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Describing the trajectories of age-related change for different brain structures has
been of interest in many recent studies. However, our knowledge regarding these
trajectories and their associations is still limited due to small sample sizes and low
numbers of repeated measures. For the present study, we used a large longitudinal
dataset (four measurements over 4 years) comprising anatomical data from a sample
of healthy older adults (N = 231 at baseline). This dataset enables us to gain new

insights about volumetric cortical and subcortical changes and their associations in
the context of healthy aging. Brain structure volumes were derived from T1-weighted

MRI scans using FreeSurfer segmentation tools. Brain structure trajectories were fitted

using mixed models and latent growth curve models to gain information about the mean
extent and variability of decline trajectories for different brain structures as well as the

associations between individual trajectories. On the group level, our analyses indicate
similar linear changes for frontal and parietal brain regions, while medial temporal regions
showed an accelerated decline with advancing age. Regarding subcortical regions,

some structures showed strong declines (e.g., hippocampus), others showed little
decline (e.g., pallidum). Our data provide little evidence for sex differences regarding the
aforementioned trajectories. Between-person variability of the person-specific slopes

(random slopes) was largest in subcortical and medial temporal brain structures. When
looking at the associations between the random slopes from each brain structure,
we found that the decline is largely homogenous across the majority of cortical
brain structures. In subcortical and medial temporal brain structures, however, more

heterogeneity of the decline was observed, meaning that the extent of the decline in one
structure is less predictive of the decline in another structure. Taken together, our study
contributes to enhancing our understanding of structural brain aging by demonstrating

(1) that average volumetric change differs across the brain and (2) that there are regional
differences with respect to between-person variability in the slopes. Moreover, our data
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suggest (3) that random slopes are highly correlated across large parts of the cerebral
cortex but (4) that some brain regions (i.e., medial temporal regions) deviate from
this homogeneity.

Keywords: aging, structural MRI, latent growth curve model, longitudinal data analysis, cortical and subcortical
brain structure trajectories

INTRODUCTION

Growing old is accompanied by physical and cognitive declines.
It is of great importance to know how these declines can be kept
at a minimum so that the quality of life can remain high. By
using brain imaging techniques like magnetic resonance imaging
(MRI), one can observe that the brain does undergo pronounced
changes with aging (Oschwald et al., 2019). Many recent studies
have described aging-related change for different brain structures
(Du et al., 2006; Leonard et al., 2008; Driscoll et al., 2009; Fjell
and Walhovd, 2010; Raz et al., 2010, 2005; Walhovd et al., 2011;
Ziegler et al., 2012; Fjell et al., 2013, 2009; Pfefferbaum et al., 2013;
Storsve et al., 2014; Fraser et al., 2015; Jäncke et al., 2015; Potvin
et al., 2016; Coupé et al., 2017; Narvacan et al., 2017; Vinke et al.,
2018). For most brain structures investigated in these studies,
an average annual volumetric decline ranging between 0.2 and
0.8% has been reported. This volumetric decline comes with
some regional variability, meaning that some brain structures
are more sensitive to age decline than others, with no clear
consensus about which brain region or cortical lobe shows the
largest volumetric losses. Furthermore, the results of these studies
were heterogeneous, whether the aging-related changes differ
between men and women. Besides the extent of decline, many
of the aforementioned studies were also interested in whether
the trajectories of volumetric decline follow linear or non-linear
shapes. Accelerated decline with advancing age has repeatedly
been reported in some subcortical and medial temporal lobe
structures, while the decline of total gray matter volume has
been reported to follow a more linear shape (e.g., Walhovd et al.,
2011; Ziegler et al., 2012; Vinke et al., 2018). In general, however,
the decline patterns of subcortical structures in the last decades
of life seem to be rather diverse (e.g., Walhovd et al., 2011;
Ziegler et al., 2012). Generally, estimates of average trajectories
seem to be quite noisy because information about average
annual decline rates often comes from suboptimal sources, such
as (a) cross-sectional studies (e.g., Fjell and Walhovd, 2010;
Walhovd et al., 2011; Ziegler et al., 2012), (b) longitudinal
studies with only two repeated measures (e.g., Raz et al., 2005;
Fjell et al., 2009; Storsve et al., 2014; Narvacan et al., 2017),
or (3) longitudinal studies that did not separate the between-
subject from the within-subject effects by using between-subject
information in estimation of average trajectories (e.g., Driscoll
et al., 2009; Narvacan et al., 2017; Vinke et al., 2018). Estimation
of average trajectories from cross-sectional data is very noisy
because there is a lot of between-subject variance in these
brain structures. In addition, the estimates may be more easily
biased by other factors (e.g., cohort effects). Secondly, because
longitudinal MRI studies are resource-intensive, the number of
repeated measures usually falls short. This is problematic because

three repeated measures are minimally required to properly
estimate a linear slope model with random intercepts and random
slopes, while four or more repeated measures are preferred
(Muthén and Curran, 1997; Curran et al., 2010). Although there
was already a body of research dedicated to structural brain
changes in aging, data from longitudinal studies with more than
three repeated measures would be beneficial for more accurate
estimation. Lastly, by separating between-subject from within-
subject variances, longitudinal studies result in more precise
estimates for longitudinal changes.

Most of the previous studies (Du et al., 2006; Leonard
et al., 2008; Driscoll et al., 2009; Fjell and Walhovd, 2010;
Walhovd et al., 2011; Ziegler et al., 2012; Fjell et al., 2013,
2009; Pfefferbaum et al., 2013; Storsve et al., 2014; Fraser et al.,
2015; Jäncke et al., 2015; Potvin et al., 2016; Coupé et al., 2017;
Narvacan et al., 2017; Vinke et al., 2018) focused on population
average annual structural brain changes. While these average
structural changes surely are of interest, they provide only a part
of the characterization of aging-related change because aging
affects people differently. Consequently, we would expect that
the changes in brain structure also vary between individuals,
even in healthy aging people. There may be brain structures
that show high variability in the amount of decline between
individuals, while others may show only marginal variability.
Brain structures that show high between-person variability are of
special interest because these structures may be more vulnerable
to environmental factors and lifestyle choices (Raz et al., 2005).
In addition, estimating the associations between the person-
specific brain structure trajectories would provide important
information about the heterogeneity of the aging process in
the brain. By this, we could investigate if a person with a
faster-than-average decline in brain structure A also has a faster-
than-average decline in brain structure B. Associations between
the trajectories of two brain structures can be classified into
level-level, level-change, change-change associations (Oschwald
et al., 2019). A level-level association represents the covariance
parameter between random intercepts, level-change represents
the covariance between random intercepts and random slopes,
and change-change represents the covariance between random
slopes. So far, slope variability of different brain structures
and slope associations between brain structures have only been
described in the study by Raz et al. (2005). The authors reported
similar random slope variability for almost all of the brain
structures they studied. Evidence for an association, however,
was only observed for about one-quarter of the studied slope-to-
slope associations (Raz et al., 2005). In a later study, Raz et al.
(2010) confirmed their previous results regarding slope variability
but did not report any associations between the trajectories
(Raz et al., 2010, 2005). Due to the limited number of repeated
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measures, small sample sizes in combination with wide age
ranges in these two studies, the resulting estimates should be
taken with caution.

