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Increasing demand for the knowledge about protein-protein interactions (PPIs) is promoting the development of methods for
predicting protein interaction network. Although high-throughput technologies have generated considerable PPIs data for various
organisms, it has inevitable drawbacks such as high cost, time consumption, and inherently high false positive rate. For this reason,
computational methods are drawing more andmore attention for predicting PPIs. In this study, we report a computational method
for predicting PPIs using the information of protein sequences. The main improvements come from adopting a novel protein
sequence representation by using discrete cosine transform (DCT) on substitution matrix representation (SMR) and from using
weighted sparse representation based classifier (WSRC). When performing on the PPIs dataset of Yeast, Human, and H. pylori, we
got excellent results with average accuracies as high as 96.28%, 96.30%, and 86.74%, respectively, significantly better than previous
methods. Promising results obtained have proven that the proposed method is feasible, robust, and powerful. To further evaluate
the proposed method, we compared it with the state-of-the-art support vector machine (SVM) classifier. Extensive experiments
were also performed in which we used Yeast PPIs samples as training set to predict PPIs of other five species datasets.

1. Introduction

Proteins are the molecules which participate in virtually
every aspect of cellular function within an organism and
responsible for the majority of the activities of living cells.
Usually, proteins rarely carry out their functions alone. For
example, structural proteins need to work in pairs to shape
organelles and the whole cell, and the same is true for
ribosome, RNA polymerases, and multisubunit channels in
membranes. Detecting protein-protein interactions (PPIs)
can provide a great insight into molecular mechanisms
of biological processes and promote the practical medical
applications based on those mechanisms. Much effort has
been devoted to identifying protein interaction using high-
throughput technologies such as yeast two-hybrid (Y2H)
screens [1, 2], tandem affinity purification (TAP) [3], and

mass spectrometric protein complex identification (MS-PCI)
[4]. However, these experimental methods are still time-
consuming and expensive. In addition, they yield many false
positives and can only identify a small fraction of the whole
protein interaction network. For this reason, the issue of
predicting unknownPPIs is now considered hard to be solved
only by using experimental methods.

For the sake of utilizing the available PPIs data exper-
imentally obtained, it is of much significance to develop
computational methods for predicting protein-protein inter-
actions. A number of experiments which depict PPI networks
of living organism have been finished and a number of
datasets such as MINT [5], BIND [6], and DIP [7] have
been built to store proteins interaction data. However, the
quantities of these different kinds of available protein data
such as protein sequences, secondary structures, and tertiary
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structures are in different levels. Protein sequence data hold
a great advantage in quantitative term. With the exponential
growth of newly discovered protein sequence data, it is
increasingly important to develop computational methods
using the information of amino acid sequences. Sequence-
based computational approaches usually contain two steps:
feature extraction and sample classification [8–13].

Feature extraction from protein sequence aims to mine
the most representative attributes from the samples and to
normalize different-length protein sequences to vectors of
the same size. Efficient feature descriptors are capable of
improving the performance of classification model [10, 14].
Until now, a number of feature extraction methods based
on protein sequences have been proposed. Most of these
methods are based on Chou’s pseudoamino acid composi-
tion (PseAAC) [15, 16]. PseAAC expends the simple amino
acid composition (AAC) by considering and retaining the
information of sequence order. Different kinds of feature
descriptors based on PseAAC prove to be powerful and
become popular in protein feature extraction. However,
some other feature extraction methods have put forward
new ways which are based on kernels. Jaakkola et al. [17]
have first proposed Fisher kernel for homology detection.
Equally, mismatch string kernel proposed by Leslie et al.
[18–20] measures sequence similarity counting the shared
occurrences of subsequences in a lower computational cost.
Unlike PseAAC-based feature extraction methods which
extract feature directly from protein sequences, kernel-based
methods remain some kinds of prior information and there-
fore extract more comprehensive feature descriptors.

