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Prostate cancer is a highly heterogeneous disease, understanding the crosstalk

between complex genomic and epigenomic alterations will aid in developing

targeted therapeutics. We demonstrate that, even though snail family tran-

scriptional repressor 2 (SNAI2) is frequently amplified in prostate cancer, it is

epigenetically silenced in this disease, with dynamic changes in SNAI2 levels

showing distinct clinical relevance. Integrative clinical data from 18 prostate

cancer cohorts and experimental evidence showed that gene fusion between

transmembrane serine protease 2 (TMPRSS2) and ETS transcription factor

ERG (ERG) (TMPRSS2–ERG fusion) is involved in the silencing of SNAI2.

We created a silencer score to evaluate epigenetic repression of SNAI2, which

can be reversed by treatment with DNA methyltransferase inhibitors and his-

tone deacetylase inhibitors. Silencing of SNAI2 facilitated tumor cell prolifera-

tion and luminal differentiation. Furthermore, SNAI2 has a major influence

on the tumor microenvironment by reactivating tumor stroma and creating an

immunosuppressive microenvironment in prostate cancer. Importantly,

SNAI2 expression levels in part determine sensitivity to the cancer drugs dasa-

tinib and panobinostat. For the first time, we defined the distinct clinical rele-

vance of SNAI2 expression at different disease stages. We elucidated how

epigenetic silencing of SNAI2 controls the dynamic changes of SNAI2 expres-

sion that are essential for tumor initiation and progression and discovered that

restoring SNAI2 expression by treatment with panobinostat enhances dasa-

tinib sensitivity, indicating a new therapeutic strategy for prostate cancer.
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1. Introduction

Comprehensively integrated ‘omics’ data provide

insights into the molecular-genetic heterogeneity of

prostate cancer (PC), which contributes to diagnostic,

prognostic, and therapeutic decision-making [1–3].
Genomic alterations in PC include somatic mutations,

gene deletions or amplifications, and chromosomal rear-

rangements, which contribute to different disease stages.

ETS-positive fusion (e.g., TMPRSS2-ERG, TMPRSS2-

ETV1) occurs in more than 60% of primary PCs. SPOP

mutation, the most common recurrent point mutation

in PC [4], which is mutually exclusive of the ETS fusion-

positive subclass [1], occurs in 6–15% of primary PCs.

The deletion or mutation of key tumor suppressors

(e.g., PTEN, p53, CHD1) have been identified as the

drivers of metastatic progression of PC [1,5]. Androgen

receptor (AR) gene amplification, mutation, and splice

variants occur in 60% of castration-resistant PCs, while

DNA repair gene deficiency is a major contributor to

progression in castration-resistant disease [3,6,7]. In a

similar manner to genomic alteration, epigenomic regu-

lation contributes to the complex heterogeneity of PC at

different stages of disease. DNA hypermethylation par-

ticipates in cancer initiation and progression by regulat-

ing genes associated with DNA repair, the cell cycle,

apoptosis, and cell adhesion [8]. Conversely, DNA

hypomethylation is more frequently detected in meta-

static than early-stage PC [9,10].

The crosstalk between genomic and epigenomic alter-

ations could collaboratively establish aberrant precursor

cell populations and differentiation lineage in PC. Epi-

genetic aberrations (e.g., methylation silencing of DNA

repair genes) could cause genetic instability, leading to

carcinogenesis [11]. For example, somatic mutations in

various epigenetic regulators (e.g., KDM6A, KMT2D,

EZH2) in different tumor types have been found to

induce aberrant DNA methylation profiles to promote

cancer progression [12–14]. TMPRSS2-ERG (T2E)

fusion, as the most common genomic alteration in PC,

is associated with distinct DNA methylation profiles, as

opposed to T2E-negative tumors [1,15].

SNAI2 is one of three members of the Snail family of

zinc finger transcription factors. It plays an important

role in developmental biology by regulating adult stem

and progenitor cell function and differentiation in dif-

ferent tissues [16]. For instance, SNAI2 promotes stem

cell function and directs lineage specification through

direct transcriptional repression of luminal differentia-

tion genes [17]. SNAI2 is also a key regulator during

epithelial-to-mesenchymal transition (EMT), which is

an evolutionarily conserved transcriptional program

and contributes significantly to tumor metastasis [18].

Strict regulation of SNAI2 expression is essential for its

key functions in different biological processes. Aberrant

SNAI2 expression has been observed in various cancer

types and possibly predicts poor prognosis in cancer

patients [19].

In this study, we unraveled that SNAI2 is frequently

amplified in PC, while its expression is significantly

decreased. Further, T2E is involved in the epigenetic

silencing of SNAI2, which is essential for aberrant cell

proliferation and luminal differentiation. SNAI2 inter-

acts with the tumor microenvironment by regulating

reactive stroma and tumor-infiltrating immune cell

profiling. Importantly, epigenetic silencing of SNAI2

could induce resistance to the tyrosine kinase SRC

inhibitor dasatinib in PC, while the histone deacetylase

(HDAC) inhibitor LBH589 could enhance dasatinib

resistance by increasing SNAI2 levels.

2. Materials and methods

2.1. Clinical cohort summary

Characteristics of PC patients in the Physicians’

Health Study (PHS) and Health Professionals Follow-

up Study (HPFS) cohorts have been previously

reported [20]. Unless otherwise specified, we will treat

PHS/HPFS as one cohort for this report. An addi-

tional 16 publicly available PC cohorts are summa-

rized in Table S1.

