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A B S T R A C T   

Nitrophenols, which are defined as an important toxic and carcinogenic pollutant in agricultural 
and industrial wastewater due to their solubility in water, form of resistance against all organisms 
in water resources. It is vital that these compounds, which are highly toxic as well as highly 
explosive, are removed from the aquatic ecosystem. In this paper, we reported the preparation 
and advanced characterization of Pd0 nanoparticles supported over hydroxyapatite nanospheres 
(Pd0@nano-HAp). The catalytic efficiency of the Pd0@nano-HAp catalyst was examined in the 
reduction of nitrophenols in water in the presence of NaBH4 as reducing agent and the great 
activity of catalyst have been specified against 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol 
and 2,4,6-trinitrophenol compounds with 70.6, 82.4, 27.6 and 41.4 min− 1 TOFinitial values, 
respectively. Another important point is that the Pd0@nano-HAp catalyst has perfect reusability 
performance (at 5th reuse between 68.5 and 92.8 %) for the reduction of nitrophenols. In 
addition, catalytic studies were carried out at different temperatures in order to determine 
thermodynamic parameters such as Ea, ΔH∕= and ΔS∕=.   

1. Introduction 

The rapidly increasing world population and urbanization in the last century have resulted in critical processes that support each 
other in the form of “more production”, “more consumption” and “more waste” in almost every field, especially in industry and 
agriculture. Organic and inorganic pollutants released by the effect of these processes can cause serious and permanent damage to both 
surface waters such as seas, lakes, streams and underground waters. Nitrophenols, which are extremely effective even at very low 
concentrations, are among the most dangerous and harmful chemicals. Due to their toxicity and carcinogenic nature, nitrophenols are 
considered in the group of compounds that need to be purified primarily [1–5]. 

In general, many studies are carried out on the purification of nitrophenol compounds, which have serious negative effects on all 
ecosystems and living creatures in these ecosystems that are directly or indirectly affected by water resources. In these studies, many 
methods are tried in which different physical and chemical parameters are tested [6–8]. However, most of these methods cannot 
adequately meet the needs due to their long duration, low efficiency, high cost and application difficulties. For this reason, researchers 
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have focused on developing new methods and techniques that are highly effective, environmentally friendly and applicable. The data 
obtained from the studies revealed that the catalytic hydrogenation process, in which the NO2 group in nitrophenol derivatives is 
converted to NH2, is a very effective method. The main features that make this method preferable are cost, efficiency, time, appli-
cability and high conversion efficiency. Another advantage of this method is that aminophenols obtained as a result of reduction they 
have much lower toxicity than nitrophenols. It is known that aminophenols are widely used in pesticide, medicine, paint, paper 
production and cosmetics industries. In addition, aminophenol derivatives are needed as intermediates in the synthesis process of 
paracetamol, which is an important drug active ingredient and is widely used today [9]. In conclusion, as a result of the application of 
the catalytic hydrogenation method, which is widely used in the pharmaceutical, petrochemical, and food industries, to nitrophenols, 
on one hand, nitrophenols, which are extremely dangerous chemicals in terms of human health every aspect, can be puri-
fied/converted economically and environmentally; On the other hand, it is possible to obtain aminophenols, which are needed in many 
industrial production processes and considered as very important intermediate products [10,11]. 

One of the critical steps in converting nitrophenols to aminophenols, which are much less harmful compounds, is to identify a 
suitable hydrogen source. Although different hydrogen sources are encounter in the literature, NaBH4 is mostly used as a reducing 
agent because of its advantages such as being economical and environmentally friendly, easy to store, and high solubility in water and 
alcohol [12–19]. Despite all these advantages, if NaBH4 is used alone in the reduction process, the reaction takes place very slowly, 
causing time and energy loss. Research-application studies have revealed that these problems encountered in the case of using NaBH4 
alone can be eliminated with efficient catalyst (metal-support) systems. In this context, it has been reported that catalyst systems 
obtained from solid supported metal nanoparticles both accelerate the hydrolysis of NaBH4 and provide high reusability performance 
in the reduction of nitrophenols to aminophenols by preventing aggregation of active metal nanoparticles [20–31]. 

