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ABSTRACT

The molecular mechanisms underpinning prostate
cancer (PCa) progression are incompletely under-
stood, and precise stratification of aggressive pri-
mary PCa (pri-PCa) from indolent ones poses a ma-
jor clinical challenge. Here, we comprehensively dis-
sect, genomically and transcriptomically, the m6A
(N6-methyladenosine) pathway as a whole in PCa. Ex-
pression, but not the genomic alteration, repertoire
of the full set of 24 m6A regulators at the population
level successfully stratifies pri-PCa into three m6A
clusters with distinct molecular and clinical features.
These three m6A modification patterns closely cor-
relate with androgen receptor signaling, stemness,
proliferation and tumor immunogenicity of cancer
cells, and stroma activity and immune landscape of
tumor microenvironment (TME). We observe a dis-
crepancy between a potentially higher neoantigen
production and a deficiency in antigen presentation
processes in aggressive PCa, offering insights into
the failure of immunotherapy. Identification of PCa-
specific m6A phenotype-associated genes provides
a basis for construction of m6Avalue to measure
m6A methylation patterns in individual patients. Tu-
mors with lower m6Avalue are relatively indolent with
abundant immune cell infiltration and stroma activ-
ity. Interestingly, m6Avalue separates PCa TME into
fibrotic and nonfibrotic phenotypes (instead of previ-
ously reported immune-proficient or -desert pheno-
types in other cancer types). Significantly, m6Avalue
can be used to predict drug response and clinical
immunotherapy efficacy in both castration-resistant
PCa and other cancer types. Therefore, our study es-
tablishes m6A methylation modification pattern as a
determinant in PCa progression via impacting cancer
cell aggressiveness and TME remodeling.

GRAPHICAL ABSTRACT

INTRODUCTION

Human prostate cancer (PCa) is the second most fre-
quent diagnosed malignancy in men worldwide, counting
1 414 259 new cases and causing 375 304 deaths (3.8% of
all deaths caused by cancer in men) in 2020 (1). For years,
PCa has ranked the first and the second cancer type for
incidence and mortality in the United States, respectively
(2). The prostate is an exocrine gland containing andro-
gen receptor negative (AR−) basal and androgen-sensitive
AR+ luminal epithelial cells, together with rare neuroen-
docrine (NE) cells (3,4). PCa develops over a long pe-
riod of time from normal prostate to prostatic intraep-
ithelial neoplasia, then to early- and late-stage primary
PCa (pri-PCa), and finally to metastatic PCa with or with-
out treatment (5). Histologically, PCa presents as adeno-
carcinoma with a predominant luminal phenotype. Clini-
cally, most pri-PCa are diagnosed as low to intermediate
grade [i.e. Gleason grade (GS) ≤ 7], relatively indolent and
treated by radical prostatectomy and/or radiation with a
good prognosis (6). In contrast, locally advanced (GS ≥
9) and metastatic PCa are mainly treated with androgen
deprivation therapy (ADT, such as luteinizing hormone-
releasing hormone agonists/antagonists) to block testicular
androgen synthesis (7), but most cases will eventually fail
ADT, recur and result in a lethal disease termed castration-
resistant PCa (CRPC) (4,5). CRPCs are currently treated
with anti-androgens such as enzalutamide (Enza) that in-
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terfere with AR functions, but unfortunately patients will
succumb to recurrence in 4–5 months (6). Cancer stem-
ness, manifested by stem cell (SC)-like properties of can-
cer cells, has been widely appreciated as a key determinant
in tumor progression and therapy resistance (8). We have
recently shown that CRPCs are relatively undifferentiated
and, molecularly, basal/stem-like (3). In support, knock-
out of the full-length AR in androgen-sensitive LNCaP cells
elicits an SC-like phenotype with enhanced proliferation
and CRPC-regenerating ability under castration conditions
(9).

The mechanisms underlying PCa progression, espe-
cially treatment resistance and subsequent maintenance
of CRPC, are incompletely understood (10). In the past
decade, owing to the global efforts of applying high-
throughput next-generation sequencing technology in clinic
[typified by The Cancer Genome Atlas (TCGA) program],
we have now reached a consensus that genomic alteration,
transcriptomic abnormality and epigenetic dysregulation
all play pivotal roles in prostate tumorigenesis (3,6,9,11–17).
We have recently shown that the copy number variations
(CNVs) and mRNA expression disturbance of splicing reg-
ulatory genes (SRGs) jointly contribute to RNA splicing
dysregulation seen in aggressive PCa, which offers a novel
therapeutic vulnerability by targeting spliceosome (6). In
another effort to dissect the AR heterogeneity and distinct
treatment responses, we found that an SC transcriptional
program driven by BCL-2 is operating in AR−/low CRPCs
and our proof-of-concept studies have validated a combi-
natorial therapy (BCL-2 inhibitor plus Enza) as an effi-
cient therapeutic regimen for both AR+ and AR−/low CR-
PCs (9). Moreover, in addition to CRPC emergence, distin-
guishing the many indolent pri-PCa from the minority of
lethal ones (otherwise leading to overtreatment) represents
another major clinical challenge (18). Based on gene expres-
sion profiles within low-GS prostate tumors, a 19-gene sig-
nature was previously identified to distinguish indolent ver-
sus aggressive subgroups (19). In light of splicing regula-
tion and correlation with worse clinical outcome, we have
recently developed a 13-SRG signature to separate aggres-
sive pri-PCa from indolent ones (6). Notably, despite the re-
search progress, PCa still causes a significant mortality. To-
gether with the fact of interpatient heterogeneity of PCa at
both molecular and clinical levels, more studies are needed
to interrogate PCa evolution at distinct angles.

Despite the multilayers of regulatory mechanisms in
PCa etiology, they all converge, eventually, on gene expres-
sion regulation at versatile levels, as gene expression is the
fundamental determinant of cellular phenotypes (3). N6-
Methyladenosine (m6A), the most abundant form of inter-
nal modifications in eukaryote RNA, post-transcriptionally
modulates gene expression by impacting RNA biology [e.g.
stability, subcellular localization, transportation, transla-
tion and alternative splicing (AS)], and thus functions in
a spectrum of important bioprocesses (20). Expectedly,
emerging evidence has implicated m6A modification in tu-
morigenesis of diverse organ systems (21). Analogous to
epigenetic DNA methylation, m6A is a dynamic RNA
modification and is controlled by the methyltransferase
‘writer’ complex, the demethylase ‘erasers’ and ‘reader’ pro-
teins (22,23). In PCa, a few reports, on an individual gene

basis, have highlighted the significance of m6A methylation
in tumorigenesis. For example, METTL3 has been shown
to be both highly expressed in PCa tissues and essential for
proliferation and metastasis in multiple PCa cell lines (24–
26). Knocking down of YTHDF2 suppresses proliferation
and migration of PCa cells by globally elevating m6A lev-
els (27). However, given that the cellular m6A homeostasis
is established by an integrated network of m6A regulators
(consisting of all writers/erasers/readers within a cell), a
comprehensive study that considers the m6A pathway as a
whole has not been performed in PCa. More interestingly,
besides the roles of m6A in cancer cells per se, m6A has been
recognized to regulate the fate of immune cells and thus re-
shape the immune landscape of tumor microenvironment
(TME) (28–31). Evidence has unraveled several m6A reg-
ulators as key molecules modulating tumor immunity and
responses to immunotherapies typified by immune check-
point blockades (ICBs) (32–35). PCa is immunologically
‘cold’ due to immunosuppressive TME and poor immune
infiltration (36), but clinical trials have observed, encourag-
ingly, that a small proportion of patients did exhibit benefi-
cial responses to ICB (such as anti-PD-1/PD-L1/CTLA-4)
(37). Experimentally, studies have shown that PCa can be
induced to be amenable for ICB by induction of an effective
antitumor response via TME remodeling (38,39). In partic-
ular, a tight association between m6A modification patterns
and TME diversity and complexity has been suggested in
gastric (40) and colon (41) cancers, but whether the m6A
pathway plays a role in PCa immunity remains elusive.

