B1 Is Induced by PAMPs and M. oryza 
	Knocking out OsExo70B1 Compromises Plant Resistance to M. oryzae 
	Accumulation of H2O2 Is Lower and the Infection Progress Is Faster in exo70B1-1 Mutant Compared to the Wild Type 
	Knocking out OsExo70B1 Does Not Alter Plant Architecture or Grain Yield 
	OsExo70B1 Associates with OsCERK1 

	Discussion 
	Materials and Methods 
	Plant Materials and Growth Conditions 
	Subcell Localization Analysis 
	Construction of Complementary Transgenic Plant of exo70B1-1 
	Gene Expression Analysis 
	Chitin and flg22 Treatments 
	Rice Blast Fungus Incubation and Rice Sheath Penetration Assay 
	DAB Staining 
	Split-Luciferase Complementation Assay 
	Bimolecular Fluorescence Complementation (BiFC) Assay 

	Conclusions 
	References