Metal oxides, metal-organic frameworks, carbon-based materials, and polymeric structures are the leading support materials used 
to better both the catalytic effectiveness and reusability performance and to eliminate the negativities caused by the aggregation of 
active metal nanoparticles. Among these materials, carbon nanofibers, carbon nanotubes and graphene derivatives have been at the 
center of many researches due to their interesting physicochemical properties and durability. The data obtained from the studies 
revealed that these materials, which are used as supports, significantly increase the efficiency and stability of nanocatalysts [32–39]. In 
recent years, unlike these support materials, apatites, which are in the group of bioceramic materials, have started to attract the 
attention of scientists due to their chemical properties and robustness. Hydroxyapatite (HAp; [Ca10(PO4)6(OH)2], an important 
member of the apatites, has become one of the prominent materials with its large surface area, very high adsorption potential and 
excellent biocompatibility. Other features that make HAp, which is accepted as a member of the structurally and chemically less 
soluble calcium phosphate salts family, more advantageous than similar support materials, can be listed as its high ion exchange 
capability and low surface acidity that eliminates unwanted side reactions [40–46]. 

HAp; it has a crystal structure containing polyatomic ions such as calcium, phosphate and hydroxyl. This crystal structure makes it 
easy to add different elements and groups to HAp and to change the structure. Having such a chemical structure of HAp allows it to be 
decorated with many functional materials such as metals, metal oxides and polymers [47–49] (Scheme 1). 

HAp, which is used in a wide range of fields from medicine to metallurgy, from bioengineering to chemistry, can be synthesized by 
different methods such as biomineralization, solid state, emulsion, reverse micelle, electrochemical application, sol-gel, aqueous 
colloidal precipitation, direct spraying and hydration [50–57]. Different metals such as Pd (0) [58], Ru (0) [59,60], Ag (0) [61–63], Au 
(0) [64], Cu [65], and Ni [66] were used in the catalyst systems in which HAp is applied as a support material, and it has been reported 
that the obtained nanoparticles perform quite well. Catalysts obtained as a result of the use of HAp as a support material; it has been 
used in selective oxidation of alcohols [58], Suzuki-Miyaura cross-coupling reactions [67], partial oxidation of hydrocarbons, hy-
drogenation of furfural derivatives [68], selective reduction of unsaturated ketones [69]. In addition, HAp supported nanoparticles 
were used in the production of hydrogen from hydrogen sources such as ammonia-borane and sodium borohydride [70]. 

Nanoparticles (NPs), which are also expressed as submicron molecules consisting of organic or inorganic materials, show more 
effective and fascinating properties than bulk materials due to their size-dependent properties. The variety of materials used in the 
synthesis of NPs has enabled the researchers to prepare species with different compositions and morphologies NPs such as metallic, 
semiconductor, metal and non-metal oxides, and carbon [71]. So far, Pd/GNS-NH2 [6], Ni-NP/ENF [72], Au NPs/AC [73], Ag NPs-PG 
[74], Fe@NC@Pd [75], RGO@AC/Pd [76], Pd@ASNTs [77], NCT@Pd [78], CMF@PDA/Pd [79], PDA-g-C3N4/Au [80], DPNs [81], 
COF-TPCBP [82], Pd–Cu@Noria-GO [83], MgAl-LDH [84], Ag–CeO2 [85], Fe–N–C [86], Au/Pd-loaded yeast [87], Pd1@np-Ni/NiO 
[88] and AuNS–MoS2 QDs [89] catalysts have been developed for the reduction of nitrophenols in cooperation with NaBH4. 