2.2. Cell culture and stable cell lines

The recourse of all cell lines is listed in Table S5. The

ABL cell line was maintained in phenol red-free

RPMI1640 media supplemented with 10% CCS, 2mM L-

glutamine, and 19 antibiotic/antimycotic. RWPE1 cells

were cultured in keratinocyte serum-free medium

(Thermo Fisher Scientific, Waltham, MA, USA). All

other cell lines were maintained in 10% FBS supple-

mented with 2mM of L-glutamine and antibiotic at 37 °C
in 5% CO2. Cells were authenticated by human short

tandem repeat profiling at the MSK Integrated Geno-

mics Operation Core Facility. Stable cells overexpressing

SNAI2 were established as previously reported using

SNAI2 expression and control vectors (Table S2) [20,21].

2.3. RNA analysis, RNA sequencing, and

immunoblotting

Total RNA isolation has previously been described [20].

TaqMan gene expression assays (Applied Biosystems,

Thermo Fisher Scientific, San Francisco, CA, USA)
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were used for relative gene expression (Table S2) by

qRT-PCR. Transcript levels were normalized to levels

of GAPDH transcript. RNA sequencing was performed

by 50million 29 50 bp reads in the MSK Integrated

Genomics Operation Core. RNA sequencing data were

analyzed using Partek Flow (Partek Inc., St. Louis,

MO, USA). Proteins were extracted by RIPA buffer,

and protein concentration was determined by the Brad-

ford method. All antibodies used are listed in Table S2.

2.4. Cell viability and drug synergy assays

After cells were treated with inhibitors (Table S2) for 3–
5 days, cell viability was assessed using the Cell Titer-

Glo luminescent cell viability assay (Promega Corp.,

Madison, WI, USA). Synergies between dasatinib and

LBH589 were evaluated in LAPC4 and ABL cells after

5-day treatment. SynergyFinder was used for the syn-

ergy effect analysis [22]. Distinct drug doses were

applied in two cell lines because of the differing sensitiv-

ity. Drug combination responses were also plotted as

heat maps to determine the therapeutic significance of

the combination by identifying the concentrations at

which the drug combination had maximum effect on PC

cell growth inhibition. The degree of drug synergy was

assessed using SynergyFinder (Tang Laboratory,

University of Helsinki; https://synergyfinder.fimm.fi).

Synergy assays were performed in triplicate. The sum-

mary synergy showed the average response to the drug

combination. A synergy score of less than �10 was con-

sidered antagonistic, a range from �10 to +10 as addi-

tive, and greater than +10 as synergistic.

2.5. Methylation sequencing and data analysis

Genome-wide DNA methylation profiling was per-

formed using the Illumina TruSeq Methyl Capture

EPIC library Prep Kit (Illumina, San Diego, CA,

USA) and NGS technology for genomic DNA

sequencing. Five hundred nanogram genomic DNA

from four PC cells were used for the library prepara-

tion. An LE220-plus Focused-ultrasonicator (Covaris,

Inc., Woburn, MA, USA) was used to shear 500 ng of

genomic DNA. Sequencing libraries were prepared

using the KAPA HyperPrep Kit (Roche Sequencing,

Pleasanton, CA, USA). Postligation cleanup was per-

formed using the TruSeq Methyl Capture EPIC LT

Library Prep Kit (Illumina). After purification, sam-

ples were pooled; equimolar and methylome regions

were captured using EPIC oligos and bisulfite, con-

verted, and amplified with 11 cycles of PCR. Pools

were sequenced on a HiSeq 4000 in a PE100 run, using

the HiSeq 3000/4000 SBS Kit (Illumina).

To process methylation data from the epic methyl

capture assay, we used the BISMARK package to map

the bisulfite reads to the human genome. The BOWTIE2

aligner was used in the mapping step, and we used

v0.23.0 of the BISMARK code. We followed the rec-

ommended workflow as outlined in github.com/

FelixKrueger/Bismark/tree/master/Docs which con-

sisted of the following steps: genome_preparation, Bis-

marck mapping, deduplication, and finally the quantity

of the methylation signal with methylation_extractor.

The data are available from GEO (GSE179214).

2.6. Bioinformatic analysis of clinical cohorts

Data for various clinical cohorts were obtained from

cBioPortal for Cancer Genomics [23], KM plotter [24],

and Oncomine [25]. Heatmaps were generated using

Rv3.4.3 (https://www.R-project.org). Pathway analysis

was performed using gene set enrichment analysis

(GSEA) [26]. Gene scores were calculated with gene

set variation analysis using single-sample GSEA

(ssGSEA) [27]. The abundance of immune cell frac-

tions in each sample was determined using cell type

identification by estimating relative subsets of RNA

transcripts (CIBERSORT) and LM22, a validated

leukocyte gene signature matrix [28].

2.7. Statistical analysis

Results are reported as mean� standard deviation.

Comparisons between groups were performed using an

unpaired two-sided Student’s t-test or Wilcoxon rank-

sum test (P<0.05 was considered significant). Disease-

free survival (DFS) was examined using the Kaplan–
Meier method. Patients were divided into two groups

(upper and lower quartile based on gene expression or

gene signature score), and Kaplan–Meier curves were

generated for each group. The log-rank test was used to

determine significance. Cox proportional hazard regres-

sion was performed, adjusting for clinical and demo-

graphic factors. Statistical analysis was completed using

R version 3.4.3 (https://www.R-project.org).

3. Results

3.1. Amplification and expression of SNAI2

showed correlations with clinical outcomes in

opposite manners

In six PC clinical cohorts, amplification of SNAI2 was

frequently observed in both primary (4%) and meta-

static (13%) disease (Fig. 1A). Copy number alteration
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(CNA) of SNAI2, by either amplification or gain, was

significantly associated with worse overall survival

(OS) in six PC cohorts (Fig. 1B). However, in some

PC cohorts, CNA was observed co-occurring in

SNAI2 and its neighbor genes (e.g., NCOA2 and

MYC; Fig. 1C,D, Fig. S1A,B). The CNA of NCOA2

and MYC was significantly correlated with worse OS

in six PC cohorts (Fig. S1C). These suggested that

whole-arm amplification of chromosome 8q could con-

tribute to the clinical significance, instead of a single

gene like SNAI2.