Using a longitudinal dataset with four measurement occasions
over the span of 4 years, our main goal therefore was (1) to
provide more information on the average volumetric decline of
lobular and subcortical structures as well as its shape (acceleration
of decline with advancing age) and predictors (e.g., potential sex
differences) and, most importantly, (2) to gain new insights about
the variations of and the associations between person-specific
brain structure trajectories in healthy aging.

MATERIALS AND METHODS

Sample Description
Structural MRI data were taken from the Longitudinal Healthy
Aging Brain Database Project (LHAB; Switzerland) – an ongoing
project conducted at the University of Zurich (Zöllig et al.,
2011). We used data from the first four measurement occasions
(baseline, 1-year follow-up, 2-year follow-up, 4-year follow-
up). For 24 subjects, additional 3-year follow-up data were
collected. The baseline LHAB dataset included 232 participants,
of which 231 had MRI data and were therefore included in
the current analysis (age at baseline: M = 70.8, range = 64–
87; females: 113). At each measurement occasion, participants
completed an extensive battery of neuropsychological and
psychometric cognitive tests and underwent brain imaging. The
brain imaging data was usually acquired in the same week as the
behavioral assessments. Inclusion criteria for study participation
at baseline were age ≥64, right-handedness, fluent German
language proficiency, a score of ≥26 on the Mini Mental State
Examination (MMSE; Folstein et al., 1975), no self-reported
neurological disease of the central nervous system and no
contraindications to MRI. Participation was voluntary and all
participants gave written informed consent in accordance with
the declaration of Helsinki. Self-reported physical and mental
health of the sample at baseline, as measured by the SF-12
(Ware et al., 1996), were 50.9 ± 7.4 (M ± SD) and 54.8 ± 6.3,
respectively, which indicates above-average health compared to
a norm population (Ware et al., 1995). As expected, sample
means for these general health indicators slightly declined over
time, but still indicated above-average health at 4-year follow-up
(physical health score: 50.5 ± 6.9, mental health score: 53.1 ± 8.0,
MMSE = 28.3 ± 1.3). At 4-year follow-up, the structural MRI
dataset still comprised 72% of the baseline sample (N = 166).
The exact attrition pattern is shown in Supplementary Table S1.
We were assuming that the missing mechanism was missing
at random, meaning that - given the covariates and observed
values – missingness should not depend on unobserved values
(Bhaskaran and Smeeth, 2014). By using the normalization of
the age category of 70–90 years for the entire sample, the
mean IQ of the sample was 120.6 (SD = 6.7) at baseline. In
follow-up measurements, the participants achieved on average
similar IQ scores (Jäncke et al., 2019). Finally, acquisition and
processing of MRI data is prone to unwanted influences and
errors. We excluded subjects who had rather large influence

on parameter estimation as indicated by the Cook’s distance
and the loglikelihood contribution of observations (Cook and
Weisberg, 1982; Cook, 1986). These Influence measures were
obtained with latent growth curve models using the time
window approach for the time intervals. Subjects having a Cook’s
distance > 0.5 and a likelihood contribution of < −7.5 or a
Cook’s distance > 1 and a likelihood contribution of < −4 were
excluded. These values were chosen based on visual inspection
of the excluded subjects. Depending on the brain structure, 0
to 4 subjects were excluded. The LHAB sample has been used
in previous publications of our group (e.g., Jäncke et al., 2019;
Oschwald et al., 2019).

Image Acquisition
Magnetic resonance imaging scanning was carried out at the
University Hospital of Zurich on a 3.0T Philips Ingenia scanner
(Philips Medical Systems, Best, Netherlands). T1-weighted
images were recorded with a gradient echo sequence (3D turbo
field echo, 160 sagittal slices, slice thickness = 1 mm, in-plane
resolution = 1 × 1 mm, FOV = 240 × 240 mm, repetition
time = 8.18 ms, echo time = 3.80 ms, flip angle = 8).

Image Processing
FreeSurfer (v5.3, Fischl, 2012) as implemented in the FreeSurfer
BIDS-App (Gorgolewski et al., 2017) was used to obtain
volumetric measurements of cortical and subcortical structures
using the Desikan-Killiany parcellation scheme (Desikan et al.,
2006). As part of our data processing pipeline, the structural
MR images were visually inspected for good SNR and obvious
artifacts (such as motion). In addition, the surfaces, created
by the FreeSurfer software, were carefully visually checked for
gross deviations. Only very few images (N = 24) had to be
excluded from the sample due to insufficient data quality. In
addition, for some images (chosen at random), the surfaces,
created by the FreeSurfer software, were visually checked for
gross deviations.

We deliberately refrained from applying manual correction
of the reconstructed surfaces given that previous research
showed limited applicability of manual corrections (McCarthy
et al., 2015). Furthermore, we believe that manual corrections,
particularly in case of longitudinal structural MRI data, can
bias the images, not only through between-rater discrepancies
but also through inconsistencies in applying corrections
across time points.

The sum of the left and the right hemisphere volumes were
used for each brain structure. We used the sum of the left and
the right hemisphere volumes because we think that the noise
in volumetric MRI data is rather high to quantify more fine-
grained changes between the hemispheres. Over the chosen brain
parcellation, we expect the slopes between the hemispheres to
be highly correlated. Furthermore, by using bi-lateral sums over
both hemispheres, we could reduce the number of variables.
Fewer variables facilitates visualization and pattern detection.
Likewise, to keep the number of variables low, we decided to
focus on volumetric changes, as one of the most important and
widely used structural measures. Additionally, the sole focus on
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volumetric changes in cortical regions facilitates the comparison
with changes seen in subcortical regions.