In this study, hydroxyapatite nanospheres (nano-HAp) supported palladium (0) nanoparticles were prepared (hereafter named as 
Pd0@nano-HAp) in order to reduce the nitrophenols to aminophenols in an efficient, environmentally friendly and feasible way. In 
studies where NaBH4 was used as a reducing agent, catalytic reduction processes were investigated kinetic and thermodynamically at 
different temperature. The structure of the prepared Pd0@nano-HAp catalyst was characterized in detail by spectroscopic tools such as 
ICP-OES, P-XRD, XPS, TEM, HR-TEM, EDX, SEM and BET surface area techniques. The results obtained can be summarized as follows: 
(i) The catalytic effectiveness of Pd0@nano-HAp catalyst in reduction of nitrophenols is extremely high (TOFinitial values: 70.6 min− 1 for 
2-NP, 82.4 min− 1 for 4-NP, 27.6 min− 1 for 2,4-DNP and 41.4 min− 1 for 2,4,6-TNP), (ii) HAp, used as a solid support material, both 
facilitates the kinetic control of the catalytic reaction and greatly inhibits undesirable processes such as aggregation, which reduces the 
activity and shortens the catalyst life, (iii) The reusability performance of Pd0@nano-HAp catalyst in the catalytic reduction is quite 
high. 
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2. Experimental 

2.1. Materials 

Palladium nitrate hydrate (Pd(NO3)2•xH2O), hydroxyapatite ([Ca5(OH) (PO4)3]x, nanopowder, <200 nm particle size, ≥97 %, 
HAp), sodium borohydride (NaBH4, powder, ≥98.0 %), 2-nitrophenol (O2NC6H4OH, 98 %, 2-NP), 4-nitrophenol (p-nitrophenol, 
O2NC6H4OH, ≥99 %, 4-NP), 2,4-dinitrophenol (α-dinitrophenol, (O2N)2C6H3OH, ≥98.0 %, 2,4-DNP), and 2,4,6-nitrophenol (picric 
acid, (O2N)3C6H2OH, ≥98 %) were supplied from Sigma-Aldrich®. 

2.2. In-situ formation of Pd0@nano-HAp catalyst and its catalytic activity in the nitrophenol reduction 

Experimental procedures related to the investigation of both the Pd0@nano-HAp catalyst synthesized in-situ conditions and the 
catalytic performances of the obtained catalyst in the reduction of nitrophenol derivatives [6,72] are presented as Supplementary 
Material. 

2.3. Characterization tools of Pd0@nano-HAp catalyst 

This part is given in the Supplementary Material. 

2.4. Investigation of reusability performance of Pd0@nano-HAp catalyst in the nitrophenol reduction 

After the conversion of the nitro group in the aromatic ring to the amine group was completed as a result of catalytic reduction, the 
HAP catalyst was filtered and washed with the appropriate solvent mixture. The pure catalyst was dried under vacuum at 353 K and 
made ready for reuse. After weighing the amount of catalyst to be used, catalytic hydrogenation was restarted with the targeted 
nitrophenol derivative. 

Fig. 1. P-XRD patterns of nano-HAp and Pd0@nano-HAp catalyst obtained under in-situ conditions from the reduction of 4-NP in the 2θ range 
of 10–90◦. 
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2.5. The activation parameters for Pd0@nano-HAp catalyst in the nitrophenol reduction 

For the calculation of Ea, ΔH∕= and ΔS∕= in each experiment, 5 mg (1.24 wt% Pd, 0.58 μmol) of Pd0@nano-HAp and 2.0 mM (20 μmol) 
aqueous solution (10 mL) of the NP derivatives (2-NP: 2.78 mg, 4-NP: 2.78 mg, 2,4-DNP: 3.68 mg and 2,4,6-TNP: 4.58 mg) were taken 
in a jacketed Schlenk. Depending on the initial rate, Arrhenius and Eyring-Polanyi graphs were drawn and Ea, ΔH∕= and ΔS∕=parameters 
were calculated by catalytic experiments performed at temperatures between 298 and 318 K. 