To determine the clinical significance of SNAI2, we

analyzed the correlation between SNAI2 expression

levels and clinical outcomes. In nine cohorts of PC

patients, SNAI2 expression was significantly decreased

in tumor tissue compared with normal prostate tissue

(Fig. 1E, Fig. S2A,B), and SNAI2 levels were signifi-

cantly reduced in primary tumors of higher Gleason

grade (Fig. 1F, Fig. S2C). Furthermore, in the TCGA

and MSKCC cohorts, low SNAI2 levels were signifi-

cantly associated with worse DFS and progression-free

survival (PFS) (Fig. 1G,H). We further validated the

prognostic significance of SNAI2 levels using the

HPFS/PHS (n=150), two publicly unavailable

cohorts with long-term follow-up for fatal outcomes.

Significantly lower levels of SNAI2 in these cohorts

were correlated with high Gleason score (Ptrend=

0.0031; Fig 1I, left) and an increased risk of lethal dis-

ease (Fig. 1I, right). SNAI2RNA levels in the lowest

quartile, compared with the highest quartile, were

associated with a 3.63 times higher risk of lethal dis-

ease (95% CI, 1.1–6.81). Furthermore, SNAI2 protein

expression is highly correlated with DFS and PFS in

TCGA, but MYC and NCOA2 do not show a signifi-

cant correlation (Fig. S2D–F).
We analyzed the correlation between SNAI2 levels

and OS in 19 cancer types using Kaplan–Meier plot-

ting (Table S3) [24]. High SNAI2 expression was signif-

icantly correlated with worse OS in most cancer types

—except uterine corpus endometrial carcinoma, in

which low SNAI2 was correlated with worse OS. Alto-

gether, reduced SNAI2 expression may contribute to

initiation and progression of PC.

3.2. DNA methylation regulates SNAI2

expression in PC

The inconsistent prognostic significance between CNA

and mRNA expression of SNAI2 led us to analyze the

correlation between CNA and mRNA expression of

SNAI2 in PC. CNA of SNAI2 was not correlated with

SNAI2 RNA expression in multiple PC cohorts (Fig.

S3A,B), indicating that epigenetic regulation of SNAI2

may contribute to SNAI2 silencing. Methylation of the

SNAI2 gene in PC has been reported [29]. We con-

firmed that methylation of SNAI2 was significantly

increased in primary prostate tumors compared to nor-

mal prostate tissue and showed negative correlation

with SNAI2 mRNA in TCGA (r=�0.73, P=3.21e-

85) (Fig. 2A,B). Additionally, the high methylation

and low expression of SNAI2 were positively associ-

ated with higher fraction genome alteration (FGA)

(Fig. S3C,D). Methylation of SNAI2 was detected not

only in primary tumors but also in metastatic tumors

(Fig. 2C,D) [10,30]. It was reported that low expression

of SNAI2 was found in most PC tissue, but higher

SNAI2 expression was detected only in the cancer cell

clusters at the invasion/expansion front [29]. Given the

oncogenic function of SNAI2 in tumor invasion, we

analyzed the SNAI2 levels in defined metastasis types.

Intriguingly, in the MSKCC cohorts, a relatively

higher level of SNAI2 was observed in distant meta-

static tumors than in lymph node metastases (Fig. 2E).

Among the metastatic tumors, significantly higher

levels of SNAI2 were associated with higher Gleason

grade (Gleason Score= 9) and lethality (Fig. 2F).

These results were confirmed in the SU2C/PCF cohort,

which only contains metastatic tumors. SNAI2 levels

were higher in bone metastases than in liver and

lymph node metastases (Fig. 2G, left) and were signifi-

cantly associated with lethality and OS (Fig. 2G,

right). In the Tomlins cohort, SNAI2 levels were

higher in distant metastases than in both lymph node

metastases and primary tumors (Fig. 2H). Together,

these results show that methylation of SNAI2 con-

tributes to decreased SNAI2 expression, and reactivat-

ing SNAI2 may be required for metastatic tumor

progression.

3.3. TMPRSS2-ERG (T2E) fusion regulates

silencing of SNAI2 in PC

Several studies demonstrated that T2E, as the earliest

common fusion event in PC, is correlated with distinct

methylation profiles of wild-type ERG (ERG-WT)

[1,15]. We found that ERG overexpression induced by

T2E was positively correlated with SNAI2 methylation

(r=0.58, P=2.2e-16) and negatively correlated with

SNAI2 mRNA expression (r=�0.38, P=5.1e-08)

(Fig. 3A). ERG-WT tumors exhibited the opposite cor-

relation patterns to T2E tumors. This finding was con-

firmed in the MSKCC and SU2C/PCF cohorts (Fig.

3B).

T2E tumors also exhibited distinct correlation pat-

terns with other ERG targets (e.g., CACNA1D and

NT5C, which are regulated by ERG differently [15]
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(Fig. S4A–D). ERG-WT expression is neglected, but

T2E induces ERG overexpression in PC [31]. To inves-

tigate if ERG levels lead to the distinct regulation

patterns seen in T2E and ERG-WT tumors, we

assessed ERG levels across multiple cancer types (Fig.

S4E). Compared with PC (PRAD cohort), ERG levels
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were higher in kidney cancer (KICH cohort) and com-

parable in breast cancer (BRCA cohort). In both the

BRCA and KICH cohorts, ERG expression was posi-

tively correlated with SNAI2 expression (Fig. 3C), con-

sistent with the reported transcriptional activation role

of ERG [32]. We further confirmed this result in multi-

ple cancer types (Table S4). Taken together, these

results suggest that the distinct regulation of SNAI2 in

T2E tumors may be specific to T2E fusion alteration

but not due to high ERG expression.