Statistical Modeling
The trajectories of the brain structures were fitted with linear
random slope models, allowing for person-specific intercepts
and slopes. To separate the between-subject variance from
the within-subject variance, the age predictor was separated
in the age-at-study-entry predictor (entry-age) and in the
time-difference-between-the-baseline-and-the-subsequent-
measurements predictor (slope) (Grimm et al., 2016). Because
there were some small deviations from the planned time interval
between measures for some subjects, we used the exact follow-up
time in the mixed model framework and used a time-window
approach in the latent growth curve framework (Grimm et al.,
2016). The models were slightly modified depending on the
predictors and parameters of interest as described below.

Average population trajectories were fitted with linear random
slope models, which included as predictors: slope, intracranial
volume (ICV), entry-age, (entry-age)2, slope × entry-age, and
slope × ICV interaction. Main parameters of interest were
the slope and the slope × entry-age interaction. These two
parameters determine the average volumetric decline. The
slope × entry-age interaction indicates whether a larger decline
with advancing age at study entry is expected. The expected
volumetric loss over the span of 20 years (starting at age
65 with an updated slope every 4 years until age 85) was
extrapolated from the linear combination of the slope and the
slope × entry-age interaction parameter. Bootstrap was used
to gain information about the variability of these estimates, as
well as about fastest declining brain structures by comparing the
extrapolated volumetric declines between each brain structure to
each other brain structure in a pairwise fashion. A bootstrapped
mass of Region A > Region B was obtained by calculating the
percent of bootstrap samples where the decline in region A was
estimated to be larger than the decline in region B.

To investigate the effect of sex, average trajectories were
fitted for men and women using the same basic model as
described above with additional predictors for sex, sex × entry-
age, (sex × entry-age)2, sex × slope, and sex × slope × entry-age
interactions. Main parameters of interest were the sex × slope and
sex × slope × entry-age interactions, as well as the random slope
variance parameter. The sex × slope and sex × slope × entry-
age interactions quantify the difference between the slopes of
men and the slopes of women. The sex × slope × entry-age
interaction parameter provides information whether one of the
sexes declines faster with advancing age. The random slope
variance parameter quantifies how much individuals deviate
from the average slopes and therefore shows how heterogenous
the decline is in the population.

To evaluate how the decline of brain structures is related to
changes in other brain structures, we fitted associations between
the trajectories of the different brain structures with bivariate
growth models. We applied basically the same (univariate)
model as described in the last paragraph but allowing for
associations between random intercepts, random slopes, and
within-subject errors (at the same time point) between the

models. In this analysis, we were mainly interested in the
correlation between random slopes. Consequently, only these
correlations are reported in the corresponding results section.
The results of other analyzed types of associations are provided
in the Supplementary Figures S8, S9.

We used a time window approach to approximate the exact
time difference between measurements. The number of time
bins and the distances were chosen with a k-median algorithm
implemented in the R package Ckmeans.1d.dp (Wang and Song,
2011). This resulted in eleven time-bins (0, 1.0, 1.1, 2.0, 2.1, 2.2,
3.0, 4.0, 4.1, 4.2, 4.5 years). Models were estimated using Bayesian
estimation with the default priors implemented in Mplus [prior
for variance-covariance matrices of size p ∼ Inverse-Wishart
(0, -p-1), priors for intercepts and slopes ∼ Normal (0,1010)].
This default covariance prior corresponds to a uniform prior on
(-infinity to infinity) for all elements of the covariance matrix
(Asparouhov and Muthén, 2010a). A graphical representation
of the fitted bivariate models is shown in Figure 1. Bayesian
estimation was used (instead of maximum likelihood) because
the estimated random slope variance parameters were very small
(compared to the within-subject error) for some brain structures.
The small random slope parameters may have led to estimation
difficulties in the maximum likelihood framework.

To obtain a simple estimate of the multivariate correlation
structure on which it was possible to do principal component
analysis (PCA), we sampled the plausible values (Asparouhov and
Muthén, 2010b) of the random slopes from each of the bivariate
models, connecting each structure to each other structure. To
obtain just one random slope estimate per person for each
structure, we used the mean of the means from the distributions
of the plausible values of the bivariate models. The random slope
estimates were adjusted for the covariates ICV, sex, and entry-age
using regression. Note that this simple estimate will be biased and
may underestimate or overestimate the correlations. However,
the general covariance pattern should be retained. Visualizing the
principal components may reveal some patterns that might not
be apparent by looking at the bivariate correlations.

Data Scaling
The various brain regions differ in their total size. To put the
amount of volumetric loss on comparable scales between the
different brain structures, each brain structure was divided by
its intercept multiplied by 100 (at an age of 65 years estimated
with linear random slope models including as covariates on the
intercept: ICV (grand mean-centered), entry-age, (entry-age)2.
Using this scaling, the slope parameter corresponds to the annual
percent change of the intercept (at age 65).

Software
The mixed models were fitted with the R package lme4 (v.
1.1-21, Bates et al., 2015). Univariate (for influence measures)
and bivariate latent growth curve models were fitted in Mplus
(v. 8.4, Muthén and Muthén, 1998–2017)1. The R package
MplusAutomation (v. 0.7-3, Hallquist and Wiley, 2018) was used

1https://www.statmodel.com
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FIGURE 1 | Simplified illustration of the used bivariate growth model for two brain structures A and B. i_ = random intercept. s_ = random slope. Not shown are the
included covariates on the intercept and slopes. Also, the separation of the time intervals into eleven time bins from 0 to 4.5 years is not illustrated. The main interest
in our study was on the change-change associations between brain structures. t1: baseline, t2 = 1-year follow-up, t3 = 2-year follow-up, 5 = 4-year follow-up.

to fit the bivariate models in a loop. Principle components were
plotted with the R package factorextra (v. 1.0.5)2.

RESULTS

The raw data trajectories of the different brain structures
are shown Figure 2. Excluded subjects are shown in
Supplementary Figure S1.