3. Results and discussion 

3.1. Characterization of Pd0@nano-HAp catalyst 

P-XRD patterns of Pd0@nano-HAp catalyst and nano-HAp formed under in-situ conditions as a result of catalytic reduction of 4-NP 
are given in Fig. 1. The presence of strong diffraction peaks observed in the patterns indicates that the samples are highly crystallize 
(nano-HAp, JCPDS file no. 00-009-0432). In addition, when the expanded structure of the diffraction peaks is examined, it is clearly 
understood that the grain sizes of the sample are in the nanometer scale [90]. The compared P-XRD patterns reveal that there is no 
observable change in the crystallinity of nano-HAp during the reduction of Pd2+ ions to Pd0 in the nano-HAp matrix. In addition, partial 

Fig. 2. TEM images in different scale (a–c), corresponding particle size histogram (d), TEM/EDX spectrum (e), and HR-TEM image (f) of Pd0@nano- 
HAp catalyst obtained under in-situ conditions from the reduction of 4-NP. 
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decreases in the intensity of Bragg peaks in Pd0@nano-HAp can be explained by the presence of Pd0 NPs on the surface, the charge 
distribution and changes in the electrostatic fields, and the interaction of the electrophilic surfaces with the frame oxygen atoms [91]. 

Images obtained from TEM analysis were used to determine the particle size/distribution of Pd nano clusters stabilized with hy-
droxyapatite. Fig. 2(a–c) depicts TEM images of Pd0@nano-HAp catalyst obtained under in-situ conditions from the reduction of 4-NP 
in different scale. It was observed in Fig. 2 that monodisperse Pd0 NPs spread uniformly on the surface of the hydroxyapatite nano-
spheres. The mean diameter of Pd0 NPs on the surface of hydroxyapatite nanospheres was found to be ~3 nm (Fig. 2 (d)) with a narrow 
particle size distribution using the NIH image program [92], which included the particle size analysis for >100 non-touching particles. 
The presence of Pd metal and other elements (calcium, phosphorus, oxygen and copper) derived from nano-HAp and TEM grid was 
confirmed in the analyzed region by EDX analysis of Pd0@nano-HAp catalyst (Fig. 2 (e)). Characteristic lattice fringes with crystal 
plane distances of 0.22 nm, indexable to the spacing of (111) planes in the fcc of Pd0 NPs, were detected by the HR-TEM image of 
Pd0@nano-HAp (Fig. 2 (f)) [93]. 

SEM images obtained from the SEM analysis conducted to reveal the morphological structure of Pd0@nano-HAp catalyst and 
provided in Fig. 3(a–b) prove that Pd metal is successfully doped on the nanosphere structured hydroxyapatite solid support surface. In 
addition, elemental mapping images (Fig. 3(c–f)) obtained from a selected region provide information consistent TEM analysis of the 
elemental composition of the Pd0@nano-HAp catalyst and the mass densities of the said elements. 

As shown in Fig. 4(a–b), to reveal the oxidation state and chemical structure of the elements in the Pd0@nano-HAp catalyst, XPS 

Fig. 3. SEM images in different scale (a–b), corresponding elemental mapping Ca (c), P (d), O (e), and Pd (f) on the Pd0@nano-HAp catalyst surface 
obtained under in-situ conditions from the reduction of 4-NP. 
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analysis was performed. The presence of Ca, P, O and Pd from the nano-HAp support and the Pd0@nano-HAp catalyst is shown in Fig. 4 
(a). The high - resolution Pd 3 d core level XPS spectrum of Pd0@nano-HAp catalyst is seen in Fig. 4 (b) which contains two distinctive 
peaks for Pd 3d5/2, and 3d3/2 at around 333.8 and 339.1 eV, corresponding to the Pd (0) 3 d (metallic). When Fig. 4 (b) is examined, it is 
seen that the Pd in the structure of the prepared Pd0@nano-HAp catalyst is mostly in metallic form [94,95]. 