The repression of SNAI2 by T2E was validated in

two datasets in which T2E in VCaP cells was inhibited

by either siERG or small molecule (WP1130) [33,34].

SNAI2 expression was significantly increased in VCaP

cells (Fig. 3D,E), while two other reported ERG tar-

gets (PLA1A and KCNS3) were downregulated due to

positive regulation by T2E (Fig. S4F–H). ChIP-Seq

datasets from four studies confirmed the transcrip-

tional or epigenetic repression of SNAI2 by T2E [35–
38]. ERG was proven to bind to the AR binding sites

[38], and knockdown of T2E by siERG in VCaP cells

abolished ERG-specific binding (Peak 1–3) (Fig. 3F),

which overlapped with AR binding to the SNAI2 pro-

moter and enhancer (Fig. 3F, lanes 1–5). We also

observed repressive epigenetic modifiers (e.g., HDAC2,

HDAC3, and EZH2) binding to the same regions with

dihydrotestosterone (DH) treatment (Fig. 3F, lanes 6,

7, 10, 11). Intriguingly, histone methyltransferase,

PRMT5 and EZH2, showed distinct binding prefer-

ence to three ERG-binding regions (Fig. 3F, lanes 8–
11). These findings demonstrated that T2E could

repress SNAI2 expression by recruiting multiple modi-

fiers to SNAI2 gene.

3.4. Identify the potential epigenetic regulators

of SNAI2

Multiple epigenetic modifiers showed anti-correlation

with SNAI2 expression in PC cohorts. They regulate

histone deacetylation (HDAC1, 2, 3, 6), DNA methy-

lation (DNMT1, 3A, 3B), histone methylation

(KDM1A, -4A, -5C, -6A, EZH2, PRMT5), and tran-

scriptional repressors (ERG, FOXA1), but SNAI2

expression is not correlated with AR expression in

either primary (TCGA) or metastatic PC tumors

(SU2C and FHCRC) (Fig. S5A). Accordingly, their

upregulation is significantly associated with clinical

outcomes (FGA signal, OSS, DFS) in both the TCGA

and SU2C cohorts (Fig. 4A,B, Fig. S5B–F). The Silen-

cer score was created to quantify the correlations of

these epigenetic modifiers with SNAI2 expression.

SNAI2-low samples had a high Silencer score in four

cohorts (Fig. 4C). Next, we found that SNAI2

expression was very low in most PC cell lines, except

PC3 and C4-2, compared to normal prostate cells

(e.g., RWPE-1) (Fig. 4D, Fig. S5G). Methylation

sequencing analysis showed significant higher methyla-

tion signal of SNAI2 in the cell lines which express

very low SNAI2, including ABL, LAPC4, and VCaP

cells (Fig. S5H). DNMT inhibitor (5-Aza) and HDAC

inhibitor (LBH589) effectively restored SNAI2 expres-

sion in PC cells (Fig. 4E, Fig. S5I). In addition,

LBH589 treatment did not change MYC and NCOA2

gene expression in ABL and LAPC4 cells (Fig. S5J).

LBH589 showed more potent activation activity than

5-Aza by increasing SNAI2 levels at 15-250-fold, indi-

cating transcriptional repression besides DNA methy-

lation controls SNAI2 expression.

3.5. Silencing of SNAI2 may be essential for

robust tumor cell proliferation in PC

To investigate why SNAI2 is silenced in PC, we

applied GSEA to genes highly enriched for either low

or high SNAI2 levels in both the TCGA (primary

tumor) and SU2C (metastatic tumor) cohorts. The

common enriched gene sets in groups with low SNAI2

in those two cohorts are in the ribosome, excision

repair, and tRAN synthesis pathways (Fig. 5A). In

low-SNAI2 groups in the TCGA cohort, 374 gene sets

were highly enriched in the cell cycle, DNA replica-

tion, DNA repair, and energy metabolism pathways,

which support cell proliferation. Pathway Interaction

Database pathway analysis also confirmed the enrich-

ment of multiple cell cycle-regulated pathways in

groups with low SNAI2 in the TCGA cohort (Fig.

5A, upper panel). In metastatic PC, groups with high

SNAI2 had worse clinical outcomes (Fig. 2D,E). In

the SU2C cohort, 516 gene sets were exclusively

enriched in the high-SNAI2 group; these gene sets

play important roles in tumor invasion and metastasis,

such as focal adhesion, hedgehog, MET, PDGFP, and

integrin signaling (Fig. 5A, lower panel). RUNX2-

regulated targets were also highly enriched in the 516

gene sets. RUNX2 gene expression showed negative

correlation with SNAI2 genes in primary and meta-

static tumors (Fig. S6A). The 109 common gene sets

in both cohorts were mainly enriched in matrix degra-

dation pathways (Table S5). These findings demon-

strate the oncogenic function of SNAI2 to promote

tumor invasion.

As the cell proliferation index, MKI67 showed anti-

correlation with SNAI2 levels in primary PC (Fig. 5B),

but not in metastatic PC (Fig. S6B). In the SNAI2-

inducible cell line models created by Stylianou et al.

[39], SNAI2 was overexpressed with doxycycline
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induction, while SNAI2 levels decreased substantially

when doxycycline was withdrawn for 20 days. We

applied GSEA analysis using datasets from their study.

Consistent with the clinical cohort data, pathways

related to cell proliferation (e.g., cell cycle, E2F

targets, mTOR signaling, and DNA replication) were

inhibited, but hallmark of EMT and angiogenesis were

activated in cells overexpressing SNAI2 (Fig. 5C,

Fig. S6C). The opposite results were observed in

SNAI2 knockdown cells (Fig. S6D). In our PC cell
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lines stably overexpressing SNAI2 (LNCaP, ABL, and

22Rv1), cell proliferation was significantly inhibited

(Fig. 5D, Fig. S6E), while overexpression of SNAI2

induced remarkable cell invasion ability (Fig. S6F).