In this work, we employ a novel kernel-based feature
extraction method using the substitution matrix representa-
tion (SMR). In the process of evolution, the protein sequences
gradually alter with the action of DNA mutations from one
generation to the next. Thus, in the process of extracting
protein sequence features, it is reasonable to consider the
influence of the rate at which one character in a protein
sequence changes to others over time. We adopt SMR based
on BLOSUM62, which is the default matrix for protein
BLAST and is considered to be powerful for detecting most
weak protein similarities.

In the second step, we apply weighted sparse represen-
tation based classifier (WSRC), a variant of traditional SRC,
to classify the interacting and noninteracting protein pairs
based on their feature representation. Recently, sparse rep-
resentation which is originated from signal processing area
comes to be a new hot technique. This technique addresses
pattern classification problems in a novel way and proves
sufficiently robust against illumination variations, occlusions,
and random noise. In addition, unlike the traditional sample
classifiers such as support vector machine [21, 22] and
neural network [23] which need much effort to adjust the
best parameters, it needs little manual intervention to use
SRC in sample classification. WSRC, which integrates both
sparsity and locality structure data, can further improve the
classification performance of SRC. For this reason, we use
weighted sparse representation based classifier to build a
computational classification system for predicting protein
interaction.

In this paper, we propose a computational method for
predicting PPIs from amino acid sequences combining sub-
stitution matrix representation and weighted sparse repre-
sentation based classifier. More specifically, we first adopt
substitution matrix representation based on BLOSUM62 to
represent proteins as SMR matrixes. Secondly, we utilize
discrete cosine transform to extract a 400-dimensional vector
from each protein SMR matrix. As a result, each protein
pair is represented by an 800-dimensional feature vector.
Finally, WSRC is employed as the machine learning clas-
sifier to deal with the classification. The proposed method
was evaluated by using three different PPIs datasets: Yeast,
Human, and H. pylori. To further evaluate the performance
of the proposed method, we compare it with the state-of-
the-art support vector machine classifier. Extensive cross-
species experimentswere also performed onfive independent
PPIs datasets. In these experiments, we used experimentally
identified interactions in one organism to predict the interac-
tions in other five organisms assuming that homolog proteins
preserve their ability to interact. The experimental results
show that the proposedmethod performs significantly well in
distinguishing interacting and noninteracting protein pairs.
Achieved results demonstrate that the proposed approach
outperforms all other previous methods on a couple of PPI
datasets and can be a useful supplementary tool to traditional
experimental method.

2. Materials and Methodology

2.1. Godden Standard Datasets. We verify the proposed
method on a high-confidence Saccharomyces cerevisiae PPIs
dataset which is gathered from publicly available database
of interacting proteins (DIP). The protein pairs with less
than 50 residues are removed because they might just be
fragments.The protein pairs with toomuch sequence identity
are generally considered to be homologous; thus the pairs
which have ≥40% sequence identity are also deleted in order
to eliminate the bias to these homologous sequence pairs.
By doing this, we got the remaining 5594 protein pairs
which construct the positive dataset. For constructing the
negative dataset, we selected 5594 additional protein pairs
of different subcellular localizations to build the negative
dataset. Consequently, the whole dataset is made up of 11188
protein pairs of which half are from the positive samples and
half are from the negative samples.

In order to demonstrate the generality of the proposed
method, we also verify our approach on two other types of
PPIs datasets. We collected the first dataset from the Human
Protein References Database (HPRD). We removed those
protein pairs which have ≥25% sequence identity. Finally,
to comprise the golden standard positive dataset, we used
the remaining 3899 protein-protein pairs of experimentally
verified PPIs from 2502 different human proteins. For golden
standard negative dataset, we followed the previous work [24]
assuming that the proteins in different subcellular compart-
ments do not interact with each other and finally obtained
4262 protein pairs from 661 different human proteins as the
negative dataset. As a result, theHumandataset is constructed
by 8161 protein pairs. The second PPI dataset is constructed
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by 2916Helicobacter pylori protein pairs (1458 interacting pair
and 1458 noninteracting pairs) as described by Martin et al.