The calculated BET surface area using BET equation following the BJH (Barrett–Joyner–Halanda) method was found to be as 21.9 
m2/g for nano-HAp and 27.3 m2/g for Pd0@nano-HAp catalyst. Both catalysts’ N2 adsorption-desorption isotherms are consistent with 
the presence of mesoporous materials, as they conform to the IUPAC classification of type II and H3 hysteresis loops (Fig. 5) [96,97]. 
Total pore volume of Pd0@nano-HAp at p/p0 = 0.98 is 0.17 cm3 g− 1. The results showed that incorporation of Pd0 NPS onto the 
nano-HAp enhanced surface area is the beneficial for the development of a highly efficient catalyst. 

3.2. The catalytic efficiency of Pd0@nano-HAp catalyst in the NPs reduction 

The catalytic reduction of NPs in the presence of Pd0@nano-HAp catalyst was chosen as a model test reaction to view the catalytic 
activity of Pd0@nano-HAp catalyst. The kinetic parameters were determined by tracking the peaks where each substrate showed the 
strongest absorption bands (414 nm for 2-NP, 399 nm for 4-NP, 360 nm for 2,4-DNP and 391 nm for 2,4,6-TNP). By the catalyst-free 
self-hydrolysis of NaBH4 (2), the conversion of nitrophenols to corresponding aminophenols in equivalent amounts was found to be 
very slow and to take 64 min for 2,4,6-TNP, 215 min for 2,4-DNP, 230 min for 4-NP and 240 min for 2-NP (Fig. S1).  

(1) 

However, even very low concentrations of Pd+2@nano-HAp precatalyst (Pd = 0.58 μmol) catalyze the reduction of nitrophenols to 
aminophenols at 298 K (Scheme 2), allowing rapid conversion (Fig. 5). 

With the addition of NaBH4 solution, it was observed that the absorption maxima of 2-NP, 4-NP, 2,4-DNP and 2,4,6-TNP at 414, 
399, 360 and 391 nm changed to 282, 298, 438 and 304 nm, respectively. One of the most important reasons for these changes in the 

Fig. 4. Survey scan (a), and Pd 3 d core level (b) XPS spectra of Pd0@nano-HAp catalyst obtained under in-situ conditions from the reduction of 
4-NP. 
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characteristic peaks is the structural changes that occur during the transformation of phenolate anions formed in the reaction medium 
into targeted products, while another reason is the significant decrease in both the intensity and ratio of the absorptive peaks in the 
presence of Pd0@nano-HAp catalyst [72]. (Fig. 6(a–d)). Fig. 6(a–d) revealed that (i) the total conversion of nitrophenols happened 
within 0.5, 0.67, 4.5 and 0.67 min for the reduction of 2-NP, 4-NP, 2.4-DNP and 2,4,6-TNP to relevant aminophenols, respectively (ii) 
the initial rate of Pd0@nano-HAp catalyzed reduction of nitrophenols at 298 K and Pd0@nano-HAp catalyst concentration (0.58 μmol) 

Fig. 5. N2 Adsorption-desorption isotherms of the nano-HAp (a) and Pd0@nano-HAp catalyst (b).  

Scheme 1. Molecular structure of HAp [98].  
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followed the order of 4-NP > 2-NP > 2,4,6-TNP >2,4-DNP. The catalytic activity of the Pd0@nano-HAp catalyst was tested in the 
reduction of nitrophenol derivatives in an aqueous medium in the presence of NaBH4 and the superb activity of Pd0@nano-HAp 
catalyst has been detected against 2-NP, 4-NP, 2,4-DNP and 2,4,6-TNP derivatives with 70.6, 82.4, 27.6 and 41.4 min− 1 initial TOF 
values, respectively. It has been determined that these TOFinitial values recorded at room temperature are much higher than many 

Scheme 2. The reduction of the NP derivatives in the presence Pd0@nano-HAp catalyst (cyan, blue, red, and yellow balls represent the elements of 
C, N, O, and H, respectively). 