Here, we focus on the m6A pathway as a whole and
provide a comprehensive characterization of different m6A
methylation patterns during PCa evolution. We report that
m6A dysregulation, caused by a global upregulation of
many writer and reader genes and downregulation of eraser
genes, plays an oncogenic role in PCa. The expression reper-
toire of m6A regulators clearly classifies PCa into three clus-
ters with distinct molecular and clinical features. We also
systematically correlate the m6A modification patterns with
AR signaling, stemness, tumor immunogenicity and im-
mune landscape in PCa. To facilitate our findings toward
a potential clinical usage, we establish m6Avalue, a scor-
ing signature based on m6A phenotype-associated genes, to
quantify the m6A modification pattern in individual PCa
patients. We demonstrate that m6Avalue associates posi-
tively with a nonfibrotic TME phenotype that augments ag-
gressiveness and can be used to predict responses to both
small-molecule inhibitors and immunotherapies in PCa and
other cancer types.

MATERIALS AND METHODS

Data collection and bioinformatic preprocessing

In this study, we utilized a total of four large PCa cohorts,
including two TCGA [both curated (11) and noncurated
pan-cancer] and two Gene Expression Omnibus (GEO) val-
idation cohorts [GSE21034 (42) and GSE116918 (43)]. For
study of immunotherapy responses, four cohorts includ-
ing a CRPC (44) and three melanoma [GSE78220 (45),
GSE91061 (46) and GSE100797 (47)] cohorts were used.
Public gene expression and clinical information was down-
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loaded from TCGA and NCBI GEO database. For RNA
sequencing (RNA-seq) data, gene expression matrixes (read
counts or FPKM) were downloaded via the R package TC-
GAbiolinks (48) or GEO database. The original gene ex-
pression values were transformed into transcripts per kilo-
base million format. For microarray data, the R package
GEOquery (49) was used to download the raw data and
further extract gene expression based on the platform infor-
mation. Somatic mutation data were obtained from TCGA
by the R package TCGAmutations (50). Also, for visualiza-
tion, we analyzed the landscape of genomic alternations of
24 m6A regulators, together with reference genes MYC and
RB1, by cBioPortal (51).

Identification of DEGs and DSEs

For differentially expressed gene (DEG) analysis, the
read count files of the curated (333 tumors) and noncurated
pan-cancer TCGA-PRAD cohorts (n = 494) were used.
First, genes with at least three reads in more than one-third
of tumors were retained for further analysis. Then, the
DESeq2 package (52) was applied to identified DEGs with
cutoff of false discovery rate (FDR) <0.05 and fold change
>2. For differentially spliced event (DSE) analysis, raw
RNA-seq files were mapped to human reference genome
(Homo sapiens.GRCh38.dna.primary assembly.fa) by
STAR 2.7.3a (53), and then quantified with rMATS v4.0
(54) to identify distinct types of splicing events. DSEs with
FDR < 0.1 and �PSI (percent of splicing inclusion) > 0.1
were considered significant events.

Association between DEGs and m6A targets

In order to verify that the DEGs identified from dif-
ferent m6A modification patterns were indeed targets of
the m6A pathway, we overlapped them with two sets of
m6A targets. First, we downloaded the potential target
genes of m6A regulators (human) from m6A2Target (http:
//m6A2target.canceromics.org/#/download) (55). Particu-
larly, m6A2Target recorded target genes derived from a
spectrum of experimental and/or bioinformatic methods.
To increase the confidence of our results, potential target
genes that were predicted by at least two strategies were cho-
sen. Then, these target genes were grouped by different m6A
regulators and a hypergeometric test was applied to analyze
the overlap between DEGs and m6A target genes. Second,
we performed m6A-seq in three clinical PCa samples and
identified a total of 14 354 genes bearing m6A peaks (Sup-
plementary Table S1). Overlapping of DEGs with this set of
experimentally validated m6A target genes further strength-
ened the clinical relevance of our results.

m6A-seq analysis

The m6A-seq analysis was performed in collaboration with
LC Sciences, LLC. Briefly, total RNA was isolated from
prostate tissues using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA), followed by two rounds of poly(A)+ RNA pu-
rification using Dynabeads Oligo (dT)25-61005 (Thermo
Fisher, CA, USA). Then, the poly(A)+ RNA was sheared
into 100–200-nt fragments using Magnesium RNA Frag-
mentation Module (NEB, USA, cat # e6150). A portion

of the RNA fragments was directly used as input for reg-
ular RNA-seq, and another portion was incubated for 2 h
at 4◦C with anti-m6A antibody (No. 202003, Synaptic Sys-
tems, Germany) in IP buffer (50 mM Tris–HCl, 750 mM
NaCl and 0.5% Igepal CA-630). The m6A–IP RNA mix-
ture was then incubated with Dynabeads protein A/G for
an additional 2 h at 4◦C on a rotating wheel. After wash-
ing three times with IP buffer, the bound RNA was pu-
rified for downstream library preparation and sequencing
on an illumina Novaseq™ 6000 (LC-Bio Technology Co.,
Ltd, Hangzhou, China). For data analysis, HISAT2 (http:
//daehwankimlab.github.io/hisat2) was used to map reads
to the reference genome Homo sapiens GRCh38. The m6A
peaks were then identified by HOMER (http://homer.ucsd.
edu/homer) and macs2 (https://github.com/taoliu/MACS),
and only peaks identified by two software were retained. We
utilized HOMER (http://homer.ucsd.edu/homer/motif) for
de novo and known motif finding followed by localization
of the motif with respect to peak summit.

Gene set variation analysis and functional annotation

We utilized the ‘GSVA’ package (56) to conduct
GSVA enrichment analysis. The gene-set libraries of
‘h.all.v7.4.symbols.gmt’ and ‘c2.all.v7.4.symbols.gmt’ were
downloaded from MSigDB. In addition, we also curated
a list of previously reported and biologically relevant gene
signatures (Supplementary Table S2). For example, an
AR signature was previously established by assessing the
expression levels of 30 genes that were previously reported
as defining the pathway (57). A 109-gene signature that
excluded confounding immune genes and proliferation
markers has been validated in multiple cancer types to
faithfully recapitulate stemness (58). The comparative en-
richment score was calculated for each gene signature and
P-value <0.05 was considered statistically significant. In
parallel, we also used gene set enrichment analysis (GSEA)
(59), based on the pre-ranked expression list, to annotate
transcriptomic profiles. We followed the standard proce-
dure described by GSEA user guide. The FDR for GSEA is
the estimated probability that a gene set with a given NES
(normalized enrichment score) represents a false-positive
finding and an FDR < 0.25 is considered to be statistically
significant. The Metascape (http://metascape.org) was used
to annotate DEGs. Terms with P < 0.05, minimum count 3
and enrichment factor >1.5 (enrichment factor is the ratio
between observed count and the count expected by chance)
were considered significant. The STRING database was
used to construct protein–protein interaction network and
disconnected nodes in the network were discarded.

Consensus clustering for 24 m6A regulators

We systematically investigated the full set of currently
known 24 m6A regulators (23) and utilized unsupervised
clustering to identified different m6A modification patterns
based on their expression in a given PCa cohort. The num-
ber of clusters was determined by the consensus clustering
algorithm in the ConsensusClusterPlus package (60) and a
permutation of 1000 times was used to stringently increase
our classification reliability.

http://m6A2target.canceromics.org/#/download
http://daehwankimlab.github.io/hisat2
http://homer.ucsd.edu/homer
https://github.com/taoliu/MACS
http://homer.ucsd.edu/homer/motif
http://metascape.org
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Cancer immunity cycle analysis and quantification of TME
cell infiltration

A previous study has conceptualized the anticancer immune
response as seven sequential steps: (i) release of cancer cell
antigens; (ii) cancer antigen presentation; (iii) priming and
activation; (iv) trafficking of immune cells to tumors; (v) in-
filtration of immune cells into tumors; (vi) recognition of
cancer cells by T cells; and (vii) killing of cancer cells. In
aggregate, these seven steps were referred to as the cancer
immunity cycle (61). Based on the gene markers specific
to each step, we used GSVA to estimate the activation or
activity of each step. For immune cell infiltration, a previ-
ously well-established compendium of gene signatures re-
lated to 28 specific immune cells (62) was used to quantify
the relative abundance of each tumor-infiltrating lympho-
cyte (TIL) subpopulation by GSVA. We utilized R package
ESTIMATE (63) to evaluate the ImmuneScore and Stro-
maScore in PCa TME.