2.2. Substitution Matrix Representation. Substitution matrix
representation is a variant of representation method pro-
posed by [36]. In this novel matrix representation for pro-
teins, a𝑁×20matrix would be generated to represent a given
𝑁-length protein sequence based on a substitution matrix.
In our work, we applied BLOSUM62 matrix, a popular
substitution matrix used for sequence alignment of proteins,
to this transformation. SMR can be depicted as follows:

SMR (𝑖, 𝑗) = 𝐵 (𝑃 (𝑖) , 𝑗) 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁, 𝑗 = 1 ⋅ ⋅ ⋅ 20, (1)

where 𝐵 denotes the BLOSUM62 which is a 20 × 20 sub-
stitution matrix and 𝐵(𝑖, 𝑗) represents the probability rate
of amino acid 𝑖 mutating to amino acid 𝑗 in the evolution
process; 𝑃 = (𝑝1, 𝑝2 ⋅ ⋅ ⋅ 𝑝𝑁) is the given protein sequence
constructed by𝑁 amino acids.

2.3. Discrete Cosine Transform. Discrete cosine transform
(DCT) first proposed by Ahmed et al. [37] is a popular
linear separable transformation in the lossy signal and image
compression processing for its powerful energy compaction
property. In DCT algorithm, an input signal would be con-
verted into elementary frequency components. In addition,
small high-frequency componentswould be discarded,which
can approach high compaction efficiency. Discrete cosine
transform can be defined as follows:

DCT (𝑖, 𝑗) = 𝑘
𝑖
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Sig ∈ 𝑅
𝑁×𝑀 is the input signal matrix and here denotes

the 𝑁 × 20 SMR matrix. In our work, the final DCT feature
descriptor which represents a protein sequence is obtained by
choosing the first 400 coefficients.

2.4. Weighted Sparse Representation Based Classification
(WSRC). With the advancement in mathematical studies on
linear representationmethods (LRBM) and compressed sens-
ing (CS) theory, sparse representation has recently earned

considerable attention in field of signal processing, computer
vision, and pattern recognition. The sparse representation
based classification (SRC) [38, 39] assumes that it is sufficient
to represent a given test sample by using samples from the
sample subject. Based on this viewpoint, SRC computes a
sparse representation matrix in a specific optimizing strategy
aiming to build a linear combination of training set to
represent the given test sample. Employing the sparse repre-
sentationmatrix, reconstruction residuals of each class would
be calculated and the test samplewill be finally assigned to the
class which has the minimum reconstruction residual.

Given a training sample matrix 𝑋 ∈ 𝑅
𝑚×𝑛 which is

made up of 𝑛𝑚-dimensional training samples, assume that
sufficient training samples belonging to the 𝑘th class. Samples
of 𝑘th class can make up a submatrix 𝑋

𝑘
= [𝑙
𝑘1
, 𝑙
𝑘2
⋅ ⋅ ⋅ 𝑙
𝑘𝑛𝑘
],

where 𝑙
𝑖
denotes the label of 𝑖th sample and 𝑛

𝑘
is the number

of samples belonging to 𝑘th class. Thus, the sample matrix𝑋
can be further rewritten as 𝑋 = [𝑋

1
𝑋
2
⋅ ⋅ ⋅ 𝑋
𝐾
], where 𝐾 is

the class number of the whole samples. Given a test sample
𝑦 ∈ 𝑅

𝑚, SRC represents it with the linear combination of
training samples of 𝑘th class:

𝑦 = 𝛼
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which can be further symbolized with the consideration of
the whole training set representation as follows:

𝑦 = 𝑋𝛼
0
, (5)

where 𝛼
0
= [0, . . . , 0, 𝛼
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𝑇. For the
reason that the nonzero entries in 𝛼

0
are only associated with

the 𝑘th class, when the class number of samples is large,
𝛼
0
would come to be sparse. The key of SRC algorithm is

searching the 𝛼 vector which can not only satisfy (5) but also
minimize the ℓ

0
-norm of itself:

𝛼̂
0
= argmin ‖𝛼‖0

subject to 𝑦 = 𝑋𝛼.