Thus, we demonstrated that silencing SNAI2 con-

tributes to cell proliferation.

3.6. Silencing of SNAI2 could contribute to

luminal differentiation in PC

The imbalance of the differentiation process leads to

the accumulation of hyper-proliferative differentiated

luminal cancer cells [40,41]. SNAI2 is highly expressed

in basal cells, and inhibition of SNAI2 can increase

luminal cell population [17]. A panel of lineage mark-

ers was assessed in three cohorts (TCGA, DKFN, and

SU2C/PCF). In TCGA and DKFN, all markers except

luminal markers and methylation profiling were highly

concurrent with SNAI2 (Fig. 6A,B). Low levels of

SNAI2 were significantly associated with high disease

stages and Gleason grades in the DKFN cohort

(Fig. S7A,B). Intriguingly, most of the basal and

epithelial markers are expressed at low levels in meta-

static patient tissues with high SNAI2 expression,

while only EMT markers are highly expressed, which

supports the aggressive nature of these tumors (Figs

2E and 6B right). Basal signature was enriched in

patient tissues with high SNAI2 levels and in cells

overexpressing SNAI2 (Fig. 6C) [42], while luminal sig-

nature was enriched in patient tissues with low SNAI2

levels and in SNAI2 knockdown cells (Fig. 6D). Basal

PC cells show stem cell properties [43]; we found the

basal stem cell signature was also highly enriched in

patient tissues with high SNAI2 (Fig. 6E).

Similar to SNAI2, in both the TCGA and MSKCC

cohorts, the methylation status and mRNA level of

most markers tested showed significant correlations

with T2E (Fig. 6F, Fig. S7C). However, these correla-

tions were remarkably attenuated in the SU2C cohort

of metastatic prostate cancer (Fig. S7C). As a tran-

scriptional factor, SNAI2 directly regulates these

markers in SNAI2-inducible cell models (GSE80042)

(Fig. 6G) [39]. Two luminal markers (KRT18 and

KRT19) were significantly repressed by SNAI2 over-

expression (Fig. S7D). Seven basal and epithelial

markers shared the same methylation profile with

SNAI2 (Fig. 6H, upper). Three of them showed signif-

icant correlations with DFS in the TCGA cohort

(Fig. 6H, lower). High levels of FGFR2 were corre-

lated with better DFS in TCGA (Fig. 6H), but with

worse OS in SU2C/PCF (Fig. S7E), due to its role in

metastasis [44]. High MSMB maintained the associa-

tion with better DFS (in TCGA) and OS (in SU2C/

PCF) (Fig. 6H, Fig. S7E). None of the other markers

in the panel showed association with clinical outcomes

(Fig. S7F). These results suggest that T2E, like

SNAI2, may be involved in the regulation of a panel

of lineage markers supporting tumor initiation and

expansion in PC.

3.7. SNAI2 interacts with the tumor

microenvironment in PC

The interplay of the tumor, stromal cells, and immune

system constitutes the tumor microenvironment

[45,46]. The oncogenic function of SNAI2 in PC

metastasis is well established [47,48]; e.g., SNAI2 reac-

tivates tumor stroma to facilitate tumor metastasis

[49]. Gerhauser et al. [41] identified seven distinct

CLICK clusters (abbreviated CC1–7) to distinguish

the molecular subgroups associated with disease pro-

gression. Cluster CC7, which is enriched with a reac-

tive stroma signature, is significantly correlated with

worse clinical outcomes. We assessed the correlation

between SNAI2 expression and CC7 signature in PC

cohorts. Among 86 CC7 genes, 42 are overlapped with

genes highly enriched in groups with high SNAI2

levels in the TCGA and SU2C cohorts (Fig. S8A).

The heat map showed stronger correlation of these 42

CC7 genes with SNAI2 in SU2C than in TCGA (Fig.

7A). Surprisingly, 42 CC7 genes are highly expressed

in the low-SNAI2 group in the DKFN cohort (Fig.

7A), which is clinically significant. The group with low

SNAI2 in the DKFN cohort harbored a similar

aggressive potential as the group with high SNAI2 in

SU2C, although DKFN cohort includes only primary

tumors. This is consistent with the fact that patients

with early-onset PC (in DKFN) are likely to develop a

severe disease course [41]. The ssGSEA with 42-CC7

signature provided quantitative evidence (Fig. 7B). We

confirmed this finding by using two other metastatic

stromal signatures (Fig. 7C, Fig. S8C) [50,51].

Next, CIBERSORT was used to assess the correla-

tion between SNAI2 levels and the tumor immune

microenvironment [28]. In the TCGA cohort, immuno-

suppressive regulatory T cells (Tregs) (P=0.012) and

M2 macrophages (P=0.0077) were more abundant in

tumors with low SNAI2 levels, whereas the infiltration

of antitumor immune plasma cells was significantly

lower in the low-SNAI2 group than in the high-

SNAI2 group (Fig. 7D). In the SU2C/PCF cohort,

tumors with high SNAI2 had significantly more

immunosuppressive M2 macrophages and less antitu-

mor eosinophils than tumors with low SNAI2 levels

(Fig. 7E). The signature scores of the other types of

immune cells with significant difference in these

2461Molecular Oncology 16 (2022) 2451–2469 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Y. Z. Mazzu et al. SNAI2 levels determine dasatinib resistance