Average Volumetric Declines
The expected volumetric declines over the span of
20 years are shown in Figure 3. The expected slopes

2https://CRAN.R-project.org/package=factoextra

were extrapolated from the linear combination of
the slope and the slope × entry-age interaction
parameter, starting at age 65 with an updated slope
every 4 years.

We observed some variability in the average volumetric
decline of brain structures belonging to the frontal, temporal,
and parietal lobe. However, generally, the expected declines
from age 65 to age 85 of these regions seem to be in similar
ranges (ranging from about 12 to 15% for the majority of
structures belonging to the frontal, temporal or parietal lobe).
Slightly smaller volumetric declines were estimated for the lateral
orbitofrontal cortex and medial orbitofrontal cortex (10%),
and the paracentral lobule, rostral middle frontal gyrus and
superior frontal gyrus (∼11%). Slightly larger declines were
estimated for the fusiform gyrus, entorhinal cortex, temporal
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FIGURE 2 | Volumetric brain structure trajectories (sum of left and right hemisphere) colored by sex.
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FIGURE 3 | Expected structural slopes. The expected volumetric loss (of the average volumes at age 65) over the span of 20 years (starting at age 65 with an
updated slope every 4 years until age 85) was extrapolated from the linear combination of the slope and the slope × entry-age interaction parameters.

pole, and transverse temporal gyrus (∼16 to 22%). Of the
occipital regions, the peri-calcarine cortex showed the smallest
decline (8%), followed by the cuneus and lingual gyrus (∼11%).
The lateral occipital cortex showed a similar decline (14%) as
structures of other lobes. Parameter estimates are shown in

Table 1. Pairwise comparisons using bootstrap are shown in
Supplementary Figure S2.

In most of the temporal, frontal, and parietal regions,
an accelerating decline with advancing age was estimated
(slope × entry-age parameter in Table 1). This effect was
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particularly large in the medial temporal lobe regions (fusiform
gyrus, temporal pole, entorhinal cortex, and parahippocampal
gyrus). In frontal and parietal regions, the acceleration was

less pronounced. In these regions, zero was included in
all of the 95% confidence intervals of the slope × entry-
age parameter. In occipital regions, the decline seemed

TABLE 1 | Volumetric changes in % of brain structures average volumes (at age 65) with 95% confidence intervals.

Regions Slope Slope × Entry-Age Loss 20 years Random Slope SD Random
Slope P

value

Sex P
value

Caudal Middle Frontal −0.556 (−0.398, −0.707) −0.010 (0.013, −0.034) −12.726 (−10.593, −14.891) 0.125 (0.008, 0.356) 0.563 0.074

Frontal Pole −0.663 (−0.443, −0.871) −0.010 (0.022, −0.044) −14.831 (−11.681, −18.038) 0.458 (0.197, 0.656) 0.076 0.479

Lateral Orbitofrontal −0.385 (−0.260, −0.508) −0.011 (0.008, −0.031) −9.546 (−7.719, −11.354) 0.108 (0.003, 0.288) 0.887 0.125

Medial Orbitofrontal −0.363 (−0.178, −0.559) −0.015 (0.012, −0.042) −9.726 (−7.288, −12.093) 0.162 (0.007, 0.427) 0.937 0.371

Para-Central −0.533 (−0.376, −0.686) −0.002 (0.019, −0.025) −11.065 (−8.933, −13.215) 0.173 (0.005, 0.360) 0.912 0.044

Pars Opercularis −0.626 (−0.503, −0.751) −0.005 (0.013, −0.024) −13.394 (−11.692, −15.086) 0.154 (0.024, 0.303) 0.347 0.026

Pars Orbitalis −0.737 (−0.597, −0.873) 0.002 (0.023, −0.020) −14.437 (−12.487, −16.419) 0.001 (0.000, 0.291) 1.000 0.367

Pars Triangularis −0.682 (−0.546, −0.812) 0.005 (0.026, −0.016) −12.808 (−10.902, −14.795) 0.212 (0.085, 0.354) 0.003 0.168

Pre-Central −0.631 (−0.486, −0.770) −0.005 (0.016, −0.027) −13.446 (−11.422, −15.498) 0.214 (0.013, 0.373) 0.359 0.051

Rostral Middle Frontal −0.533 (−0.378, −0.690) −0.003 (0.019, −0.027) −11.261 (−9.235, −13.200) 0.043 (0.000, 0.109) 0.633 0.024

Superior Frontal −0.548 (−0.401, −0.691) −0.004 (0.017, −0.026) −11.655 (−9.734, −13.585) 0.178 (0.012, 0.341) 0.342 0.010

Inferior Parietal −0.677 (−0.563, −0.791) −0.008 (0.008, −0.026) −14.904 (−13.277, −16.545) 0.190 (0.011, 0.312) 0.487 0.113

Post-Central −0.627 (−0.502, −0.749) −0.000 (0.017, −0.018) −12.633 (−10.944, −14.291) 0.194 (0.013, 0.338) 0.560 0.630

Pre-Cuneus −0.641 (−0.533, −0.750) −0.015 (0.002, −0.033) −15.256 (−13.451, −17.065) 0.186 (0.012, 0.323) 0.548 0.015

Superior Parietal −0.592 (−0.457, −0.725) −0.008 (0.010, −0.027) −13.117 (−11.419, −14.860) 0.072 (0.013, 0.299) 0.203 0.010

Supra Marginal −0.577 (−0.463, −0.688) −0.014 (0.002, −0.031) −13.769 (−12.304, −15.320) 0.209 (0.023, 0.303) 0.143 0.015

Banks Sup Temporal −0.505 (−0.390, −0.621) −0.020 (−0.001, −0.040) −13.354 (−11.381, −15.374) 0.223 (0.062, 0.341) 0.110 0.019

Entorhinal −0.379 (−0.141, −0.629) −0.062 (−0.027, −0.095) −17.423 (−13.676, −21.288) 0.782 (0.613, 0.965) 3e-06 0.025

Fusiform −0.564 (−0.457, −0.674) −0.029 (−0.012, −0.046) −15.856 (−14.099, −17.708) 0.210 (0.038, 0.328) 0.188 0.206

Inferior Temporal −0.525 (−0.399, −0.647) −0.022 (−0.003, −0.041) −14.035 (−12.156, −15.990) 0.267 (0.099, 0.388) 0.105 0.062