(6)

However, problem (6) is NP-hard and hard to be solved pre-
cisely. According to the theory of compressive sensing, when
𝛼 is sparse enough, it is feasible to solve the related convex
ℓ
1
-minimization problem to avoid solving the solution of ℓ

0
-

minimization problem directly:

𝛼̂
1
= argmin ‖𝛼‖1

subject to 𝑦 = 𝑋𝛼.

(7)

Dealing with occlusion, (7) needs to be extended to the stable
ℓ
1
-minimization problem:

𝛼̂
1
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(8)

where 𝜀 > 0 denotes to the tolerance of reconstruction error.
Given the solution from (8), the SRC algorithm assigns the
label of test sample 𝑦 to class 𝑐 based on the following rule:

min
𝑐
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, 𝑐 = 1 ⋅ ⋅ ⋅ 𝐾. (9)
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Then, traditional SRC represents a test sample as a sparse
combination of training sample and assigns it to the class
which minimizes the residual between itself and𝑋𝛼̂𝑐

1
.

Nearest Neighbor (NN) is another distinct classifier
which classifies the test sample by only using its Nearest
Neighbor in training data. It utilizes the locality structure
of data but easily suffers from noise. Locality measures the
similarity between the query and training samples and comes
to be a key issue in the fields of clustering, dimension
reduction, density estimation, anomaly detection, and image
classification. Researches [15, 40, 41] show that, in some case,
locality is more essential than sparsity. Although SRC uses
the linearity structure of data and overcomes the drawback of
NN, the original sparse coding fails to guarantee being local
which could cause instability. For this reason, it has sufficient
reasons to integrate the locality structure of data into sparse
representation. Lu et al. [42] have recently proposed a variant
of traditional sparse representation based classifier called
weighted sparse representation based classifier (WSRC).This
variant classifier possesses the advantages of both the tradi-
tional sparse representation based classifier and the Nearest
Neighbor classifier. Appropriate kernelmethodsmap samples
into a high-dimensional feature space and usually lead to a
better performance in classification process. For this reason,
WSRC first utilizes distance based on Gaussian kernel to
measure the similarity between the samples. Gaussian-based
distance can be described as follows:

𝑑
𝐺
(𝑥, 𝑦) = 𝑒

−‖𝑥−𝑦‖
2
/2𝜎
2

, (10)

where 𝑥, 𝑦 ∈ 𝑅
𝑑 denote two samples and 𝜎 is the Gaussian

kernel width.These Gaussian distance values are then used as
the weights of each sample in training sets and adjust training
sample matrix 𝑋 into a new matrix 𝑋󸀠 [43, 44]. In this way,
weight sparse representation based classifier is capable of
retaining the locality structure of data. WSRC turn to solve
the following problem:

𝛼̂
1
= arg min ‖𝑊𝛼‖1

subject to 𝑦 = 𝑋𝛼,

(11)
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where 𝑊 is a block-diagonal matrix of locality adaptor and
𝑛
𝑘
is the sample number of training set in class 𝑘. Dealing

with occlusion, WSRC finally solves the following stable ℓ
1
-

minimization problem:

𝛼̂
1
= arg min ‖𝑊𝛼‖1

subject to 󵄩󵄩󵄩󵄩
𝑦 − 𝑋𝛼

󵄩󵄩󵄩󵄩
≤ 𝜀,

(13)

where 𝜀 > 0 is the tolerance value.
Given all these, the WSRC algorithm can be summarized

as follows.

Algorithm 1. Weighted Sparse Representation Based Classi-
fier (WSRC)

(1) Input: training samples matrix𝑋 ∈ 𝑅
𝑚×𝑛 and any test

sample 𝑦 ∈ 𝑅
𝑑.

(2) Normalize the columns of𝑋 to have unit ℓ
2
-norm.

(3) Calculate the Gaussian distances between 𝑦 and each
sample in𝑋 and make up matrix𝑊. Use matrix𝑊 to
adjust the training samples matrix𝑋 to𝑋󸀠.