Construction of the weighted m6A gene signature and
m6Avalue

Construction of the weighted m6A gene signature (reflect-
ing the overall m6A activity or level) was calculated based
on a linear Z-score combination of expression of 24 reg-
ulators. In particular, 4 genes (ALKBH5, FTO, ZC3H13
and IGF2BP2) downregulated in tumors versus normal tis-
sue and other 20 genes with a trend of upregulation in tu-
mors were considered negatively and positively weighted,
respectively (Figure 2A, right).

m6A gene =
∑

zscore 20 genes −
∑

zscore 4 genes.

Construction of the m6Avalue was performed as follows.
First, expression pattern of the 24 regulators well separated
pri-PCa into three clusters (m6A C1/2/3) at the popula-
tion level, and 407 core DEGs were identified (via collect-
ing the overlapping genes in comparisons of any two clus-
ters) as m6A phenotype-associated genes (Supplementary
Figure S3A). Then, we performed prognostic analysis for
each core DEG by a univariate Cox model and 87 genes
with significant prognosis (P < 0.05) were extracted for fol-
lowing analysis. Next, the m6Avalue was calculated based
on a linear combination of expression values (Z-score) of
the 87 genes, of which genes with hazard ratio (HR) >1 and
<1 contributed positively and negatively to m6Avalue, re-
spectively:

m6Avalue =
∑

zscore1 −
∑

zscore2,

where zscore1 refers to expression value of genes with HR
> 1 and zscore2 refers to expression value of genes with HR
< 1.

Association of m6Avalue with drug sensitivity

The transcriptomes of 469 cancer cell lines and the cor-
responding drug response information (i.e. IC50) of 24
anticancer drugs were downloaded from CCLE (Can-
cer Cell Line Encyclopedia) database (https://portals.

broadinstitute.org/ccle). The m6Avalue for each cell line was
calculated by the formula described earlier. Spearman cor-
relation was performed to estimate the association between
m6Avalue and drug response and a correlation with |r| > 0.1
and P-value <0.05 was considered significant.

Statistical analysis

All statistical analysis in our study were performed by R
4.1.0. Specifically, the m6A regulator co-expression analy-
sis, association between m6Avalue and selected signatures,
cancer immunity cycle and 28 TIL subpopulations were
performed by Pearson analysis (Figure 6A; Supplementary
Figures S2A and S6A). Quantitative data fitting normal dis-
tribution were compared by t-test; otherwise, the Wilcoxon
(for two groups) or Kruskal–Wallis (for more than two
groups) test was used. Chi-square or Fisher’s exact test
was performed to compare differences between categorical
variables. Kaplan–Meier survival analysis and Cox regres-
sion model were used to analyze the prognostic value of
m6Avalue by the packages ‘survival’ and ‘survminer’, and
the long-rank test was utilized to determine the significance.
The ‘survcutpoint’ function was applied to determine the
optimal cutoff for m6Avalue with maximum rank statistic.
The pROC package was used to estimate the specificity and
sensitivity of the m6Avalue model. Heatmaps showing gene
expression (Figures 2A, left, and B, left, and 5A; Supple-
mentary Figures S1D, S2E, left, and S5B) or signature ac-
tivity (Figures 1C and 4A and C–F; Supplementary Figures
S1E and G, S4C–E and S5D–G) were visualized based on
normalized Z-score values. For clinical outcome analyses
of the curated TCGA-PRAD cohort, two samples (TCGA-
HC-7740 and TCGA-HC-8265) were excluded due to du-
plicate existing for each sample in the cohort (Figures 2C
and 5B–E; Supplementary Figures S1C and S2C).

RESULTS

Genomic alternations of m6A regulators unclearly classify
PCa

A total of currently known 24 m6A regulators (9 writers, 2
erasers and 13 readers) (23) were investigated (Figure 1A).
Functional annotation of these 24 genes showed that, ex-
pectedly, they exclusively regulated cellular processes con-
centrating on RNA biology (e.g. RNA modification, stabil-
ity and translation) (Figure 1A). To explore the molecular
mechanisms underpinning the m6A signaling dysregulation
in PCa, we first examined genetic alterations in these reg-
ulators in pri-PCa. We mainly utilized the previously pub-
lished TCGA-PRAD cohort (11) throughout the study, as it
was curated. Among the 333 patients in this largest curated
pri-PCa cohort (11), CNV represented the main alteration
form (Figure 1B), with ZC3H13, YTHDC2 and FTO be-
ing the most deleted genes and VIRMA and YTHDF3 be-
ing the most amplified genes. Interestingly, the top deleted
and amplified genes often co-occurred with the deletion of
tumor suppressor genes and amplification of oncogenes, re-
spectively. For example, ZC3H13 and RB1 were colocalized
and codeleted on Chr13q (P < 0.001, one-sided Fisher’s ex-
act test) (Supplementary Figure S1A). On the other hand,

https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
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Figure 1. Mutational landscape of m6A regulators in human pri-PCa. (A) List of the full set of currently known 24 m6A regulators (left) and functional
network of the top 7 biological categories enriched in these regulators by Metascape analysis (right). (B) A comprehensive survey of genomic alterations in
24 m6A regulators in the curated TCGA clinical cohort in cBioPortal. Frequently amplified MYC (colored in red) is included as a reference gene. Each bar
represents the alteration status of an individual gene for a single patient and the percentage of alterations for each gene in the cohort is provided. Heatmap
presentation (C) and boxplot quantification (D) of enrichment of the representative cancer hallmarks from Molecular Signatures Database (MSigDB) by
gene set variation analysis (GSVA) in pri-PCa with (mutant group) or without [wild-type (WT) group] genomic alternations in m6A regulators. Within the
plots, the center lines represent median values, box edges are 75th and 25th percentiles, and dots denote the outliers. Significance was calculated by the
Wilcoxon test.

VIRMA and YTHDF3 were co-amplified with MYC on
8q (P < 0.001) (Figure 1B). Globally, we observed a weak
mutational co-occurrence relationship among 24 regula-
tors (Supplementary Figure S1B). Importantly, interroga-
tion of the TCGA pan-cancer cohort (n = 494) generated a
similar mutational landscape (Supplementary Figure S1A).
In aggregate, our data indicate that, albeit a low alteration
frequency at individual gene level (≤3 genes mutated at
a rate of >5% in indicated cohorts), m6A signaling, col-
lectively, represents a frequently mutated pathway in pri-
PCa, as 40% and 33% of patients recorded in the curated
TCGA cohort (11) and TCGA pan-cancer cohort, respec-
tively, harbor at least one mutation of one m6A regulator
(Figure 1B; Supplementary Figure S1A).

Somatic alternations are major drivers of cancer develop-
ment (64). Classification of patients with or without muta-
tions in these m6A regulators showed that the mutant group
displayed a nonsignificant trend of worse survival outcome,
but significantly higher GS, over the WT group (Supple-
mentary Figure S1C), suggesting a potential pro-oncogenic
role for the deregulated m6A pathway. Further, GSVA un-
raveled that many cancer hallmarks were dysregulated be-

tween these two groups (Figure 1C), with a noticeable pat-
tern of an enrichment of proliferation pathways (e.g. E2F
targets, G2M checkpoint and MYC targets) in the mutant
group. However, pathways of TGF�, p53 and apoptosis
were more activated in the WT group (Figure 1D), again
indicating that tumors with aberrant m6A signaling might
be more aggressive. To further characterize the molecular
difference between mutant versus WT groups, we identi-
fied a total of 132 DEGs (37 upregulated and 95 down-
regulated) (Supplementary Figure S1D). Gene Ontology
(GO) analysis revealed that male reproduction-related path-
ways were enriched in mutant tumors, whereas WT tumors
were more enriched for differentiation and TME-associated
pathways such as cancer-associated fibroblasts (CAFs) and
myofibroblasts (empowering muscle-like contractions), ex-
tracellular matrix (ECM) and immune cells (Supplementary
Figure S1D). Together with the GSVA results that multiple
stroma-regulatory pathways (e.g. TGF�, myogenesis, IL-6
and IL-2) were upregulated in WT tumors (Figure 1C), our
data implied that m6A signaling disturbance caused by ge-
nomic alterations may impact PCa progression via, at least
partially, reshaping the TME.
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Given the determinant role of TILs in both tumorigen-
esis and anticancer immunity elicited by immunotherapy,
we next dissected the tumor immune landscape between
the mutant and WT groups by GSVA of a well-established
compendium of gene signatures related to specific immune
cells (62). Globally, the immune landscape was similar in
two groups (Supplementary Figure S1E), with only a lim-
ited number of TIL subpopulations being different in abun-
dance (Supplementary Figure S1F). Consistently, calcula-
tion of the cancer immunity cycle via a web tool called TIP
(see the ‘Materials and Methods’ section) (61) indicated that
WT tumors exhibited only a slightly higher activity in step
7 of ‘killing cancer cells’ compared to mutant ones (Supple-
mentary Figure S1G), again indicative of a subtle difference
in TIL composition between these two groups.