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80042


SNAI2
KRT5

KRT14
KRT15
KRT17
FGFR2

TP63
GSTP1
ACTA2
SNAI1
ZEB1
ZEB2

TWIST2
VIM
FN1

CDH1
MSMB

ALDH1A2
LAMB1
MUC1

EPCAM
AR

KRT8

FGA
OSS
DFS

TCGA (mRNA)A
Ba

sa
l

EM
T

Markers

Ep
ith

el
ia

l

KRT18
KRT19Lu

m
in

al

Fraction Genome Altered (FGA)
Overall Survival Status (OSS)
Disease Free Status (DFS)

Expression Heatmap
Methylation Heatmap

0 1
LIVING DECEASED
DiseaseFree Recurred/Progressed

-3 3
0 1

High 
(25%)

Low
 (25%)

MediumSNAI2

C

TCGA (methylation)

D

Months

M
et

hy
la

tio
n

SNAI2
KRT5

KRT17
FGFR2
GSTP1
MSMB

ALDH1A2

SNAI2

TCGA

Ba
sa

l

Markers

Ep
ith

el
ia

l

High (25%) Low (25%) Medium

P = 0.015
 HR(high) = 0.44
 p(HR) = 0.017

FGFR2 MSMB

P = 0.023
 HR(high) = 0.47
 p(HR) = 0.026

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150

P = 0.0083
 HR(high) = 0.43
 p(HR) = 0.01

ALDH1A

D
FS

 (%
)

0 50 100 150 0 50 100 150

High
low

SN
AI

2
KR

T5
KR

T1
4

KR
T1

5
KR

T1
7

FG
FR

2
TP

63
G

ST
P1

AC
TA

2
SN

AI
1

ZE
B1

ZE
B2

TW
IS

T2
VI

M
FN

1
C

D
H

1
M

SM
B

AL
D

H
1A

2
LA

M
B1

M
U

C
1

EP
C

AM
KR

T8
KR

T1
8

KR
T1

9

mRNA

Methylation

mRNA

Methylation

TM
PR

SS
-E

R
G

 F
us

io
n

(–
)

(+
)

Basal EMT Epithelial Luminal

−1−0
.8

−0
.6

−0
.4

−0
.2

00.
2

0.
4

0.
6

0.
8

1

Pearson: P > 0.05

TCGA

DKFN SU2C/PCFTCGA

Tissue Site

Tissue Site Adrenal Bone Liver LN Mixed
Other Soft tissue Prostate

High 
(25%)

Low 
(25%)

Medium

SNAI2
KRT5

KRT14
KRT15
KRT17
FGFR2

TP63
GSTP1
ACTA2
SNAI1
ZEB1
ZEB2

TWIST2
VIM
FN1

CDH1
MSMB

ALDH1A2
LAMB1
MUC1

EPCAM
AR

KRT8

BCR

Ba
sa

l
EM

T

Markers

Ep
ith

el
ia

l

KRT18
KRT19Lu

m
in

al

SNAI2

SNAI2
KRT5
KRT14
KRT15
KRT17
FGFR2
TP63
GSTP1
ACTA2
SNAI1
ZEB1
ZEB2
TWIST2
VIM
FN1
CDH1
MSMB
ALDH1A2
LAMB1
MUC1
EPCAM
KRT8
KRT18
KRT19

BCR Status 0 1 No data
mRNA Expression Heatmap –3 3

DKFN (324) SU2C/PCF (444)
B

AR

High 
(25%)

Low 
(25%)

Medium

KR
T1

7
FG

FR
2

AC
TA

2

SN
AI

1
ZE

B1
VI

M

FN
1

C
D

H
1

M
SM

B

C
D

H
2

SNAI2 o.e.
SNAI2 KO

0.125

0.25

0.5

1

2

4

8

16

R
el

at
iv

e 
m

R
N

A 
le

ve
ls

(v
s 

co
nt

ro
l l

og
2)

Basal EMT Epithelial

GSE80042

Basal signature
Lum

inal signature

High SNAI2 Low SNAI2 High SNAI2 Low SNAI2 High SNAI2 Low SNAI2

SNAI2 o.e SNAI2 KO

Basal signature
Lum

inal signature

SNAI2 o.e Control SNAI KO Conrol

DKFN SU2C/PCFTCGA

High SNAI2 Low SNAI2 High SNAI2 Low SNAI2 High SNAI2 Low SNAI2

Basal stem cell signature

E F

G H

NES:2.08
FDR:0.000

NES:2.66
FDR:0.000

NES:2.07
FDR:0.000

NES:1.1
FDR:0.32

NES:-1.24
FDR:0.2

NES:-1.72
FDR:0.000

NES:2.14
FDR:0.000

NES:1.92
FDR:0.003

NES:1.58
FDR:0.19

NES:2.08
FDR:0.000

NES:-2.05
FDR:0.001

NES:-2.72
FDR:0.000

NES:1.7
FDR:0.000

2462 Molecular Oncology 16 (2022) 2451–2469 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

SNAI2 levels determine dasatinib resistance Y. Z. Mazzu et al.



cohorts are shown in Fig. S8D,E. Therefore, SNAI2

expression is correlated with the immunosuppressive

tumor immune microenvironment in different manners

in primary and metastatic PC, which supports the dis-

tinct clinical relevance of SNAI2 expression at differ-

ent stages of the disease.