(4) Solve the stable ℓ
1
-minimization problem defined in

(12).
(5) Compute each residual of𝐾 classes: 𝑟

𝑐
(𝑦) = ‖𝑦−𝑋𝛼̂

𝑐

1
‖

(𝑐 = 1, 2, . . . , 𝐾).
(6) Output: the prediction label of 𝑦 as identity(𝑦) =

arg min
𝑐
(𝑟
𝑐
(𝑦)).

3. Results and Discussion

3.1. Evaluation Measures. To evaluate the performance of the
proposed method, we use the following criteria: the overall
prediction accuracy (Accu.), sensitivity (Sens.), precision
(Prec.), and Matthews’s correlation coefficient (MCC) were
calculated. They are defined as follows:

Accuracy = TP + TN
TP + FP + TN + FN

Sensitivity = TP
TP + FN

PE =
TP

TP + FP

MCC

=
TP × TN − FP × FN

√(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)
,

(14)

where true positive (TP) denotes the number of true samples
which are predicted correctly; false negative (FN) is the
number of true samples predicted to be noninteracting
pairs incorrectly; false positive (FP) is the number of true
noninteracting pairs predicted to be PPIs falsely; and true
negative (TN) is the number of true noninteracting pairs
predicted correctly. Furthermore, the receiver operating char-
acteristic (ROC) curves are also computed for evaluating the
performance of proposed method. Summarizing ROC curve
in a numerical way, the area under an ROC curve (AUC) is
computed.

3.2. Assessment of Prediction Ability. For the sake of fairness,
the corresponding parameters of weighted sparse represen-
tation based classifier were set the same when explored in
three different datasets—Yeast, Human, and H. pylori. Here,
𝜎 = 1.5 and 𝜀 = 0.00005. In addition, 5-fold cross-
validationwas employed in our experiments in order to avoid
the overfitting of the prediction model and test the stability
of the proposed model [45]. Specifically, the whole dataset
was divided into five parts where four parts were used for
training and one part was used for testing. In this way, we
obtained 5 models from the original dataset and each one of
them was experimented solely. The prediction results of SRC
prediction models with substitution matrix representation
based description of protein sequence on three datasets are
shown in Tables 1–3.
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Table 1: 5-fold cross-validation results obtained by using proposed method on Yeast dataset.

Testing set Accu. (%) Prec. (%) Sen. (%) MCC (%) AUC (%)
1 96.74 100.00 93.60 93.68 97.07
2 95.89 100.00 91.93 92.10 96.04
3 96.92 100.00 93.75 94.00 96.83
4 95.75 100.00 91.50 91.84 95.49
5 96.12 99.60 92.39 92.50 96.03
Average 96.28 ± 0.52 99.92 ± 0.18 92.64 ± 1.00 92.82 ± 0.97 96.29 ± 0.65

Table 2: 5-fold cross-validation results obtained by using proposed method onHuman dataset.

Testing set Accu. (%) Prec. (%) Sen. (%) MCC (%) AUC (%)
1 96.20 99.73 92.53 92.66 96.85
2 96.32 99.72 92.48 92.85 95.52
3 96.32 99.06 93.32 92.89 96.59
4 96.45 99.72 92.73 93.08 96.60
5 96.20 99.72 92.12 92.61 96.78
Average 96.30 ± 0.10 99.59 ± 0.29 92.63 ± 0.44 92.82 ± 0.19 96.47 ± 0.54

Table 3: 5-fold cross-validation results obtained by using proposed method onH. pylori dataset.

Testing set Accu. (%) Prec. (%) Sen. (%) MCC (%) AUC (%)
1 86.08 84.95 85.87 75.99 89.42
2 84.71 84.62 85.47 74.08 88.08
3 88.83 89.17 87.59 80.13 91.11
4 87.29 87.02 87.02 77.79 90.15
5 86.82 89.29 86.21 76.97 90.48
Average 86.74 ± 1.52 87.01 ± 2.23 86.43 ± 0.86 76.99 ± 2.23 89.85 ± 1.16