Transcriptomic alternations and prognostic values of m6A
regulators

The CNVs ultimately affect gene expression (6). We next
compared the mRNA levels of all m6A regulators between
normal prostate and pri-PCa tissues in the curated TCGA
cohort (11). Among the 24 genes, 11 (including enzymatic
writer METTL3) were found upregulated and 3 (including
eraser FTO) downregulated in pri-PCa (Figure 2A), in line
with the CNV results that many of them were top deleted or
amplified (Figure 1B). Moreover, pairwise correlation anal-
ysis highlighted a significant, but non-category-specific (i.e.
writer, eraser or reader) co-expression pattern among the
majority of m6A regulators (Supplementary Figure S2A),
except that METTL3 negatively correlated with ZC3H13
and erasers (FTO and ALKBH5) due to their downreg-
ulation in PCa (Figure 2A). Together, these results indi-
cated, potentially, an overactivation of the m6A pathway in
PCa. To further explore the clinical relevance of m6A regu-
lators, we assessed their prognostic values in patient’s out-
come. At individual gene level, univariate Cox regression
analysis showed that METTL3, YTHDF1, HNRNPA2B1
and HNRNPC were risk factors, whereas ZC3H13 and
FTO were protective factors, of PCa (Supplementary Fig-
ure S2B). Survival analysis identified 13 out of 24 as prog-
nostic predictors, with 8 and 5 being classified as unfa-
vorable and favorable genes, respectively (Supplementary
Figure S2C). Unfavorable and favorable genes denoted a
gene whose higher expression correlated with poor and bet-
ter patient survival, respectively (6). Unsurprisingly, many
of these unfavorable or favorable genes were either up- or
downregulated in PCa (Figure 2A). Collectively, these find-
ings implicated a pro-oncogenic role of the aberrant m6A
pathway in PCa.

Distinct m6A modification patterns classify PCa into three
clusters with distinct clinical features

The m6A modification pattern (i.e. m6A homeostasis) is
governed by the expression repertoire of m6A regulators
(23). Recent studies have reported significant differences be-
tween m6A modification patterns in different cancer types,
where they contributed to tumorigenesis (40,41,65). To fur-
ther dissect the potential functions played by the m6A path-
way in PCa, we utilized consensus clustering (based on ex-
pression of the 24 regulators) to stratify the curated TCGA

cohort (11) into different clusters, with each representing
qualitatively a different m6A modification status. By trying
different k-means (Supplementary Figure S2D), three clus-
ters were identified (with a clear trend that many writer and
reader genes were upregulated in C3), including 139 patients
in cluster 1 (m6A C1), 39 patients in cluster 2 (m6A C2) and
155 patients in cluster 3 (m6A C3) (Figure 2B, left; Sup-
plementary Table S3). Association of clinical features re-
vealed that tumor aggressiveness gradually increased from
cluster C1 to cluster C3, in that tumors in C1 and C3 had
the lower and higher scores of GS, proportion of advanced
tumor stage T3/4, and a better or a worse survival out-
come (Figure 2C), respectively. C2 represented a medium
cluster with multiple aspects similar to C1, and contained
relatively fewer patients; we thus subsequently mainly fo-
cused on C1 and C3 for comparisons. As expected, 16 out
of 24 m6A regulators were found differentially expressed
among these three clusters (Figure 2B, right). Notably, and
consistent with the prognostic values of m6A clusters, two
regulators (CBLL1 and FTO) upregulated in C1 had favor-
able effects, whereas the other eight regulators (METTL3,
RBM15B, ELAVL1, FMR1, HNRNPA2B1, HNRNPC,
YTHDC1 and YTHDF1) upregulated in C2 or C3 (versus
C1) had unfavorable effects, on patient’s survival (Supple-
mentary Figure S2C). Collectively, these results established
clinically C3 as the most aggressive, and C1 as the indolent,
pri-PCa cluster.

To solidify our findings, we also interrogated the uncu-
rated TCGA pan-cancer PCa cohort (n = 494) and observed
almost the same results (Supplementary Figure S2E and F).
Expression of the 24 regulators well separated patients into
three clusters (Supplementary Figure S2E), with C1 and C3
being the least and most aggressive clusters, respectively, in
terms of GS, tumor stage and overall survival (Supplemen-
tary Figure S2F). Unsurprisingly, 18 out of 24 m6A regula-
tors were differentially expressed among these clusters (Sup-
plementary Figure S2E, right). Importantly, 98.7% of sam-
ples clustered in C3 in the curated TCGA cohort were also
classified in C3 in the uncreated TCGA pan-cancer cohort
(Supplementary Figure S2G), validating our strategy of fo-
cusing on the curated cohort (11). Moreover, we further ex-
tended our analysis to other two PCa datasets (GSE21034
and GSE116918), which had gene expression and clinical
information available. For example, in the GSE116918 co-
hort (n = 248), three m6A modification patterns were iden-
tified (Supplementary Figure S2H) and, again, tumors clus-
tered in C1 and C3 represented the least and worst aggres-
sive ones, respectively (Supplementary Figure S2I). Similar
result was also obtained with the Taylor (GSE21034) cohort
(Supplementary Figure S2J).

Molecular pathway characterization of m6A clusters

We next sought to illustrate the transcriptomic differences
among the three m6A Clusters (i.e. three different m6A
modification patterns). By performing the paired DEG
analysis, we identified 1082 DEGs in total between any two
of these clusters (termed as all DEGs) (Figure 3A; Supple-
mentary Table S4). Among them, 407 genes were commonly
dysregulated in at least two comparisons (core DEGs) (Sup-
plementary Figure S3A), and we thus reasoned these 407
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Figure 2. Distinct m6A modification patterns classify PCa into three clusters with distinct clinical features. (A) Heatmap presentation (left) and boxplot
quantification (right) of the expression pattern of 24 m6A regulators between normal prostate (n = 52) and pri-PCa (n = 333) tissues. Gene expression
is normalized by Z-score, with red and blue denoting a high and a low expression, respectively. Up- and downregulated genes are colored in red and
blue, respectively (right). Within the plots, the center lines represent median values, box edges are 75th and 25th percentiles, and dots denote the out-
liers. Significance was calculated by the Wilcoxon test. (B) The expression repertoire of 24 m6A regulators classifies pri-PCa into three clusters (termed
m6A Cluster1/2/3) in the curated TCGA cohort (left), with an overall upregulation of many writer and reader genes and downregulation of eraser genes
in C3 versus C1. Boxplot (right) showing difference in expression of 24 m6A regulators among three m6A Clusters. Significance was calculated by the
Kruskal–Wallis test. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001. (C) Comparison of GS (left), tumor stage (middle) and patients’ survival
(right) showing m6A clusters C1 and C3 as the least and most aggressive PCa subtypes, respectively. The proportion of patients clustered into m6A C2/3
in advanced T3/4 stages (67.5% + 12.5% = 80%) is much higher than that in T1 (46.2% + 4.7% = 50.9%) and T2 (40.5% + 15.3% = 55.8%) stages (middle).
Significance was calculated by the Kruskal–Wallis test (left), chi-square test (middle) and long-rank test (right), respectively. A ‘jittered’ function of ggplot2
was used for GS visualization.
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Figure 3. Molecular and immunogenic properties of distinct m6A clusters. (A) Heatmap of DEGs identified among the three m6A clusters in the curated
TCGA cohort. (B) Overlapping of DEGs identified in C3 versus C1 and potential target genes of distinct m6A regulators reported in the m6A2Target
database. The P-values were calculated using a hypergeometric test. (C) Comparison of the scores of a weighted m6A gene signature in tumors among the
three m6A clusters. (D) GO analysis of upregulated genes in C3 versus C1 by Metascape. Top enriched GO terms were displayed and grouped into four
functional categories (cell cycle, proliferation, oncogenic pathways and mobility). The P-values were calculated based on the cumulative hypergeometric
distribution. (E) Five main types of AS patterns analyzed in the present study. A3, alternative 3′ splice sites; A5, alternative 5′ splice sites; MX, mutually
exclusive exons; SE, exon skipping; IR, intron retention. (F) Alterations in AS landscape among three m6A clusters. Shown are splicing patterns and the
number of DSEs decoded by rMATS. (G) Number of potential neoantigens generated per tumor in different m6A clusters. (H) Number of CDR3s (upper)
and CDR1/2s (bottom) defined by the TRUST4 algorithm in RNA-seq data. All analyses were based on the curated TCGA cohort. Significance was
calculated by the Kruskal–Wallis test (C, G, H).