Middle Temporal −0.536 (−0.420, −0.652) −0.017 (−0.001, −0.035) −13.515 (−11.896, −15.192) 0.266 (0.168, 0.353) 0.019 0.069

Para-Hippocampal −0.395 (−0.270, −0.522) −0.036 (−0.015, −0.057) −13.702 (−11.561, −15.930) 0.341 (0.224, 0.445) 0.004 0.033

Superior Temporal −0.660 (−0.535, −0.786) −0.006 (0.011, −0.024) −14.250 (−12.696, −15.852) 0.224 (0.057, 0.341) 0.172 0.021

Temporal Pole −0.545 (−0.357, −0.738) −0.042 (−0.013, −0.073) −17.623 (−14.605, −20.960) 0.598 (0.475, 0.721) 1e-08 0.300

Transverse Temporal −1.206 (−1.032, −1.376) 0.013 (0.038, −0.013) −22.089 (−19.577, −24.551) 0.211 (0.024, 0.422) 0.374 0.004

Cuneus −0.624 (−0.492, −0.758) 0.011 (0.033, −0.012) −10.844 (−8.562, −13.146) 0.213 (0.028, 0.399) 0.152 0.128

Lateral Occipital −0.743 (−0.616, −0.869) 0.006 (0.026, −0.015) −13.958 (−12.028, −15.979) 0.257 (0.103, 0.361) 0.068 0.433

Lingual −0.618 (−0.502, −0.736) 0.006 (0.024, −0.012) −11.457 (−9.581, −13.374) 0.340 (0.245, 0.446) 4e-04 0.101

Peri-calcarine −0.674 (−0.446, −0.899) 0.032 (0.063, 0.003) −8.330 (−5.440, −11.149) 0.490 (0.277, 0.668) 0.016 0.616

Caudal Anterior Cingulate −0.282 (−0.154, −0.407) −0.012 (0.005, −0.030) −7.575 (−5.864, −9.296) 0.005 (0.004, 0.290) 0.992 0.010

Isthmus Cingulate −0.437 (−0.309, −0.566) −0.018 (0.005, −0.041) −11.589 (−9.262, −13.941) 0.328 (0.216, 0.432) 0.002 0.026

Posterior Cingulate −0.544 (−0.415, −0.672) −0.026 (−0.004, −0.047) −15.013 (−12.996, −17.032) 0.200 (0.018, 0.325) 0.457 0.005

Rostral Anterior Cingulate −0.289 (−0.144, −0.439) 0.001 (0.022, −0.022) −5.709 (−3.663, −7.796) 0.021 (0.001, 0.093) 0.900 0.013

Accumbens −1.439 (−1.142, −1.750) 0.007 (0.047, −0.034) −27.643 (−23.398, −32.031) 0.429 (0.105, 0.843) 0.063 0.956

Amygdala −0.383 (−0.250, −0.517) −0.024 (−0.003, −0.043) −11.455 (−9.269, −13.621) 0.481 (0.392, 0.578) 6e-14 0.573

Caudate −0.585 (−0.450, −0.718) 0.021 (0.044, −0.002) −8.305 (−5.956, −10.606) 0.463 (0.385, 0.555) 3e-12 0.568

Hippocampus −0.784 (−0.666, −0.904) −0.040 (−0.018, −0.061) −21.999 (−19.656, −24.339) 0.441 (0.366, 0.518) 1e-13 0.286

Insula −0.499 (−0.374, −0.623) −0.008 (0.011, −0.028) −11.262 (−9.342, −13.373) 0.307 (0.198, 0.423) 0.003 0.016

Pallidum 0.069 (0.161, −0.024) −0.013 (0.003, −0.029) −0.703 (0.991, −2.446) 0.203 (0.065, 0.316) 0.230 0.986

Putamen −0.639 (−0.529, −0.748) 0.031 (0.046, 0.016) −7.850 (−6.318, −9.386) 0.326 (0.254, 0.405) 1e-05 0.697

Thalamus −0.832 (−0.745, −0.920) 0.008 (0.021, −0.006) −15.409 (−14.043, −16.777) 0.240 (0.170, 0.304) 3e-04 0.385

Ventral DC −0.516 (−0.438, −0.593) 0.006 (0.018, −0.006) −9.409 (−8.180, −10.632) 0.210 (0.146, 0.276) 0.001 0.016

Brain Stem −0.411 (−0.362, −0.461) −0.000 (0.007, −0.007) −8.268 (−7.493, −9.028) 0.112 (0.042, 0.164) 0.075 0.607

Cerebellum Cortex −0.494 (−0.418, −0.572) 0.000 (0.012, −0.011) −9.818 (−8.654, −10.960) 0.147 (0.027, 0.219) 0.193 0.827

Slope = expected volumetric annual changes at age 65. Slope × Entry-Age = interaction slope with entry-age. Loss 20 years = expected volumetric loss over the span of
20 years (starting at age 65 with an updated slope every 4 years until age 85) extrapolated from the linear combination of the slope and the slope × entry-age interaction
parameters. Random Slope P value = p-value comparing a random slope model to a random intercept model with a likelihood ratio test. Sex P value = p-value obtained
with a likelihood ratio test comparing a model including a separate slope and a separate slope × entry-age interaction parameter for men and women to a model without
separate parameters.
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more steady (lateral occipital cortex, lingual gyrus) or even
decelerating with advancing age (peri-calcarine cortex, cuneus).
The slope × entry-age parameter estimates are plotted in
Supplementary Figure S3.

Volumetric declines of the subcortical regions were
heterogeneous. The pallidum showed almost no decline (1%),
the putamen and the caudate showed small declines (∼8%), the
amygdala and the insula showed a moderate decline (11%), the
thalamus a slightly larger decline (15%), and the hippocampus
(22%) and the nucleus accumbens (28%) showed a rather large
decline in comparison to other regions. The nucleus accumbens
showed the largest decline of all the observed brain structures,
with a steady decline of about 1.4% per year. The declines of the
hippocampus and the amygdala were clearly accelerating with
advancing age, while the decline of the putamen and caudate was
decelerating with advancing age.

