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Abstract
Background: The genetics of sporadic and non-syndromic familial colorectal cancer (CRC) is not well defined.
However, genetic factors that promote the development of precursor lesions, i.e. adenomas, might also predispose to
CRC. Recently, an association of colorectal adenoma with two variants (c.507C>T;p.L169L and c.511G>T;p.A171S) of
the ileal sodium dependent bile acid transporter gene (SLC10A2) has been reported. Here, we reconstructed haplotypes
of the SLC10A2 gene locus and tested for association with non-syndromic familial and sporadic CRC compared to 'hyper-
normal' controls who displayed no colorectal polyps on screening colonoscopy.

Methods: We included 150 patients with sporadic CRC, 93 patients with familial CRC but exclusion of familial
adenomatous polyposis and Lynch's syndrome, and 204 'hyper-normal' controls. Haplotype-tagging SLC10A2 gene
variants were identified in the Hapmap database and genotyped using PCR-based 5' exonuclease assays with fluorescent
dye-labelled probes. Haplotypes were reconstructed using the PHASE algorithm. Association testing was performed with
both SNPs and reconstructed haplotypes.

Results: Minor allele frequencies of all SLC10A2 polymorphisms are within previously reported ranges, and no deviations
from Hardy-Weinberg equilibrium are observed. However, we found no association with any of the SLC10A2 haplotypes
with sporadic or familial CRC in our samples (all P values > 0.05).

Conclusion: Common variants of the SLC10A2 gene are not associated with sporadic or familial CRC. Hence, albeit this
gene might be associated with early stages of colorectal neoplasia, it appears not to represent a major risk factor for
progression to CRC.
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Background
Colorectal cancer (CRC) is a growing burden on health
services throughout Western countries. In contrast to
familial CRC syndromes, little is known about the under-
lying molecular mechanisms in the majority of cases.
However, the current paradigm is that CRC is due to the
interaction of genetic and environmental factors [1]. The
effect of each variable may vary considerably, ranging
from monogenic familial cancer syndromes that are pre-
dominantly caused by genetic defects to sporadic CRCs,
which are probably due to life-long exposure to environ-
mental factors with only minor effects of genetic predis-
position.

The genes underlying non-syndromic familial CRC are
still unknown, or findings have not been reproducible
among different studies. A common strategy in experi-
mental genetics is to increase the power by identification
of phenotypic extremes and employing association stud-
ies in these cohorts, since genetic effects can accumulate in
these settings. We have recently successfully translated this
strategy to the human situation [2,3]. For the present
study we chose to compare the effect of genetic variants in
(i) familial CRC cases (after exclusion of Lynch's syn-
drome and familial adenomatous polyposis [FAP]) and
(ii) sporadic CRC patients without a personal or familial
history of CRC to a 'hyper-normal' control group with no
signs of adenomas or cancer on screening colonoscopy
and no personal or familial history of CRC.

Early clinical studies suggested that differences in bile acid
metabolism and faecal bile acid composition between
CRC patients and controls may contribute to cancer for-
mation [4,5]. In line with this observation, experimental
data showed that bile acids can promote DNA adduct for-
mation, induction of proliferation, inhibition of apopto-
sis, and promotion of tumor invasion [6]. Bile acid
composition is influenced by environmental factors such
as food intake as well as the bacterial flora in the gut [7,8].
However, bile acid metabolism is also influenced by a
number of transport proteins that mediate uptake, distri-
bution or efflux of bile acids. Genetic variation in the
genes encoding these transporters together with environ-
mental factors might contribute to CRC development [9-
11]. In the intestine, primary bile acids are reabsorbed by
active transport in the terminal ileum [12]. This ileal
sodium dependent bile acid transporter (ISBT, synonym:
apical sodium dependent bile acid transporter ASBT; gene
code: SLC10A2) is located in the apical membrane of the
enterocyte. Only a minor fraction of primary bile acids
reaches the colon where the bacterial flora deconjugates
the primary bile acids to secondary bile acids such as
deoxycholic acid. Disruption of effective reabsorption
diminishes the efficacy of the enterohepatic circulation of
bile acids and increases the amount of secondary bile

acids in the colon [13]. Of note, single nucleotide poly-
morphisms (SNPs) in the ileal bile acid transporter
(SLC10A2) gene have been associated with the risk for
development of sporadic colorectal adenoma, a precursor
lesion for CRC [14]. It remains unclear whether genetic
variation in this gene also contributes to the development
of CRC.

A haplotype is defined as a specific combination of variant
alleles that are inherited together on a single chromo-
some. In genetically complex diseases such as CRC, hap-
lotypes might provide more information than the analysis
of individual polymorphisms, and in some cases an asso-
ciation of a complex phenotype might even be missed if
only single markers are analyzed instead of haplotypes
[15]. Our aim now was to test whether common variants
of the SLC10A2 gene are associated with sporadic and
familial CRC, employing a haplotype-based association
study.