genes as m6A phenotype-associated genes. Protein–protein
interaction analysis indicated that these core DEGs formed
an integrated network centered at ACTN2, MYH6, CDK1,
TOP2A, ORM1, UTS2B and other genes (Supplementary
Figure S3B). GO annotation revealed that this network
primarily regulated biological processes linked to TME,
metabolism, SC and development, stress response and sig-
nal transduction (Supplementary Figure S3C), highlight-
ing a broad impact of m6A phenotype-associated genes.
Recently, a m6A2Target database was built to report po-
tential targets of 20 m6A regulators derived from high-
throughput studies (55). Overlapping of DEGs derived
from m6A Clusters with genes deposited in the m6A2Target
database showed that 47% of all DEGs and 45% of core
DEGs were significantly regulated by m6A regulators (hy-
pergeometric test, Supplementary Figure S3D). Focusing
on the two extreme clusters, pair comparison of C1 and
C3 identified 460 DEGs (Supplementary Table S4). Inter-
estingly, overlapping of them with the potential targets of
individual m6A regulators indicated that 240 upregulated
genes in C3 were more likely regulated by m6A regulators
compared with the 220 downregulated genes (Figure 3B;
Supplementary Table S5). This was consistent with the fact

that the m6A pathway was more activated in C3, reflected
by the higher signature score of weighted expression of 24
m6A regulators (Figure 3C). Moreover, functional annota-
tion showed that the upregulated genes in C3 were mainly
enriched in tumor-promoting pathways, such as cell cycle
progression and proliferation, multiple known oncogenic
pathways and cell migration (Figure 3D), consistent with
a more aggressive phenotype of C3 over C1. Interestingly,
the relatively indolent C1 tumors were primarily driven by
pathways associated with TME, metabolism, differentia-
tion and cell adhesion (Supplementary Figure S3E). Partic-
ularly, TME was the most enriched category in low-m6A-
activity C1, again suggesting a pro-oncogenic role for m6A
signaling via negatively shaping TME (also see later). No-
tably, C2 was nonsignificantly different from C1 in both
survival and tumor stage analysis (Figure 2C); we thus ob-
served subtle difference between up- and downregulated
DEGs being identified as potential targets of m6A regula-
tors (Supplementary Figure S3F and Supplementary Table
S5). Currently, there is little study examining the global m6A
modification landscape in clinical PCa specimens; hence,
m6A2Target contained none PCa-relevant data. To further
strengthen our findings with m6A2Target analysis, we per-
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formed, preliminarily, m6A-seq in three PCa tissues and
identified a total of 14 354 genes bearing m6A peaks. Over-
lapping of DEGs between C3 and C1 with this clinically
relevant m6A targets showed a 34.13% overlap (Supplemen-
tary Figure S3G), a percentage close to an estimated ∼40%
of human genes that can be m6A modified (55).

Splicing and immunogenic properties of distinct m6A modifi-
cation patterns

Splicing dysregulation is a hallmark of cancer (6,66). We
have recently demonstrated that the severity of splicing ab-
normalities correlates with disease progression, and estab-
lished intron retention (IR) as a hallmark of PCa stemness
and aggressiveness (6). We next performed AS analysis be-
tween any two of the three m6A clusters (Figure 3E), and
defined a total of 261, 215 and 55 DSEs in comparisons of
C3 versus C1, C3 versus C2 and C2 versus C1, respectively
(Figure 3F). Particularly, more AS events (especially the IR
and skipping exon) were found in C3 relative to C1 or C2
(Figure 3F; Supplementary Figure S3H), potentially lead-
ing to generation of neoantigens. Using a recently published
cancer antigenome across TCGA solid cancers including
PCa (62), we found a trend, although not significant (P =
0.06), that the number of neoantigens increased along with
tumor progression from C1 to C3 (Figure 3G). Neoanti-
gens are attractive candidates for developing cancer vac-
cines, but their recognition by the immune system depends
on efficient presentation. Due to a lack of global character-
ization of neoepitopes in TCGA-PRAD samples, we took
another computational approach to infer neoantigen load
in m6A Clusters by reconstituting both the B- and T-cell
receptor repertoires via a newly developed TRUST4 algo-
rithm (67). To our surprise, the number of complementary-
determining region 3 (CDR3) clones decreased from C1 to
C3, so as the CDR1 and CDR2 on the V sequence (Figure
3H). This discrepancy between a higher number of poten-
tial neoantigens and a lower number of immune receptor
repertoires highlighted a defect in the antigen presentation
process in C3 tumors. In support, GSVA of four extracted
signatures of antigen presentation indicated that they were
all gradually decreased from C1 to C3 (Supplementary Fig-
ure S3I), in line with the TME analysis presented later.

Different m6A modification patterns characterized by cancer
hallmarks and TME

Next, GSVA enrichment analysis was performed against
the hallmark gene set in MSigDB to comprehensively dis-
sect the biological properties associated with the three
m6A Clusters. A number of protumorigenic signatures (e.g.
MYC targets, DNA repair, E2F targets and G2M check-
point) were significantly enriched in C2 and C3 (Figure
4A); however, paradoxically, some antitumor pathways (e.g.
p53 pathway, apoptosis and reactive oxygen species path-
way) were overrepresented in C1, consistent with the over-
mentioned results that C1 and C3 were the least and
most aggressive clusters, respectively. Interestingly, multiple
immune-related (e.g. IFN� response, IL-6, IL-2 and TNF-
� signaling) and differentiation/metabolism-related (e.g.

estrogen/androgen response, protein secretion and myoge-
nesis) signatures were exclusively enriched in C1 (Figure
4A). To further confirm these findings, we extended our
analysis to GSEA of 6290 curated gene sets in MSigDB
against comparative transcriptomes of C3 versus C1, and
found that pathways related to proliferation, cancer pro-
motion, SCs and RNA metabolism were significantly en-
riched in C3, whereas pathways related to adhesion, cancer
inhibition, differentiation and TME were overrepresented
in C1 (Figure 4B). Notably, these results were generally in
line with GO analysis of the limited number of DEGs (Fig-
ure 3D; Supplementary Figure S3E). AR is obligatory for
pri-PCa growth and continues to be expressed and function-
ally important in CRPC (68). ADT promotes stemness (69)
and CRPCs are generally stem-like regardless of AR expres-
sion status (3). Also, canonical AR transcriptional activity
decreases along with tumor progression (6,9). We next per-
formed a focused GSVA on relevant pathways. As expected,
compared to C1, clusters C2 and C3 were more stem-like
[evidenced by enrichment of three (2-4) stemness signatures]
and proliferative [evidenced by enrichment of four (5-8) pro-
liferation signatures] (Figure 4C). Of note, examination of
an AR signature (a panel of 30 genes that were previously
reported as defining the pathway) (57) and two well-known
AR target genes (KLK3 and FKBP5) clearly demonstrated
that AR activity was gradually decreased from C1 to C3
(Figure 4C). Collectively, these data defined C1 as ARhigh

and relatively indolent cluster and C2/C3 as ARlow stem-
like and highly proliferative clusters.