Sex Differences in Trajectories
Given that the estimated total ICV was already included (Table 1,
the x-axis of Supplementary Figure S4), allowing for different
slopes and different slope × entry-age interactions for men and
women did not substantially improve the model fit for most
of the brain structures. We would like to emphasize that using
ICV as covariate usually eliminates most of the sex influences on
brain volume measures (Jäncke et al., 2015, 2019). As expected,
the estimated influence of sex were small in comparison with
the general slopes at age 70 (slope parameter of the y-axis of
Supplementary Figure S4 and Supplementary Table S2). In
sum, the data provide little (or even no) evidence that one of the
sexes declines faster than the other in the examined age range
considering the sample size, the number of comparisons, the
observational nature of the study, and the freedom in modeling
such trajectories.

Random Slope Variances
The estimated random slope variance parameters from the
random slope models (with the following covariates for the slope
parameter: entry-age, total-ICV, sex and sex × entry-age) are
shown in Table 1 and in Supplementary Figure S5. Reliable
(p < 0.05, Table 1) random slope variability was observed in
subcortical regions (amygdala, caudate, hippocampus, putamen,
thalamus, insula), in medial temporal lobe structures and
temporal pole, and in lingual gyrus and peri-calcarine cortex with
random slope standard deviations typically ranging between 0.2
and 0.5%. The largest variability was observed in the entorhinal
cortex (0.8%), followed by the temporal pole (0.6%), followed
by the amygdala, caudate, and hippocampus (∼0.5%). Model
fit (evaluated with the likelihood ratio test) clearly improved
in these regions when including the random slope parameter.
Large variability was further observed in the peri-calcarine cortex,
frontal pole, and nucleus accumbens (∼0.5%). However, the
model fit did not improve clearly for these regions due to large
uncertainty in the estimated random slopes. In most regions
of the frontal lobe, the parietal lobe, and the cingulum the
random slope standard deviation estimate ranged from 0 to
0.2%. Allowing for random slopes did not substantially improve
the model fit in these regions. To illustrate the random slope

variation in the expected annual changes, the estimated random
slopes are plotted alongside the average slopes at an age of
70 years in Figure 4. In frontal and parietal regions, some subjects
were expected to have little decline (∼1%) while others seem to
be clearly declining (∼4%) over the span of 4 years. In regions
with reliable random slope differences (e.g., hippocampus), some
subjects showed almost no decline while others were declining
about twice as fast as the average slope.

Associations Between Random Slopes
Associations between the random slopes were estimated in
bivariate models using Bayesian estimation with the default
priors as provided by Mplus. Figure 5 shows the medians of
the posterior distributions of the correlation parameter between
random slopes from the bivariate models. The exact numbers are
shown in Supplementary Figure S6.

In general, there are strong associations between the random
slopes within and between the frontal, temporal, parietal and to
a lesser extent occipital lobe with estimated correlations typically
ranging between 0.5 and 0.9. However, many estimates are not
reliable because associations between the slopes estimated for
brain structures with little estimated random slope variance
(compared to the within-subject error term) resulted in posterior
distributions with a large variance under the assumed model.
As can be seen in Figure 5, this was the case for a
lot of structures.

There are a few exceptions to this homogenous correlation
pattern. While the entorhinal cortex, parahippocampal gyrus
and temporal pole showed strong and reliable associations with
each other, with the hippocampus, and the amygdala, and strong
but less reliable associations with other regions (the insula,
lateral orbitofrontal and medial orbitofrontal cortex), they were
only weakly correlated with most of the other brain structures.
Regions from the lateral medial orbital and lateral orbitofrontal
cortex showed rather strong but unreliable correlations with
each other and further regions (with the temporal pole, with the
entorhinal cortex, with the amygdala and with the hippocampus),
but weak correlations with most other brain structures. The
peri-calcarine cortex showed moderate correlations with other
occipital structures and rather weak correlations to other
lobe structures.

The correlation pattern involving subcortical structures was in
general more diverse. Amygdala, hippocampus, and to a slightly
lesser extent insula and thalamus, were strongly and reliably
correlated with each other and with temporal lobe structures, but
also quite strongly with most other brain structures. The pallidum
showed weak correlations with other structures. Putamen and
caudate showed strong and reliable correlations with each other
but weak or unreliable correlations with other structures. Nucleus
accumbens stands out of the pattern because it was negatively
correlated with most brain structures. Positive correlations for
the nucleus accumbens were limited to the putamen, caudate and
ventral DC (diencephalon). However, the estimates involving the
nucleus accumbens were unreliable.

To obtain a simple estimate of the multivariate correlation
structure on which it was possible to do PCA, we used the
mean of the means from the plausible values distributions of the

Frontiers in Human Neuroscience | www.frontiersin.org 9 September 2020 | Volume 14 | Article 363

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00363 September 4, 2020 Time: 14:42 # 10

Sele et al. Brain Structure Trajectories in Aging

FIGURE 4 | Estimated person-specific slopes in comparison to the average slope at an age of 70 years. Y-axis represents the% of average volume (at age 65)
change. The random slopes were added to the average slope at an age of 70 years.
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FIGURE 5 | Medians of posterior distributions of correlations between the random slopes of different brain structures. The variance of the posteriors are quite large
for many brain structures (as can indirectly be seen when the median is rather far away from zero, but a substantial mass of the posterior distribution is on the other
side of zero; * indicates a posterior mass on the other side of zero < 0.05, ** corresponds to < 0.005, *** corresponds to < 0.0005).

bivariate models. The estimated multivariate correlation matrix
of these random slope estimates is shown in Supplementary
Figure S7. In general, the correlations were slightly smaller
than the ones estimated in the bivariate models but the pattern
looked similar. This suggests that the explained variance in PCA
may be underestimated, but that the direction of the principle
components was reasonably approximated.

Because the data were on similar scales already through
the scaling by the intercept in each region, we applied the
PCA on the unscaled person-specific slope estimates. The first
principle component explained about 35% of the between-
person variance of the random slopes and can be seen as a
weighted average of most brain regions. It loads strongly on the

entorhinal cortex, temporal pole, hippocampus, and amygdala
because these regions had large random slope variances. The
second principle component (explaining 12% of the slope
variances), separates the entorhinal cortex, the temporal pole and
the nucleus accumbens from most other structures, indicating
that after the general decline has been accounted for, there
is still a lot of variability in our sample in these regions
(Figure 6 and Supplementary Table S3). The third principle
component loads strongly on caudate, and nucleus accumbens,
but also on putamen, entorhinal cortex, peri-calcarine cortex,
and lingual gyrus, and separates these regions from most other
regions (especially amygdala). The fourth component separates
the nucleus accumbens, amygdala, and hippocampus from
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FIGURE 6 | Biplots of the first eight principal components. PCA was applied to the covariance matrix of the expected random slopes.

caudate, frontal pole, and temporal pole. The first 10 principal
components explained already 85% of the 44 (brain structure)
random slope variances.