Methods
CRC patients
CRC patients were identified in a prospective study on the
incidence of hereditary CRC in the area of Bonn and the
district of Rhein-Sieg (Northwestern Germany) with
about 1 000 000 inhabitants [16]. Part of the inclusion
criteria was a structured interview by an experienced phy-
sician documenting any personal or family history of
CRC. Patients were included in our study if they fulfilled
at least two of the three characteristics: (i) three affected
relatives, one of them a first-degree relative of the others;
(ii) one member diagnosed with CRC before age 50; (iii)
two affected generations. Furthermore, we intended to
include only cases and controls with Caucasian back-
ground; decision was made on appearance and name.
This may have led to some misclassification, since no
detailed history of ancestry was recorded. However, stud-
ies on determination of descent solely by name show that
this method is reliable, at least in European populations
[17].

Familial CRC patients showed normal expression of
MLH1 and MSH2 in tumor tissues, and microsatellite
instability was excluded in all patients. Microsatellite sta-
tus and immunohistochemistry for MLH1 and MSH2
expression were determined by the Institute for Pathology
at the University Hospital Bonn, which is one of the refer-
ence centres for diagnosis of hereditary non-polyposis
colorectal cancer (HNPCC) in Germany. Using this com-
bination, Lynch syndrome that is characterized by the
development of CRC, endometrial cancer, and other
HNPCC-related cancers and caused by a mutation in one
of the mismatch repair genes MLH1, MSH2, MSH6 or
PMS2 [18] can be ruled out sufficiently, even though no
specific genetic testing for gene mutations was performed
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[19]. None of the patients had clinical evidence for FAP or
any other hereditary disease with an increased risk for
CRC.

The second study group consisted of patients with true
sporadic CRC. The sporadic nature of the tumor was deter-
mined by lack of evidence for any of the inherited CRC
diseases (e.g. no signs of FAP or HNPCC, and no family
history of CRC). In sporadic CRC cases, tumor stages and
localizations were known in 148 and 149 cases, respec-
tively. In familial cases information on tumor stage and
localization was available in 61 and 84 cases, respectively.

Controls were recruited from patients seen in our outpa-
tient clinics or in private practice for colonoscopy. Rea-
sons for colonoscopy were positive faecal occult blood
test, abdominal pain, or CRC primary prevention.
Probands were only accepted as controls when colonos-
copy was normal with no apparent sign of abnormal
mucosal growth, except that seven patients with hyper-
plastic polyps (< 5%) were included. The decision was
based on histopathology. Individuals were excluded if
they had a personal or a family history of CRC or any
other tumor or if they reported more than one closely
related family member with any malignancy.

All patients and controls gave written informed consent.
The study was approved by the Ethical Committee of the
University of Bonn.

DNA extraction and genotyping
Genomic DNA was isolated from EDTA-anticoagulated
blood using the QIAamp protocol (Qiagen, Hilden, Ger-
many). Allelic discrimination was performed using fluo-
rescent dye-labelled reporter assays (Taqman) with
predesigned probes (Applied Biosystems, Foster City,
USA) for SLC10A2 SNPs rs157266, rs183963, rs279941,
and rs1886927 [20].

Haplotypes, tagging SNPs and association testing
We used the online resource of the Hapmap project [21]
to select SNPs for haplotype construction and association
testing. The Hapmap project provides genome-wide geno-
type information for dense SNP makers in different refer-
ence populations. Using this information a linkage
disequilibrium map can be reconstructed, and haplotypes
as well as haplotype frequencies can be determined [22].
Genotype data from the Caucasian population was down-
loaded for the genomic region ranging from position
101,393,000 bp to 101,420,000 bp on chromosome 13,
which harbours the SLC10A2 gene (based on Hapmap
data release 16c.1). The haplotype block structure of the
SLC10A2 gene was determined with Haploview (release
3.32), using the confidence interval method by Gabriel et
al. [23], based on SNPs with minor allele frequencies of >

5%. Within a block some markers carry redundant infor-
mation. Hence, to fully cover the genetic information of a
block only a subfraction of markers, so called tagging
SNPs, are sufficient to describe the whole haplotype diver-
sity [15]. Tagging SNPs were determined for the block that
also harboured the previously associated SNPs using the
Tagger program, as implemented in Haploview. The tag-
ging SNPs were then genotyped in our study populations.