Due to our frequent observation that the deregulated
m6A modification patterns impacted TME (especially the
immune category) the most (Figure 4B; Supplementary Fig-
ures S1D and S3E), we next focused on the immune land-
scape. Globally, multiple immune-activating processes (e.g.
inflammatory response, IFN� response, allograft rejection
and TNF-� signaling) were exclusively enriched in C1 (Fig-
ure 4A and B). Consistently, cancer immunity cycle anal-
ysis revealed that C1 displayed prominently higher activ-
ity over C2 and C3 in five out of seven immune steps, in-
cluding infiltration of immune cells into PCa, cancer anti-
gen presentation, trafficking of immune cells and killing of
cancer cells (Figure 4D). In support, ESTIMATE quantifi-
cation of the overall TILs showed that C1 had the highest
ImmuneScore (Supplementary Figure S4A). To gain details
in cellular composition of TME, we quantified the abun-
dance of 28 TIL subpopulations based on previously estab-
lished cell type-specific signatures (62). As showed in Figure
4E, 24 out of 28 immune subsets were significantly differ-
ent in abundance among the three m6A Clusters. In par-
ticular, C1 and C3 had the highest and lowest abundances
in 16 and 23 immune subsets, respectively (Figure 4E). For
example, C1 and C2 exhibited higher scores for antitumor
subsets compared to C3, including activated B and dendritic
cells, central memory CD4 T cells, effector memory CD8 T
cells, natural killer (NK) cells and NK T cells (Figure 4E).
Notably, some immunosuppressive subsets also appeared
in high abundance in C1 and C2 (e.g. immature dendritic
cells, monocytes, neutrophils, regulatory T cells and type 2 T
helper cells), which could be explained by a global increase
in TILs in these clusters.
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Figure 4. Different m6A modification patterns characterized by cancer hallmarks and TME. (A) Heatmap showing enrichment of the representative
cancer hallmarks from MSigDB by GSVA in three m6A clusters in the curated TCGA cohort, with P-values labeled on the left. (B) Comparative GSEA of
transcriptomes in C3 versus C1 showing C3 as a more proliferative and stem-like cluster and C1 as a more differentiated, less migrative and stroma-enriched
cluster. The FDR for GSEA is the estimated probability that a gene set with a given NES represents a false-positive finding and an FDR < 0.25 is considered
to be statistically significant. (C) Pathway analysis of different m6A modification patterns. Heatmap presentation (left) and boxplot quantification (right,
upper) of the enrichment of indicated signatures among three m6A clusters. The expression dynamics of two known AR target genes (KLK3 and FKBP5)
are also shown (right, bottom). (D) Cancer immunity cycle analysis by GSVA showing C1 and C3 as the clusters with the highest and the lowest anticancer
immunity, respectively. (E) Heatmap showing enrichment of the 28 TIL subpopulations calculated by GSVA in three m6A clusters, with P-values labeled
on the left. Red and blue in scale bar denote relatively high and low abundances of subpopulations, respectively. (F) Heatmap presentation (upper) and
boxplot quantification (bottom) of the enrichment of indicated signatures among three m6A clusters. Within the plots, the center lines represent median
values, box edges are 75th and 25th percentiles, and dots denote the outliers. (G) Distribution of four previously reported TME subtypes in three m6A
lusters, with P-value (chi-square test) labeled on top. IE/F: immune-enriched, fibrotic; IE: immune-enriched, nonfibrotic; F: fibrotic; D: immune-depleted.
IE/F and F are fibrotic, while IE and D are nonfibrotic. All analyses were based on the curated TCGA cohort (n = 333), and significance was all calculated
by the Kruskal–Wallis test (A, C–F).
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Besides cancer and immune cells, TME also contains sur-
rounding blood vessels, fibroblasts and the ECM (70). We
noticed that tumors in C3 cluster had the highest tumor pu-
rity followed by C2 and C1 clusters (Figure 4F), implying an
opposite proportion of stroma in these clusters. In support,
the StromaScore (63) gradually decreased from C1 to C3
(Supplementary Figure S4B), and the stroma activity was
high in C1 (followed by C2 and C3), evidenced by elevated
enrichment of stroma-related pathways such as epithelial–
mesenchymal transition, pan-fibroblast TGF� response sig-
nature, angiogenesis, CAFs and matrix (Figure 4F). We
thus defined C1 as a high-fibrotic cluster, whereas the other
two as low-fibrotic clusters. Recently, a pan-cancer analysis
has categorized >10 000 tumors in TCGA into four TME
subtypes (based on a set of 29 knowledge-based functional
gene expression signatures): immune-enriched and fibrotic
(IE/F), immune-enriched but nonfibrotic (IE), fibrotic (F)
and immune-depleted (D) (71). Accordingly, distribution of
our m6A Clusters indicated that the fibrotic (IE/F and F)
proportion of tumors classified in C1 (60.8%) was approx-
imately twice as much as that in C2 (31.6%) or C3 (28.4%)
(Figure 4G), supporting our GSVA results (Figure 4F). It
was worth noting that the DNA repair activity was signif-
icantly high in C2 and C3 compared with C1 (Figure 4F),
indicative of proliferation and consistent with cancer hall-
mark analysis (Figure 4A). Importantly, and expectedly, a
detailed interrogation of the uncurated TCGA pan-cancer
cohort generated similar results. For instance, 19 out of 28
immune subsets were different in their abundance among
m6A Clusters, with a clear decreasing trend from C1 to C3
(Supplementary Figure S4C). Consistently, five out of seven
anticancer immune steps were low in activity in C3 relative
to C1 (Supplementary Figure S4D). Pathway analysis indi-
cated a more stem-like and proliferative phenotype for C2
and C3 (Supplementary Figure S4E), whereas C1 was more
fibrotic (Supplementary Figure S4F).

Construction of m6Avalue based on m6A phenotype-
associated genes

Considering the intratumoral heterogeneity in PCa and the
conservation of m6A-mediated biology in a given tumor
type, and to further dissect the m6A-associated phenotypes,
we performed consensus clustering analysis on 407 core
DEGs (Supplementary Figure S5A) to optimally classify
tumors into three distinct subgroups (Figure 5A), namely
m6A S1 (124 patients), m6A S2 (148 patients) and m6A S3
(61 patients), respectively. In line with the m6A Clusters
(Figure 2C), the aggressiveness of m6A Subgroups in-
creased from S1 to S3, evidenced by gradually elevated
GS (Figure 5B), advanced tumor stage (Figure 5C) and
worse survival outcome (Figure 5D). Expectedly, most of
the m6A regulators were dysregulated among these sub-
groups (Supplementary Figure S5B), and the patient dis-
tribution in m6A Subgroups was in high concordance with
that in m6A Clusters (especially the S1 and S3 to C1 and C3,
correspondingly) (Supplementary Figure S5C). Molecular
interrogation of m6A Subgroups revealed, generally, simi-
lar results with what was observed in m6A Clusters (Fig-
ure 4), in terms of cancer hallmarks (Supplementary Fig-
ure S5D), stemness/proliferation/stroma-related signatures

(Supplementary Figure S5E), cancer immune cycle analysis
(Supplementary Figure S5F) and the 28 immune subpopu-
lations (Supplementary Figure S5G). Briefly, compared to
S2 and S3, the S1 subgroup was relatively indolent with ob-
vious enrichment of stroma- and immune-related pathways,
22 of 28 TIL subpopulations, higher AR activity and anti-
cancer immunity.

Population-based classifiers cannot directly apply to in-
dividual patients for predicting a pattern of m6A methyla-
tion landscape. To facilitate a potential clinical use of our
PCa classifications, we constructed m6Avalue, a scoring sys-
tem collectively quantifying the m6A modification patterns
based on a weighted 87-gene signature shrank down from
the 407 m6A-associated genes. These 87 genes were selected
due to their association with clinical patient survival (see the
‘Materials and Methods’ section). Calculation of m6Avalue
in m6A Clusters and m6A Subgroups showed that it in-
creased along with tumor aggressiveness from C1 to C3 or
S1 to S3 (Supplementary Figure S5H), validating our al-
gorithm. Unsurprisingly, m6Avalue separated pri-PCa into
two groups, with the m6Avaluehigh (relative to m6Avaluelow)
group being more aggressive (Figure 5E). Multivariate Cox
regression analysis confirmed that m6Avalue could serve
as an independent prognostic biomarker for patient out-
comes, among other clinical parameters (Figure 5F). In
support, ROC curve further demonstrated the predictive
accuracy of m6Avalue (Figure 5G). Besides the curated
TCGA cohort, we also validated our m6Avalue model in
other two independent datasets, GSE21034 (Figure 5H
and I) and GSE116918 (Supplementary Figure S5I and
J). In both datasets, m6Avalue could function as an inde-
pendent prognostic factor, and the m6Avaluehigh (relative
to m6Avaluelow) group was correlated with adverse tumor
grade and worse prognosis, suggesting the robustness of
our m6Avalue model. Importantly, albeit our findings were
made on pri-PCa due to the intrinsic data properties, paired
comparison indicated that the m6Avalues in CRPC samples
(12) were significantly higher than those in pri-PCa sam-
ples (Supplementary Figure S5K), further strengthening the
idea that m6Avaluehigh tumors are more aggressive (and per-
haps treatment resistant).