When using the proposedmethod to predict PPIs ofYeast
dataset, we obtained the results of average accuracy, precision,
sensitivity, andMCC of 96.28%, 99.92%, 92.64%, and 92.82%.
The standard deviations of these criteria values are 0.52%,
0.18%, 1.00%, and 0.97%, respectively. When predicting
PPIs of Human dataset, the proposed method yielded good
results of average accuracy, precision, sensitivity, and MCC
of 96.30%, 99.59%, 92.63%, and 92.82% and the standard
deviations are 0.10%, 0.29%, 0.44%, and 0.19%, respectively.
When predicting PPIs of H. pylori dataset, the averages of
accuracy, precision, sensitivity, andMCC come to be 86.74%,
87.01%, 86.43%, and 76.99% and the standard deviations are
1.52%, 2.23%, 0.86%, and 2.23%, respectively.TheROCcurves
performed on these three datasets are shown in Figures
1, 3, and 5. In these figures, 𝑥-ray depicts false positive
rate (FPR) while 𝑦-ray depicts true positive rate (TPR). To
further evaluate the performance of the proposed method,
the AUC values were computed whose averages of Yeast,
Human, and H. pylori datasets are 96.29%, 96.47%, and
89.85%, respectively.

The high accuracies show that WSRC-based model com-
bining the SMR-DCT descriptors is feasible and effective for
predicting PPIs. In addition, the low standard deviations of
these criterion values illustrate that the proposed method
is stable and robust. This good performance lies in the
fact that the feature extraction method not only depicts
the order information of protein sequences but also retains
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Figure 1: ROC curves performed by proposedmethod onYeast PPIs
dataset.

sufficient prior information from BLOSUM62 matrix, which
depicts the observed substitutions found in a broad sampling
from the aligned segments of polypeptides. In addition,
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Table 4: Comparison with support vector machine on three datasets.

Dataset Classifier Accu. (%) Prec. (%) Sen. (%) MCC (%) AUC (%)

Yeast WSRC 96.28 ± 0.52 99.92 ± 0.18 92.64 ± 1.00 92.82 ± 0.97 96.29 ± 0.65
SVM 84.97 ± 0.93 85.46 ± 1.21 84.30 ± 0.83 74.46 ± 1.29 92.35 ± 0.72

Human WSRC 96.30 ± 0.10 99.59 ± 0.29 92.63 ± 0.44 92.82 ± 0.19 96.47 ± 0.54
SVM 85.33 ± 1.29 86.92 ± 1.92 81.59 ± 2.40 74.81 ± 1.89 93.15 ± 1.11

H. pylori WSRC 86.74 ± 1.52 87.01 ± 2.23 86.43 ± 0.86 76.99 ± 2.23 89.85 ± 1.16
SVM 80.67 ± 1.95 83.18 ± 9.85 79.89 ± 11.83 67.69 ± 3.33 90.39 ± 1.91

Average AUC = 0.9235
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Figure 2: ROC curves performed by SVM-based method on Yeast
PPIs dataset.
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Figure 3: ROC curves performed by proposed method on Human
PPIs dataset.

discrete cosine transform performswell in capturing effective
information from SMR matrixes. In bioinformatics and evo-
lutionary biology, the substitution matrix like BLOSUM62
describes the rate where one character in a sequence changes
to other character states over time. Since the process of
the formation of protein interaction network contains innu-
merable amino acid variations, the substitution rates would
help to reveal whether two proteins interact. In fact, protein
pairs with higher similarity are more likely to interact and
the similarity between protein sequences depends on their
divergence time and the substitution rates. The proposed
feature extractionmethod uses this evolutionary information
and therefore is able to predict protein-protein interactions.

3.3. Comparison with SVM-Based Method. Many machine
learning models haven been explored for predicting PPIs
and most of them are based on traditional classifiers. To
further evaluate the proposed method, we compared it with
the state-of-the-art support vector machine (SVM) classifier.
Specifically, we used the same feature extraction method
and compared the classification performances between SVM
and WSRC. We used LIBSVM tool which is available
on https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/. A grid
search method was used to optimize two corresponding
parameters of SVM 𝑐 and 𝑔. In the experiments of Yeast and
Human dataset, we set 𝑐 = 0.5, 𝑔 = 0.6 and 𝑐 = 0.5, 𝑔 = 0.5,
respectively. When exploring on H. pylori dataset, we set 𝑐 =
0.08, 𝑔 = 22. The kernel functions were set to be radial basis
function.