DISCUSSION

Our study extends the current knowledge about brain structure
trajectories by providing information about healthy aging from
a longitudinal study with four repeated measurements and large
sample size. In addition to describing the average brain volume
trajectories, we put particular emphasis on the variation of the

person-specific trajectories and the associations between the
person-specific trajectories.

Brain Regions With Largest Decline
Previous research presents a heterogeneous picture about which
brain structures are most affected by the volumetric decline
in aging. Frontal and temporal lobes were reported to show
the largest decline in a large sample size study by Vinke et al.
(2018). Other studies report some regional variability in the
average volumetric decline but not a clear preference regarding
largest volumetric losses for one lobe or lobular region, whereby
regions of the occipital lobe were often found to show the
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smallest decline of the lobular regions (Driscoll et al., 2009; Fjell
et al., 2009; Raz et al., 2010, 2005; Pfefferbaum et al., 2013;
Storsve et al., 2014). This is in accordance with our data that
showed some variability in the average decline in regions of
the frontal, temporal and parietal lobes, but in general, these
brain regions showed similar volumetric reductions. Entorhinal
cortex, temporal pole and transverse temporal gyrus showed
slightly larger declines, while half of the regions belonging
to the frontal lobe (lateral and medial orbitofrontal cortex,
paracentral lobule, rostral middle frontal gyrus and superior
frontal gyrus) and regions belonging to the occipital lobe (peri-
calcarine gyrus, cuneus, lingual gyrus) showed slightly smaller
volumetric reductions than other brain structures.

Subcortical brain structures seem to differ most with respect
to their estimated decline trajectories over 20 years. The
hippocampus has often been reported to be one of the brain
regions with the largest decline and with an accelerating decline
with increasing age (Raz et al., 2010, 2005; Fjell et al., 2013,
2009; Narvacan et al., 2017; Vinke et al., 2018). In our data, the
hippocampus showed one of the largest volumetric reductions
of all the observed brain regions, and the decline was clearly
accelerating with advancing age. Further, the amygdala has often
been reported to show an accelerated decline with increasing
age (Fjell et al., 2013, 2009; Narvacan et al., 2017), which is also
consistent with our data.

In our analyses, the nucleus accumbens showed the steepest
decline of all the observed brain structures with no acceleration
with age. While this is in line with the studies by Coupé et al.
(2017) and Fjell et al. (2013), at least one other study proposed an
alternative trajectory shape (U-shaped curve; Vinke et al., 2018).
The putamen and the caudate have been reported to show slight
increases in very old age (Fjell et al., 2013; Coupé et al., 2017).
In our data, the slopes of these two regions (especially of the
putamen) were decelerating with increasing age. The pallidum
showed almost no decline in our study, which was similarly
reported in Narvacan et al. (2017), but which is in contrast to the
large study by Vinke et al. (2018).

Of note, studies differ in their ways of data scaling. We
scaled our data by the average volume at age 65. The percent of
volumetric decline depends on data scaling and on the studied
age range. This complicates direct comparison to other studies.
Another important aspect is that we did not observe subjects
over the span of 20 years but estimated the expected decline over
20 years based on the slope and the slope × entry-age parameters.
The estimates should be less noisy than in cross-sectional studies,
but there is still more noise in these estimates than it would be the
case if subjects had been observed over the span of 20 years.

Sex Differences
Previous studies yielded mixed results regarding the question
of whether men differ from women in their aging trajectories.
Vinke et al. (2018) report statistically significant age × sex
interactions in all studied brain regions. Coupé et al. (2017)
found sex differences in individuals beyond age 70 when using
brain volumes normalized by the ICV. The few studies that
separated the between-subject from the within-subject effects
generally found no or only little evidence for sex differences in

the studied regions (Raz et al., 2010, 2005; Pfefferbaum et al.,
2013; Narvacan et al., 2017). Our analyses, in which ICV was
included as an additional covariate, do not provide convincing
evidence for sex differences in the slopes in almost all studied
brain regions. Based on our data and on previous studies, it
seems that the sex differences in the expected trajectories are
rather small. The estimates, however, may depend on the assumed
model e.g., whether we assume a linear and additive model
including the covariates ICV and sex or whether the brain
regions submitted to the models are normalized by ICV (e.g.,
Narvacan et al., 2017 used both measures). Nevertheless, there
may be other factors, such as different lifestyle choices, which
have a bigger influence on the trajectories (Raz et al., 2010,
2005). We included the sex covariate in the models that were
used to estimate the correlation parameters based on theoretical
considerations, even though they had little or almost no impact
on the estimated correlations.

Random Slope Variances
Quantifying random slope variances of the different brain
structures has not been of major interest in most studies
to date, except for two studies by Raz et al. (2010, 2005).
Reliable random slope variances have been reported in almost
all of their studied regions (except the primary occipital
and the orbital-frontal cortex). However, the random slope
variances in the studies by Raz et al. might have been
overestimated given that a clean separation of the within-
person error from the random slope term is difficult in case
of only two repeated measures (Grimm et al., 2017). Our
data, with four measurement occasions, allow to more precisely
disentangle the within-person error from the random slope
and, thus, lead to more accurate estimates of the random
slope variances.

Evaluating our data, reliable random slope variability was
observed in subcortical regions, in medial temporal structures
and temporal pole, and in lingual gyrus and peri-calcarine cortex.
Because the within-subject error is quite large compared to the
annual volumetric changes and the person-specific variations
thereof, the person-specific slopes and the random slope variance
term were estimated with large uncertainty in a lot of regions.
Therefore, the conclusion that some regions have little random
slope variability and other regions have large variability needs
to be taken with caution. Nevertheless, regions belonging to
the medial temporal cortex (hippocampus, entorhinal cortex,
parahippocampal gyrus), temporal pole, amygdala, and caudate
showed reliable random slope variability, and in the population,
the random slope variance may be rather large. In these regions,
some subjects showed almost no decline while other subjects
were declining twice as fast as the average person. However, such
a variation of the decline rate may be present in most other
brain structures as well, including those with unreliably estimated
random slope variances.