m6Avalue stratifies PCa with distinct molecular and pheno-
typic characteristics

To better illustrate the characteristics of m6Avalue, we first
performed a global correlation analysis between m6Avalue
and a selected set of key signatures/pathways. As shown in
Figure 6A, m6Avalue was positively correlated with the ac-
tivity of stemness, proliferation and DNA repair, while neg-
atively correlated with AR and stroma-centered signatures.
Notably, m6Avalue was also negatively correlated with the
anticancer immunity and abundance of the majority of 28
immune subpopulations in pri-PCa (Supplementary Figure
S6A), establishing again m6Avalue as a predictor of low
immunity in TME. Previously, the TCGA landmark paper
(11) has categorized pri-PCa into three clusters based on
tumor transcriptomes (mRNA clusters 1–3), and reported
that, genomically, 74% of pri-PCa belonged to either one
of seven subtypes defined by gene fusions (ERG, ETV1/4
and FLI1) or mutations (SPOP, FOXA1 and IDH1). In our
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Figure 5. m6Avalue clearly stratifies PCa patients with distinct clinical outcomes. (A) The expression repertoire of 407 core DEGs classifies pri-PCa into
three subgroups (m6A S1/2/3). Comparison of GS (B), tumor stage (C) and patient’s survival outcome (D) showing S1 and S3 being the least and most
aggressive PCa subgroups, respectively. The proportion of patients clustered into m6A S2/3 in advanced T2 (52.3% + 18.0% = 70.3%) and T3/4 (47.5% +
22.5% = 70%) stages is much higher than that in T1 (32.1% + 16.0% = 48.1%) stage (C). Significance was calculated by the Kruskal–Wallis test (B), chi-
square test (C) and long-rank test (D). (E) Comparison of GS (left), tumor stage (middle) and patient’s survival outcome (right) showing the m6Avaluehigh

group being more aggressive. Significance was calculated by the Wilcoxon test (left), chi-square test (middle) and long-rank test (right). (F) Multivariate
Cox regression analysis showing m6Avalue as an independent prognostic factor among other indicated clinical parameters. The length of the horizontal
line represents the 95% confidence interval for each group. The vertical dotted line denotes the HR of all patients. (G) The predictive value of m6Avalue
in the curated TCGA cohort measured by ROC curves. ROC, receiver operating characteristic; AUC, area under the curve. (H and I) Validation in an
independent Taylor dataset. Comparison of GS (H, left, Wilcoxon test), tumor stage (H, middle, chi-square test) and patients’ survival outcome (H, right,
long-rank test) showing the m6Avaluehigh group being more aggressive. Notably, 10 patients without full information of GS, clinical stage and survival time
were omitted. Multivariate Cox regression analysis showing m6Avalue as an independent prognostic factor among other indicated clinical parameters (I).

analysis, we found that the distribution of these genomic
subtypes was similar in the m6Avaluehigh and m6Avaluelow

groups (Figure 6B), except that the m6Avaluehigh group con-
tained a bit higher fraction of tumors bearing ETV1 fusion
and SPOP mutation. Furthermore, the TCGA mRNA clus-
ter 3 had the lowest m6Avalue (Figure 6C), and consistently
had a better prognosis (Supplementary Figure S6B). The
somatic CNV (SCNV) is associated with PCa recurrence
and metastasis, and pri-PCa have been clustered previously
into three clusters (Quiet, Some and More) based on the
SCNV burden (11). Interestingly, we found that m6Avalue
was positively correlated with SCNV burden (Figure 6D), in
line with enhanced genome instability and, simultaneously,
DNA repair activity in advanced PCa.

In a recent pan-cancer study (72), all human tumors re-
gardless of origin can be categorized into six immune sub-
types (IS1–IS6), and PCa mainly fall into IS1, IS3 and IS4.

Notably, the IS1 was characterized by elevated expression
of angiogenic genes and high proliferation rate; IS3 by low
proliferation and SCNV burden but with high Th17 and
Th1 activity; and IS4 by a prominent macrophage signature
and a repressed Th1 activity (72). Particularly, IS3 corre-
lated with longer survival time in multiple cancer types, in-
cluding PCa (72). When we compared the m6Avalue in these
immune subtypes, we found that IS3 and IS4 had the lowest
and highest m6Avalues (Figure 6E) and, consistently, a bet-
ter and a worse prognosis, respectively (Supplementary Fig-
ure S6C). Interestingly, the difference in m6Avalue among
pri-PCa specimens was fibrotic phenotype specific (similar
m6Avalue for IE/F and F) rather than immune-enriched
phenotype specific (unsimilar m6Avalue for IE/F and IE),
with nonfibrotic phenotypes possessing higher m6Avalues
(Figure 6F). Accordingly, when we regrouped the pri-PCa
into fibrotic (F and IE/F) and nonfibrotic (IE and D) sub-
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Figure 6. m6Avalue separates TME into fibrotic and nonfibrotic phenotypes. (A) Pearson correlation of m6Avalue with indicated signatures. Positive and
negative correlations are colored in red and blue, respectively. (B) Comparison of the eight prevalent PCa genomic subtypes reported by TCGA (11)
showing similar patterns between the m6Avaluehigh and m6Avaluelow groups. Violin plot showing difference in m6Avalue of tumors classified in TCGA
mRNA cluster (C) and SCNA cluster (D) (11), recently reported Immune Subtype (E) (72) and TME subtype (F) (71). Significance was calculated by the
Kruskal–Wallis test. (G) The Kaplan–Meier plot showing a worse survival outcome associated with the nonfibrotic phenotype. The P-value was calculated
using the long-rank test. (H) Distribution of four previously reported TME subtypes in the m6Avaluehigh and m6Avaluelow groups with P-value (chi-square
test) labeled on top. Prostate tumors with higher m6Avalues tend to exhibit nonfibrotic phenotype (79.0% versus 40.5%). IE/F: immune-enriched, fibrotic;
IE: immune-enriched, nonfibrotic; F: fibrotic; D: immune-depleted. IE/F and F are fibrotic, while IE and D are nonfibrotic. All analyses were performed
based on the curated TCGA cohort (n = 333).

groups, we found that the nonfibrotic subgroup was more
aggressive, evidenced by the higher GS and tumor stage
(Supplementary Figure S6D) and a worse survival outcome
(Figure 6G). In support, the m6Avaluehigh group had a high
proportion of tumors with nonfibrotic phenotype (79% ver-
sus 40.5%; Figure 6H), indicative of fibrotic phenotype as a
marker for indolent PCa.

The m6Avalue correlates with therapeutic effects of small-
molecule inhibitors

Inspired by the crosstalk between m6Avalue and many vi-
tal cancer-related pathways, together with an aim to ex-
tend the potential usage of m6Avalue in therapeutic settings,
we next explored whether the intrinsic m6Avalue of cancer
cells predicts drug response. Utilizing the pan-cancer CCLE
database (73), we calculated the m6Avalue for each cell
line and identified 12 significant correlations (Figure 7A).
Specifically, the IC50 values of six drugs targeting EGFR,
ABL, RAF and MEK were positively correlated with
m6Avalue (indicating drug resistance), whereas the IC50 val-