Association tests for single markers
The software package developed by Strom and Wienker
[24] employed for association testing for alleles and gen-
otypes in familial CRC, CRC and 'hyper-normal' controls.
Genotype distributions were tested for consistency with
Hardy-Weinberg equilibrium using Fisher's exact test.
Allele and genotype frequencies were compared using χ2

tests, and Armitage's trend test was calculated to compare
the distributions of all genotypes between cases and con-
trols in 2 × 3 tables.

Haplotype reconstruction in cases and controls
Genotype information from our three study populations
was reconstructed using the PHASE algorithm (version
2.2) that is based on Bayesian inference. To test for signif-
icant differences in haplotype distributions between
familial CRC patients, CRC patients and 'hyper-normal'
controls, permutation tests were performed, as imple-
mented in PHASE. The permutation test checks the null
hypothesis that case and control haplotypes are a random
sample from a single set of haplotype frequencies versus
the alternative that cases are more similar to each other
than to controls. Haplotypes of cases and controls were
permuted 10,000 times, which generates empirical p-val-
ues at the 0.05 level while controlling for multiple testing.

Power estimates for association tests
Power calculations were performed using the P & S power
and sample size program [25]. The study population was
designed to detect a 2-fold increased relative risk for any
marker (SNP or haplotype) with a power of 80% based on
a frequency of the risk allele of ≥ 0.1 and a significance
level of 0.05. Figure 1 illustrates that the power estimates
proved to be robust over a wide range of marker frequen-
cies.

Results
A total number of 93 familial CRC, 150 sporadic CRC
patients and 204 'hyper-normal' controls were included.
Table 1 summarizes their clinical characteristics. 'Hyper-
normal' controls were age-matched to sporadic CRC
patients to reduce the possibility of inclusion of patients
who might develop colorectal adenomas or CRC in later
life. We found a slight over-representation of left sided
tumors in familial CRC patients; in addition, these
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patients presented with more advanced tumor stages than
sporadic CRC patients (Table 1).

Association tests with single SLC10A2 variants
Data mining from the Hapmap project led to a selection
of six SNPs in the SLC10A2 gene that define a single hap-
lotype block. Haplotype blocks refer to sites of closely
located SNPs, which are inherited together in blocks.
Regions corresponding to blocks have a few common
haplotypes that are present on a large proportion of chro-
mosomes in the population under study. The strategy is to
identify the minimal subset of SNPs (so called tagging
SNPs) that characterize the most common haplotypes.
Four out of six SNPs were identified as tagging SNPs that
are sufficient to cover the whole haplotype diversity with-
out loss of genetic information in this block. Table 2 and
3 summarize the allele and genotype frequencies of the
four SLC10A2 tagging SNPs. No significant differences in

allele or genotype frequencies were observed between
patients and controls.

Haplotype reconstruction and association tests with 
common SLC10A2 haplotypes
Four common SLC10A2 haplotypes with a frequency >
3% were observed in the Caucasian population of the
Hapmap project. Table 4 shows that in line with this
observation, we found similar distributions and frequen-
cies of haplotypes in all three groups of patients. However,
no significant differences in haplotype distribution were
detected between patients and controls. Of note, accord-
ing to the Hapmap data, the SNPs in codon 169 and 171,
which were previously described to be associated with the
development of sporadic colorectal adenomas, were in
complete linkage disequilibrium with the tagging SNP
rs183963, as indicated by Lewontin's D' = 1.00. However,
rs183963 was neither associated with sporadic nor with
familial CRC (Tables 2 and 3).

Power estimates for association testsFigure 1
Power estimates for association tests. The figure shows the power (y-axis) of association studies for a range of different minor 
allele frequencies (0.05–0.40) and varying relative risks (x-axis). The figure demonstrates that power estimates are robust over 
a wide range of minor allele frequencies that can be expected for the SLC10A2 variants.
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Table 1: Clinical characteristics of familial CRC, sporadic CRC patients and 'hyper-normal' controls

Familial CRC 
(n = 93)

Sporadic CRC 
(n = 150)

'Hyper-normal' controls
(n = 204)

Age 55 ± 11 66 ± 8 62 ± 7

Males: females 51: 42 81: 69 91: 113

UICCC stage (n = 61) (n = 147)
I 13 (21.0%) 34 (23.1%)
II 9 (14.5%) 52 (35.4%)
III 26 (41.9%) 48 (32.7%)
IV 13 (22.6%) 13 (8.8%)