3.8. SNAI2 levels is correlated with dasatinib

sensitivity

In the TCGA cohort, tyrosine kinase signaling-related

proteins are highly enriched in high SNAI2 groups

(Fig. S9A), indicating that SNAI2 level could be

Fig. 6. Silencing of SNAI2 contributes to luminal differentiation in PC. (A, B) Lineage marker profiling in three PC cohorts (TCGA, DKFN, and SU2C/

PCF). The heat maps integrated clinical attributes with marker profiling, which was extracted from cBioPortal. (C, D) Basal and luminal signature

analysis in clinical cohorts (C) and cell line models (with SNAI2 overexpression (o.e.) or SNAI2 knockdown) (D). (E) Basal stem cell signature analysis

in three clinical cohorts. (F) Correlation between ERG expression and methylation and mRNA levels of lineage markers in the TCGA cohort. (G) The

effects on lineage marker expression by SNAI2 overexpression or knockdown in PC cells. The dataset was extracted from GSE80042. (H) Methyla-

tion profiling of lineage markers in the TCGA cohort. Three genes of the markers showed correlation with DFS. Time-to-event outcomes were ana-

lyzed using the Kaplan–Meier method and compared via the log-rank test. Patient numbers from each cohort are listed in Table S1.
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Fig. 7. SNAI2 interacts with the tumor microenvironment in PC. (A) Correlation between SNAI2 levels and reactive stromal signature (CC7)

profiling in three clinical cohorts. (B) Correlation between SNAI2 levels and CC7 signature score in the same three clinical cohorts. (C)
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Significance was determined using Wilcoxon’s rank-sum test with Benjamini–Hochberg correction. Figure values represent the mean� SD.
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correlated with tyrosine kinase activity. Analysis of a

dataset (GSE9633) reporting dasatinib sensitivity

among PC cells showed that dasatinib-resistant cells

exhibited a remarkably lower SNAI2 level (Fig. S9B)

[52]. We confirmed that PC3 cells with the highest

SNAI2 level showed the highest sensitivity to dasa-

tinib, compared to other PC cells with low expression

of SNAI2 (Figs 4D and 8A). Dasatinib response signa-

tures that were developed in 23 breast cancer cell lines

were applied to PC cohorts and cell models [53]. A

dasatinib-sensitive signature was highly enriched in PC

tissue with high SNAI2 and cells overexpressing

SNAI2, while a dasatinib-resistant signature was

enriched in tissue with low SNAI2 and SNAI2 knock-

down cells (Fig. 8B,C). The dasatinib-sensitive signa-

ture can be simplified as a 6-gene signature [53], five of

which are highly correlated with SNAI2 levels in three

cell line datasets (Fig. 8D, Fig. S9C,D) [52–54]. These
observations were confirmed in both the TCGA and

SU2C cohorts (Fig. 8E). Intriguingly, the five genes

(CAVIN1, EPHA2, CAV2, CAV1, ANXA1) were

directly regulated by overexpressing SNAI2 (Fig. 8F,

Fig. S9E), suggesting SNAI2 is the driver of dasatinib

sensitivity. Overexpressing SNAI2 in LNCaP signifi-

cantly increased the sensitivity to dasatinib, compared

to untreated control cells (Fig. S9F), while knockdown

of SNAI2 reduced dasatinib sensitivity in both PC3

and C4-2 cells in which SNAI2 levels were high

(Fig. S9G,H).

In the Barretina cell line dataset, 250 cancer cell

lines were used to test panobinostat (LBH589) sensi-

tivity [55]. All the LBH589-sensitive cells showed sig-

nificant low expression of dasatnib-sensitive signature

and SNAI2 (Fig. 8G). Other basal genes (TP63,

GSTP1, KRT5) and EMT genes (SNAI1, VIM)

showed much less or no significance to LBH589 sensi-

tivity (Fig. 8G). Consistently, PC3 cells, as the

dasatinib-sensitive PC cells, show the least sensitivity

to LBH589 (Fig. S9I). We revealed LBH589 signifi-

cantly induced SNAI2 expression (Fig. 4E), suggesting

that LBH589 may change dasatinib resistance. Syner-

gistic effects between dasatinib and LBH589 were

evaluated in LAPC4 and ABL cells, which are resis-

tant to dasatinib. SynergyFinder analysis showed

strong synergistic effects in the combination of drugs.

The average of ZIP synergy score for dasatinib is

12.75 in LAPC4 and 11.88 in ABL, and the most syn-

ergistic area score is 20.3 (LAPC4) and 17.2 (ABL)

(Fig. 8H,I). In LAPC4, 2.5 µM dasatinib induced a

3.35% cell growth inhibition, while 1.6 nM LBH589

induced 2.99% growth inhibition. The combination

of these two doses inhibited cell growth 27.24%

(Fig. S9H, left). These results were confirmed in

ABL cells (Fig. S9I, right). In addition, LBH589

treatment significantly induced expression of the

dasatinib-sensitive gene signature, which could be the

mechanism behind the synergistic effects (Fig. 8J).

Altogether, we demonstrated that SNAI2 level

affects dasatinib sensitivity, and LBH589 can

enhance dasatinib sensitivity by increasing SNAI2

and other 5-gene dasatinib-sensitive signatures in PC.

4. Discussion

Genomic and epigenomic alterations collaboratively

contribute to the heterogeneity seen in PC. In this

study, we defined the mechanisms behind the silencing

of SNAI2 in PC, which provided a perfect example of

how the crosstalk between genomic and epigenomic

alterations control PC initiation and progression. We

revealed that T2E is involved in the silencing of

SNAI2 and may be essential for aberrant tumor cell

proliferation and luminal differentiation. Importantly,

for the first time, we unraveled that SNAI2 levels can

determine sensitivity to dasatinib.

SNAI2 requires strict regulation of its expression

and activity in tissues, given its broad biological func-

tions [56]. Our analysis suggests that SNAI2 expression

holds distinct clinical significance at different stages of

PC, indicating a dynamic change of SNAI2 levels dur-

ing disease initiation and progression (Fig. 2A–H). The

hallmark of primary tumors is highly proliferative,

which is supported by silencing of SNAI2. However,

the hallmark of metastatic tumors is highly invasive

with slow proliferation, supported by activation of

SNAI2. The SNAI2-inducible cell lines established by

Stylianou et al. [39] were ideal cell models to investi-

gate SNAI2 function during different disease stages.