ues of another six drugs targeting TOP1, HDAC, GS, ALK
and CDK4 were negatively correlated with m6Avalue (indi-
cating drug sensitivity) (Figure 7A), pointing potential ther-
apeutic strategies that aggressive PCa might be more sen-
sitive to these drugs. Although the upregulation of EGFR
has been observed in, and causally associated with, many
cancers (74,75), our data showed that m6Avalue negatively
correlated with EGFR expression in pri-PCa (Figure 7B)
and, consistently, patient’s tumor with higher expression
of EGFR had lower GS and tumor stage (Supplementary
Figure S7A) and ultimately a better prognosis (Figure 7C).
These results urged a cancer type-specific effect of EGFR
expression and thus EGFR inhibitors on tumorigenesis.
CDK4 plays an essential role in cell cycle progression and
inhibitors of CDK4/6 have been broadly used as an an-
titumor strategy (76). In pri-PCa, the m6Avalue was sig-
nificantly and positively correlated with CDK4 expression
(Figure 7D). As expected, CDK4 played an oncogenic role
in PCa as its higher expression predicted higher GS and tu-
mor stage (Supplementary Figure S7B), and a worse out-
come (Figure 7E). To provide proof-of-principle evidence,
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Figure 7. The m6Avalue predicts responses to both small-molecule inhibitors and immunotherapies. (A) Spearman correlation of m6Avalue with IC50 of
different compounds reported in the CCLE database. Pairwise results were filtered by correlation >0.1 or <−0.1 with P < 0.05. Compounds showing
positive and negative correlations with m6Avalue were considered as resistant (red) and sensitive (blue) drugs. Pearson correlation of expression of EGFR
(B) or CDK4 (D) with m6Avalue in the curated TCGA cohort. The upper and right margins denote the distribution of gene expression and m6Avalue,
respectively. Kaplan–Meier analysis showing high levels of EGFR (C) and CDK4 (E) being correlated with a better and a worse patient survival, respec-
tively. (F) Cell viability (MTT) assay in indicated cells treated with TAE684 (top) or PD-0332991 (bottom) for 4 days. Data represent mean ± SD from
a representative experiment with four technical repeats and the experiment was replicated two times with similar results. (G) Morphological changes of
indicated cells treated with TAE684 for 4 days. Scale bar, 100 �m. The low m6Avalue is associated with a better response to immunotherapies in an anti-
CTLA-4 CRPC cohort (H) and three independent melanoma cohorts [GSE78220 (anti-PD-1, I), GSE91061 (anti-PD-L1, J) and GSE100797 (adoptive
T-cell therapy, K)]. Shown are survival analysis (left) and the fraction of patients with clinical responses to treatment (right) in low or high m6Avalue groups
for each cohort. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. Significance for survival analysis and patient
fraction distribution were calculated by the long-rank test and chi-square test, respectively.

we experimentally tested the cell growth inhibitory effect
of ALK (TAE684) and CDK4 (PD-0332991) inhibitors in
well-known indolent LNCaP and aggressive PC3 lines (6),
finding that PC3 (versus LNCaP) cells were more sensitive
to these targeted therapies (Figure 7F). Interestingly, we ob-
served that TAE684 induced cell aggregation in LNCaP,
while cell death in PC3, cells (Figure 7G).

The m6Avalue predicts immunotherapeutic efficacy

Having established a direct link between the global m6A
modification pattern and immune landscape in PCa in
our multilayer analyses, we next sought to define whether

m6Avalue could predict patients’ responses to immunother-
apy. In PCa, datasets with available information of both
clinical responses to immunotherapies and survival/gene
expression data were scanty. Recently, a clinical trial
with anti-CTLA-4 (i.e. ipilimumab) in 30 patients with
metastatic CRPC was conducted, with stable disease and
progressive disease being defined as beneficial and non-
beneficial responses, respectively (44). When we stratified
the small cohort based on m6Avalue, we found that the
m6Avaluelow group survived better and had a higher propor-
tion of patients with stable disease (Figure 7H). To further
validate our results, we utilized another three melanoma co-
horts treated with different ICBs. In two anti-PD-1 datasets
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(GSE78220 and GSE91061), m6Avalue well separated the
cohort into two groups (Supplementary Figure S7C) and
patients with lower m6Avalues responded better to im-
munotherapy and thus survived longer (Figure 7I and J).
Comparison of the well-known immunotherapeutic tar-
gets (i.e. PD-1, PD-L1 and CTLA-4) showed similar ex-
pression patterns, with PD-L1 tending to upregulate in
the m6Avaluelow versus m6Avaluehigh group (Supplemen-
tary Figure S7D). Examination of another adoptive T-cell
therapy cohort (GSE100797) generated similar results (Fig-
ure 7K; Supplementary Figure S7E), except that both PD-
L1 and CTLA-4 were significantly overexpressed in the
m6Avaluelow group (Supplementary Figure S7F). Collec-
tively, our data strongly established m6Avalue as a reliable
biomarker predicting immunotherapy response in multiple
cancer types.

DISCUSSION

As the most abundant chemical modification present in
multiple RNA species (especially mRNA), m6A plays key
roles in almost every aspect of RNA metabolism, as well
as in a variety of physiological and pathological processes
(22). Although there is limited evidence (based on individ-
ual gene studies) implicating m6A regulators in PCa biol-
ogy, study of the m6A pathway in PCa generally lags when
compared to other cancer types (e.g. leukemia and breast)
(77). Currently, a comprehensive analysis that integrates the
full set of recognized m6A regulators that better reflects the
m6A methylation patterns in PCa is lacking. In this study,
by comprehensively annotating the genomic and transcrip-
tomic alterations of 24 m6A regulators and the repertoire of
m6A phenotype-associated genes in pri-PCa, we have made
several significant (and PCa-specific) findings (also see dis-
cussion in the Supplementary Data). First, m6A regulators
constitute a frequently mutated pathway (albeit a very low
alteration frequency at individual gene level) at the popu-
lation level, indicating an involvement of m6A in PCa. No-
tably, the mutational landscape of m6A regulators fails to
stratify PCa dramatically, suggesting mutation in m6A reg-
ulators as a nonsignificant mechanism (versus gene expres-
sion regulation) driving tumorigenesis. Second, we unveil
that many m6A regulators are not only differentially ex-
pressed in PCa (versus normal tissues) but also prognos-
tic, highlighting a utility of m6A regulators as prognostic
biomarkers. Strikingly, the expression repertoire of 24 regu-
lators elegantly classifies TCGA-PRAD and other three in-
dependent cohorts into three clusters with distinct molecu-
lar and clinical features. In particular, m6A C1 and m6A C3
are, comparatively, the indolent and progressive clusters, re-
spectively. We also demonstrate the superior design of our
classification by cross-comparison with previously reported
classifications [such as TCGA (11)]. Third, molecular char-
acterization of m6A Clusters reveals that m6A methylation
modification patterns predominantly impact TME, espe-
cially the immune landscape. Both the anticancer immunity
and abundance of 28 TIL subsets are significantly higher
in C1 than in C3, indicating an inflamed TME for C1 tu-
mors. Interestingly, unlike studies in colon cancer showing
that previously well-recognized three immune profiles (i.e.
immune-inflamed, immune-excluded and immune-desert)

distinguish TME (41), our results indicate that fibrotic and
nonfibrotic phenotypes, instead, better depict PCa TME.
In support, colon tumors with activation of stroma-related
signatures were classified as immune-excluded and linked
to poor prognosis. However, we find that prostate tumors
in m6A C1 with significant enrichment of these signatures
conversely have a better outcome. Fourth, and for the first
time, our splicing and immunogenicity analyses of different
m6A methylation modification patterns highlight a defect in
the antigen presentation process in aggressive PCa, which
accounts for the discrepancy between a higher number of
potential neoantigens and a lower level of immune recogni-
tion in C3 versus C1 clusters. These data imply a therapeutic
use of splicing inhibitors and ICB for treating aggressive C3
tumors. This concept has been recently validated in murine
cancer models (78). Fifth, a negative correlation of AR ac-
tivity with m6A activity is noticed, and together with a re-
cent report that AR is not a direct target of METTL3 (79),
we propose AR and m6A axis as independent contributors
in driving PCa progression. Sixth, m6Avalue, a weighted
score established from 87 key m6A-associated genes, well
separates indolent pri-PCa from aggressive ones, with the
m6Avaluehigh group being more stem-like, proliferative and
nonfibrotic. Seventh, the distorted m6A signaling likely con-
tributes to anti-androgen treatment failure and PCa pro-
gression via TME reshaping, as CRPCs exhibit globally
higher m6Avalues than pri-PCa and, relatively, m6Avaluelow

CPRC patients respond better to ICB. These results estab-
lish m6Avalue as a valuable guide for decision-making on
usage of immunotherapy (especially considering that there
are currently no established biomarkers for immunother-
apeutic efficacy). Finally, a pan-cancer analysis indicates
that m6Avalue can be used to predict sensitivity of small-
molecule-based targeted therapy. Accordingly, we hypothe-
size that aggressive PCa with high m6Avalue might be more
vulnerable to inhibitors of CDK4, ALK, TOP1 and others,
directing novel therapeutic strategies that warrant further
exploration. Future in-depth characterizations of individ-
ual m6A regulators, together with the kinetics of cellular
m6A levels, in PCa etiology and progression, could enhance
our understanding of disease pathogenesis and aid innova-
tive drug development.
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