Localisation (n = 67) (n = 144)
Right Colon 17 (25.4%) 35 (28.9%)
Left Colon 50 (74.6%) 109 (71.1%)
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Discussion
Clinical and experimental data suggest a role of secondary
bile acids as promoters of colorectal tumors [26,27]. In
contrast, water soluble bile acids may counteract, as they
induce apoptosis and lower enterocyte proliferation rates
in experimental tumor models and in vivo [28,29]. Dis-
turbance of the enterohepatic circulation, e.g. by impaired
re-absorption of primary bile acids in the ileum due to
genetic variants of the SLC10A2 gene, may lead to spillage
of primary bile acids in the colon, where they are trans-
formed into secondary bile acids by the endoluminal bac-
terial flora. In line with this concept, a recent study found
an association of a specific mutation (c.507C>T;p.L169L)
in the SLC10A2 gene and colorectal adenoma develop-
ment [14]. However, no direct association was found with
a nearby non-synonymous mutation (rs188096;

c.511G>T;p.A171S), indicating that other variants in link-
age disequilibrium to the associated locus may contribute
to the effect. Although this study [14] found an associa-
tion with colorectal adenomas, a CRC precursor lesion,
the role of the observed association for the development
of CRC remains unknown. The study of Wang et al. [14]
also observed that a specific genotype combination of the
silent mutation and the non-synonymous mutation is
associated with colorectal adenoma development. Func-
tional data for the two SNPs studied by Wang et al. are
sparse. However, Oelkers et al. performed functional stud-
ies for c.511G>T;p.A171S in transfected COS cells but no
effect on taurocholate uptake was noticed [14]. In our
study, we reconstructed haplotypes of the locus covering
the SNPs previously studied by Wang et al. and tested sin-

Table 2: SLC10A2 tagging SNPs and minor allele frequencies

Tagging SNP Variant
Minor allele frequency

P values

Familial CRC Sporadic CRC 'Hyper-normal' 
controls

rs279941 G>T 0.14 0.10 0.13 # p = 0.78
* p = 0.27

rs183963 A>T 0.35 0.37 0.37 # p = 0.54
* p = 0.91

rs157266 G>A 0.13 0.11 0.14 # p = 0.86
* p = 0.20

rs1886927 G>T 0.09 0.08 0.09 # p = 0.98
* p = 0.67

# Familial CRC patients vs. 'hyper-normal' controls
* Sporadic CRC patients vs. 'hyper-normal' controls

Table 3: Genotype frequencies of SLC10A2 tagging SNPs

Tagging SNP Variant
Genotype frequency

Armitage trend 
test

Familial CRC Sporadic CRC 'Hyper-normal' 
controls

rs279941 GG 0.74 0.82 0.76 *p = 0.78
GT 0.25 0.17 0.22 #p = 0.27
TT 0.01 0.01 0.02

rs183963 AA 0.46 0.39 0.43 *p = 0.56
AT 0.39 0.49 0.41 #p = 0.97
TT 0.15 0.12 0.15

rs157266 GG 0.74 0.80 0.76 *p = 0.87
GA 0.25 0.19 0.19 #p = 0.23
GT 0.01 0.02 0.05

rs1886927 GG 0.81 0.84 0.82 *p = 0.98
GT 0.19 0.15 0.17 #p = 0.67
TT 0.00 0.01 0.01

* comparison of genotype frequencies between familial CRC and hypernormal controls
# comparison of genotype frequencies between sporadic CRC and hypernormal controls
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gle SNPs as well as complete haplotypes in this block for
association with familial and sporadic CRC [14].

By selecting tagging SNPs that covered a whole linkage
disequilibrium block we should have been able to detect
association with all common variants in linkage disequi-
librium with the locus tested by Wang et al. [14]. Our
study was sufficiently powered (see Methods and Figure 1),
and we aimed to further increase the power of our analysis
by testing phenotypic extremes (e.g. 'hyper-normal' con-
trols and familial CRC patients), which is a common con-
cept in experimental genetics [20,30] and has been
successfully applied by us in previous studies in our
cohort of familial CRC patients [2,3]. However, we could
not detect such an association with any of the single mark-
ers or haplotypes. Hence, variation in the SLC10A2 gene
appears to be associated with colorectal adenoma, but not
with progression to colorectal carcinoma [14]. Our study
is limited by a relatively small number of patients with
familial CRC. In addition, our clinical information about
the included cases is limited and information on life style
such as preference of certain diets (e.g. high fiber vs. high
fat/meat) and the presence or absence of cholecystectomy
which may change bile acid turn over is totally lacking.
Thus, we may have missed very small effects of SLC10A2
variants on CRC formation due to a type II error and we
were unable to study genotype-phenotype interaction
with environmental factors that may possibly influence
bile salt metabolism.

Conclusion
In conclusion, development of sporadic and familial CRC
is not associated with common haplotypes of the genomic
region encompassing the SLC10A2 gene previously impli-
cated in the development of colorectal adenomas. How-
ever, larger studies may be needed for the detection of very
small effects of genetic variants in the SLC10A2 gene on
CRC development.
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