Fig. 6. UV–Vis spectra for the Pd0@nano-HAp (0.58 μmol Pd) catalyzed reduction of (a) 2-NP, (b) 4-NP, (c) 2,4-DNP, (d) 2,4,6-TNP in the aqueous 
NaBH4 (0.2 mmol) solution at room temperature under air. 
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existing studies in the literature. The remarkable activity of Pd0@nano-HAp catalyst can be attributed to (i) small sized and high 
dispersion of Pd0 NPs on the support material surface and (ii) strong metal-support relation and synergy effect between nano-HAp and 
guest Pd0 NPs. 

3.3. Kinetic parameters for Pd0@nano-HAp catalyzed the reduction of nitrophenols 

The influence of temperature on the reduction of nitrophenols was determined and the activation parameters were calculated with 
the help of repeated experiments in the temperature range of 298–318 K increases for every 5 K and catalyzed by Pd0@nano-HAp 
(Fig. 7). Observed rate constants (kobs) were calculated separately for each temperature in the graphs drawn for [A]/[A0] versus time 
(Fig. 7(a–d)). Activation energy (Ea), enthalpy (ΔH#) and entropy (ΔS#) parameters were calculated from the slopes of the Arrhenius 
and Eyring-Polanyi plots (Fig. 8(a–b)) drawn using kobs values and the Arrhenius and Eyring-Polanyi equations. When examining the 
activation parameters during the conversion of nitrophenols to aminophenols (in Table 1), assuming that the calculated apparent 
activation parameters using the kinetic data are related the most important activation step that directs the reaction mechanism in the 
conversion of nitrophenols to aminophenols, one can argue that the positive magnitude of the apparent activation enthalpy and large 
negative value of the apparent activation entropy imply the presence of an associative reaction step revealing a transition state [99, 
100]. 

3.4. Catalytic durability of Pd0@nano-HAp in the NPs reduction 

In the experiments carried out to determine the catalytic resistance and stability of the prepared Pd0@nano-HAp catalyst, the 
isolated catalyst was dried and purified and reused after each conversion was completed. Also, the need for more precise replacement 
of the catalytic reaction followed by UV–vis spectroscopy from the solvent-substrate-product solution to the second catalytic cycle 
occurred. This situation can be explained as another reason why we prefer reusability experiments in terms of recyclability in order to 
determine the durability of the catalyst used. The studied catalytic system provided ~69–93 % of initial activity in the reduction of 
NPs, and this was confirmed by the results of reusability experiments. The reusability performance, which is accepted as one of the 
most basic criteria determining the performance and usability of the nanoparticles used as a catalyst, was also tested for the Pd0@nano- 
HAp catalyst in the reduction of NP derivatives at 298 K. For each substrate intended to be reduced, the Pd0@nano-HAp catalyst was 
isolated by filtration after the catalytic reaction was completely finished. After the obtained catalyst was washed with ethanol-water 

Fig. 7. The remaining fraction of nitrophenols versus time graph for Pd0@nano-HAp (0.58 μmol Pd) catalyzed the reduction of (a) 2-NP (b) 4-NP (c) 
2,4-DNP and (d) 2,4,6-TNP in the aqueous NaBH4 (0.2 mmol) solution at different temperatures in the range of 293–308 K. 
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mixture, it was dried in vacuum at 353 K. With these processes, the Pd0@nano-HAp catalyst was made ready for reuse. By adding 
Pd0@nano-HAp catalyst and the same amount of substrate as used in the previous experiment to the reaction vessel and restarting the 
reaction under the same conditions, it was determined that the catalyst activity continued to a great extent (Fig. 9). The results ob-
tained by interpreting the data obtained from the catalytic studies are illuminating that Pd0@nano-HAp catalyst retains 87.8, 68.5, 
90.2 and 92.8 % of its initial activity even at 5th catalytic reuse (Fig. 9(a–d)) in the hydrogenation of 2-NP, 4-NP, 2,4-DNP and 2,4,6- 
TNP, respectively. 