SNAI2 overexpression was induced for 5 days to

mimic the EMT process (which represented metastasis

initiation), while SNAI2 expression was silenced for

20 days to mimic the MET (mesenchymal–epithelia–
transition) process (which represented colonization

after successful metastatic dissemination). GSEA anal-

ysis supported our hypothesis that silencing of SNAI2

was essential for cell proliferation and activation of

SNAI2-promoted cell invasion.

Our clinical cohort analysis showed relatively higher

SNAI2 levels in distant metastatic tissues than in

lymph node metastases, suggesting the dynamic

changes in SNAI2 expression during tumor progres-

sion. Esposito et al. [29] reported reactivated SNAI2

at the edge of high-grade PC tumors by IHC staining,

suggesting that reactivation of SNAI2 occurs in only

a small proportion of the cell population, which is

sufficient for development of distant metastases.
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Fig. 8. SNAI2 levels determine dasatinib sensitivity. (A) Dasatinib sensitivity in six PC cell lines. Cell viability was detected after dasatinib

treatment for 5 days. (B, C) Dasatinib-sensitive and resistant signature enrichments in clinical cohorts (B) and cell line models (with SNAI2

overexpression or knockdown) (C). Dasatinib response signatures were used for GSEA analysis using datasets extracted from TCGA/SU2C

cohorts and GSE80042. (D, E) 5-gene signature plus SNAI2 profiling in breast cancer (Huang cell lines) (D) and PC (TCGA, SU2C) cohorts

(E). (F) Regulation of a 5-gene signature by overexpressing SNAI2 in ABL cells. Gene expression was detected by qRT-PCR. (G) The

dasatinib-sensitive signature profiling in a Barretina cell line dataset. Three basal markers (KRT5, GSTP1, TP63) and two EMT markers (VIM,

SNAI1) were used as negative control of dasatinib-sensitive signature in the profiling. (H, I) Synergy assays for the combination of dasatinib

and LBH589 in LAPC4 (H) and ABL (I) cells. Cells’ viability was detected after 5 days of treatment with drugs. SynergyFinder was used to

calculate the ZIP synergy score. ZIP > 10 suggested a synergistic effect. (J) The effects of LBH589 treatment on a 5-gene signature in

LAPC4 and ABL cells. Gene expression was detected after one day of LBH589 treatment by qRT-PCR. Figure values represent the mean�
SE of three independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001 vs. control groups infected with empty vector (EV) or treated with

DMSO.
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Methylation of SNAI2 is strongly maintained in

metastatic PC (Fig. 2C), and T2E-repressing SNAI2

may be required for colonization of metastatic cells,

as T2E was negatively correlated with SNAI2 expres-

sion in the SU2C/PCF (metastatic) cohort. RUNX2-

related genes were highly enriched in the group with

high SNAI2 in SU2C (Fig. 5A). The transcriptional

repression of SNAI2 by FOXA1 could be attenuated

by the reduction of FOXA1 in metastatic PC [57].

RUNX2, as the key transcription factor in bone

development, transcriptionally activates SNAI2 [58].

RUNX2 showed significant positive correlation with

SNAI2 expression in PC clinical cohorts (Fig. S6A),

indicating RUNX2 could be a driving force in acti-

vating SNAI2 during the development of bone metas-

tasis. AR and RUNX2 could coactivate SNAI2 in PC

cells, but in clinical cohorts, only positive correlation

was observed between RUNX2 and SNAI2. Further-

more, AR is highly expressed in luminal-type PC

cells, but SNAI2 is expressed in basal-type PC cells.

Interestingly, a recent study has reported that defi-

ciency of SNAI2 in PC patients is correlated with bet-

ter response to AR-targeting therapies [59]. Therefore,

whether and how AR regulates SNAI2 in PC patients

remains to be determined. Epigenetic control of tran-

scriptional regulation could determine dynamic change

of SNAI2 expression to contribute to PC initiation

and progression.

Based on our understanding of the mechanisms and

function of SNAI2 silencing in PC, our further study

revealed that SNAI2 level is the key to dasatinib sensi-

tivity. The 5-gene dasatinib-sensitive signature was a

direct target of SNAI2 in PC. There are 15 clinical tri-

als evaluating dasatinib efficacy in PC. Although the

benefit of using dasatinib for bone-related disease has

been confirmed, PC patients generally do not respond

well to this agent. Our study proposed a mechanism

of resistance: SNAI2 silencing in most cases of PC

could cause the lack of response to dasatinib. We

found that LBH589 effectively enhances dasatinib sen-

sitivity at least partially by markedly increasing SNAI2

levels.

Intriguingly, we revealed that cancer cells resis-

tant to dasatinib are sensitive to LBH589. A phase II

clinical trial using a combination of LBH589 and bica-

lutamide, an AR inhibitor, in patients with castration-

resistant PC showed significantly better PFS than with

either drug alone [60]. Significant activation of SNAI2

by LBH589 could promote progression in castration-

resistant disease. Our finding may provide a potential

therapeutic strategy to prevent this disadvantage by

adding dasatinib to the HDAC and AR inhibitor com-

bination.

5. Conclusion

In summary, we integrated clinical cohort analysis

with experimental validation to elucidate: (a) the dis-

tinct clinical relevance of SNAI2 at different disease

stages; (b) that T2E-regulated epigenetic silencing may

contribute to dynamic changes in SNAI2 levels in PC;

(c) that silencing of SNAI2 is required for cell prolifer-

ation and luminal differentiation; (d) that SNAI2

interacts with the tumor microenvironment by activat-

ing stroma and increasing immunosuppressive immune

cell abundance; (e) that restoring SNAI2 expression by

HDAC inhibition reverses dasatinib resistance. Our

findings proposed a drug resistance mechanism and

developed a novel strategy to increase the benefit of

dasatinib in patients with PC.
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