Associations Between Random Slopes
One of the main objectives of this study was to investigate
the associations of the slopes of different brain structures – an
important aspect that was analyzed by Raz et al. (2005), but
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that has not been of much interest since then. In their study,
estimates were mostly positive but also rather small in magnitude.
Reliable associations were only found for 13 of 55 studied slope-
to-slope associations. However, we think that these correlations
were probably underestimated because the correlation estimates
are influenced by the noise of the within-subject error term.
Our data suggest that the slope-to-slope correlation pattern is,
in general, quite homogenous, especially within but also between
most regions of the frontal, temporal and parietal lobe and, to a
lesser extent, of the occipital lobe, while the correlation pattern
of subcortical regions was more diverse. Besides subcortical
structures, there are a few lobular structures that divert this
homogenous correlation pattern. Of special interest are the
entorhinal cortex and the temporal pole, which were strongly
and reliably associated with each other, with the amygdala, with
the hippocampus, and with the insula but showed only weak
correlations with other lobular structures. However, correlations
involving structures with unreliable random slope variances (the
majority of regions of frontal and parietal lobe structures) are
often broad and often substantially overlap zero, even when the
median indicates a large correlation. In the maximum likelihood
estimation framework, these models would often lead to non-
positive definite covariance matrix warnings, which may then be
resolved by setting the random slope variance to zero.

Modeling Considerations
There is a lot of between-subject variability in the size of brain
volumes. Separating the between-subject from the within-subject
effect is important (Grimm et al., 2016). It can be achieved by
separating the age of the participants into the age at the study
entry and the difference from the age at study entry to the age
at subsequent measurements (e.g., as done in Pfefferbaum et al.,
2013). Such an approach was not always applied in previous
longitudinal studies, and it seems to be worth considering it in
further analyses. Aside from this, the estimation of non-linear
trajectories is only reasonable with four or more time points,
which highlights the need for longitudinal studies with more time
points. In our analyses, we refrained from including a quadratic
slope because it would have made the interpretation of the slope
parameters more difficult (e.g., a linear and a quadratic random
slope may cancel each other out in a person) and because the
first and the last measurement were only 4 years apart. Also, four
time points are still at the lower limit to appropriately capture
person-specific trajectories. We are aware that our rather simple
linear models did not capture the true trajectories in great detail,
but we expect them to give a reasonable approximation. Model
fit indices further indicated no grossly miss-specified models.
Further, simpler models are less prone to overfitting. However,
more time points and a longer observational time span would
clearly be beneficial in many ways.

Measurement Error Term and Image
Quality
A large amount of the uncertainty in the random slope variances
and covariances is due to the large within-subject error term.
This within-subject error consists of true deviations from the

assumed linear shape and of the measurement errors related to
the structural MRI scanning procedure (e.g., artifacts) and data
processing. The measurement errors are probably responsible
for the main part of the within-subject variance. Therefore,
the reduction of the measurement errors would substantially
improve estimation. Motion artifacts and deterioration of scan
quality have been proposed to confound estimates attributed
to age effects in cross-sectional studies (Alexander-Bloch et al.,
2016; Ducharme et al., 2016; Rosen et al., 2018; Klapwijk
et al., 2019). Systematic changes in image quality during
repeated measures may also confound parameter estimates in
longitudinal studies. In addition, inclusion of such motion and
scan quality regressors in the models may be able to reduce
the measurement error variance. If no such movement data
were recorded during T1 acquisition then an approximate
movement regressor may be estimated from functional MRI
data acquired during the same scanning session (Alexander-
Bloch et al., 2016). However, we think that the inclusion of
such approximate motion and scan quality regressors are of little
help to improve the estimation of the slope parameters. First,
these approximate regressors are relatively imprecise. Second,
in a longitudinal study, it may be reasonable to assume that
individuals show similar motion and rather a stable image
quality during repeated measures. Finally, inclusion of time
varying regressors that show systematic change may distort
the estimates, making interpretation more difficult. An option
would be to model these regressors as growth processes and
to regress their random intercepts and slopes on the random
intercepts and slopes of the brain structures. We tested this
approach on some brain structures by using the Euler number
as a proxy for image quality (Rosen et al., 2018). Modeling the
Euler number as a growth process, it showed decreases over the
4 years and a slope × entry-age interaction (larger decreases
with advancing entry-age) with unreliable random slopes. The
inclusion of the Euler number as a growth process in the
models lead to slightly higher uncertainty but similar covariance
estimates as in the reported models. The slope × entry-age
interaction estimates were slightly lower in magnitude as in the
reported models. Worthy of note, this approach increases model
complexity by a large amount and may lead to convergence
issues. We conclude from these additional analyses, that the
estimates of this study should be taken with caution, and that
the uncertainty of these estimates might be even higher than our
fitted models propose.

Definition of Healthy Aging
The population of interest in our study was healthy elderly
people, where the definition of “healthy” was based on the
inclusion criteria. It seems clear that there is still a lot of
variability in the term healthy aging. Lifestyle factors (like
physical activity) that may influence the volumetric trajectories
have not been considered in this analysis. For example, there is
some evidence that physical activity positively influences changes
in hippocampal volume (Erickson et al., 2011; Varma et al.,
2015). Pre-symptomatic Alzheimer pathology may influence
trajectories negatively (Fjell et al., 2013). Estimates of brain
structure trajectories − especially about the variability and the

Frontiers in Human Neuroscience | www.frontiersin.org 14 September 2020 | Volume 14 | Article 363

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00363 September 4, 2020 Time: 14:42 # 15

Sele et al. Brain Structure Trajectories in Aging

associations between random slopes − may critically depend on
the definition of healthy aging.

CONCLUSION

Expected volumetric brain region changes, as well as variations
and associations of random slopes, have been described
in this paper. The focus on random slope variations and
associations thereof provided insights into the heterogeneity
of the aging process. We think this is valuable information
that should not be missed when analyzing such data.
Our data present a picture of a rather homogenous aging
process of volumetric brain region changes. Subcortical
regions, medial temporal structures, and the temporal pole
showed reliable random slope variances and a more diverse
correlation pattern. Data from further studies with more
repeated measures and a longer observational time span would
be beneficial.
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