The highly acceptable reusability performance of the Pd0@nano-HAp catalyst against each substrate used in the reduction reaction 
is largely due to the high stability of the Pd0 NPs, which inhibits bulk Pd formation. However, the small amount of activity loss 
observed at the end of the catalytic reuse experiments is largely due to the reduction in the number of active atoms on the surface. This 
reduction is due to partial aggregation resulting from the aggregation of Pd0 NPs as shown in the labeled portions in Fig. 10 (a). In 
addition, the increase in particle size (from 3.02 nm to 3.74 nm) is also considered as another important reason for the loss of efficiency 
(Fig. 10 (b)). SEM analysis was also performed to reveal the morphological stability of the spent Pd0@nano-HAp catalyst. From the 
SEM and elemental mapping images shown in Fig. S2, it is understood that the Pd0 NPs generally show homogeneous distribution and 
show high stability except for partial aggregation in some regions. It was confirmed by the XRD result that the crystal structure of the 

Fig. 8. (A) Arrhenius (gray line) and (b) Eyring-Polonyi (magenta line) plots for Pd0@nano-HAp (0.58 μmol Pd) catalyzed the reduction of 
nitrophenols in the aqueous NaBH4 (0.2 mmol) solution. 

Table 1 
Activation parameters for the Pd0@nano-HAp catalyzed the reduction of nitrophenols, in aqueous solution of NaBH4.  

Substrate Ea (kJ × mol− 1) ΔH# (kJ × mol− 1) ΔS# (J × mol− 1 × K− 1) 

2-NP 74.9 61.8 − 101.1 
4-NP 48 45.4 − 107.8 
2,4-DNP 86.8 84.4 +9.8 
2,4,6-TNP 91.9 89.5 +35.7  
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catalyst remained nearly unchanged with the reuse of Pd0@nano-HAp during the reduction of 4-NP (Fig. S3). 

4. Conclusions 

The remarkable results in the synthesis, characterization of Pd0 NPs supported over hydroxyapatite nanospheres (Pd0@nano-HAp) 
and tests in which they used as catalyst in the reduction of different nitrophenol derivatives in the presence of NaBH4 as reducing agent 
can be listed as follows.  

(I) Pd0@nano-HAp catalyst was reproducibly synthesized by the ion-exchange of Pd2+ onto hydroxyapatite nanospheres under in- 
situ conditions during the catalytic reduction of NP derivatives in aqueous media at 298 K,  

(II) It has been observed that monodisperse Pd0 NPs are uniformly fixed on the nano-HAp surface in the Pd0@nano-HAp catalyst 
characterized by various techniques such as ICP-OES, P-XRD, XPS, TEM, SEM and BET,  

(III) In the reduction experiments of nitrophenols in aqueous solution of NaBH4 at moderate conditions, it was determined that the 
Pd0@nano-HAp catalyst, whose both catalytic activity and stability were examined, is a highly active catalyst in the conversion 
of nitrophenols to their aminophenol analogs. The excellent catalytic activity of the Pd0@nano-HAp catalyst was supported by 
the 70.6, 82.4, 27.6 and 41.4 min− 1 TOFinitial values found for 2-NP, 4-NP, 2,4-DNP and 2,4,6-TNP, respectively, which are 
among the highest of the catalytic systems tested in the reduction of nitrophenols,  

(IV) Additionally, the Pd0@nano-HAp catalyst exhibited outstanding resistance to sintering during catalytic operations, thereby 
maintaining its activity in the range of 68.5 %–92.8 % even after the 5th catalytic reuse.  

(V) The excellent stability, high activity and good reusability of the Pd0@nano-HAp catalyst make it a great candidate for this kind 
industrial and commercial applications.  

(VI) This study also presents a robust catalyst and clues of catalyst design for the selective catalytic reduction of other nitroaromatics 
to produce amines. 
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