FromTable 4, it can be observed that, when using SVM to
predict PPIs of Yeast dataset, we obtained good results with
the average accuracy, precision, sensitivity, MCC, and AUC
of 84.97%, 85.46%, 84.30%, 74.46%, and 92.35%, respectively.
When predicting PPIs of Human dataset, the SVM-based
method yielded good results with the average accuracy,
precision, sensitivity, MCC, and AUC of 85.33%, 86.92%,
81.59%, 74.81%, and 93.15%, respectively. When exploring
the H. pylori dataset, the averages of accuracy, precision,
sensitivity, and MCC come to be 80.67%, 83.18%, 79.89%,
67.69%, and 90.39%, respectively. For the three datasets,
most of the average criterion values performed by SVM-
based method are lower than those by the proposed method.
In addition, the higher standard deviations of the criterion
values illustrate that the SVM-based model are less stable.
The ROC curves performed by SVM classifier on the three
datasets are shown in Figures 2, 4, and 6.

Analyzing these results, we can see that sparse represen-
tation based classifier is suitable for the classification with
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Table 5: Prediction results on five species based on our model.

Species Test pairs Accuracy
E. coli 6954 66.08%
C. elegans 4013 81.19%
H. sapiens 1412 82.22%
H. pylori 1420 82.18%
M. musculus 313 79.87%

Average AUC = 0.9315
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Figure 4: ROC curves performed by SVM-based method on
Human PPIs dataset.

protein consequence features. The better performance than
SVM lies in the fact that weighted SRC further improves the
performance of basic SRC and the easily adjusted parameter
of WSRC helps itself giving a full play to its function in
our experiments. Therefore, weighted sparse representation
based classifier is superior to support vector machine classi-
fier.

3.4. Performance on Independent Dataset. As our proposed
model yields good performance on the PPIs data of Yeast,
Human, andH. pylori, we explored our method on five other
independent datasets. It should be noticed that the biological
hypothesis of mapping PPIs from one species to another
species is that large numbers of physically interacting proteins
in one organism have “coevolved” so that their respective
orthologs in other organisms interact as well. In these
experiments, we used all 11188 samples of Yeast dataset as the
training set with the optimal parameters (𝜎 = 1.5 and 𝜀 =

0.00005). The same SMR-based feature extraction method
was used to transform the protein pairs from the other five
datasets into feature vectors as the testing inputs of WSRC.
The performance of these five experiments is summarized
in Table 5. Four datasets including E. coli, C. elegans, H.
sapiens, andM.musculus are collected from theDIP database.
All of the test samples are positive. When predicting the
PPIs on datasets of E. coli, C. elegans, H. sapiens, H. pylori,
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Figure 5: ROC curves performed by proposed method onH. pylori
PPIs dataset.
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Figure 6: ROC curves performed by SVM-based method on H.
pylori PPIs dataset.

and M. musculus, our model yielded accuracies of 66.08%,
81.19%, 82.22%, 82.18%, and 79.87%, respectively. It shows that
the metamodel is capable of predicting the PPIs from other
species with accuracies of over 66%. When predicting the
PPIs of H. sapiens and H. pylori datasets, we even obtained
high accuracies of 82.22% and 82.18%.

Interestingly, these results demonstrate that the informa-
tion of yeast protein sequences is sufficient for predicting the
PPIs of other species. In addition, it implies that the pro-
posed method has strong generalization ability on predicting
protein-protein interaction. This model may be applied to
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Table 6: Performance comparison of different methods on the Yeast dataset.

Model Test set Accu. (%) Prec. (%) Sen. (%) MCC (%)

Guos’ work [25] ACC 89.33 ± 2.67 88.87 ± 6.16 89.93 ± 3.68 N/A
AC 87.36 ± 1.38 87.82 ± 4.33 87.30 ± 4.68 N/A

Zhous’ work [26] SVM + LD 88.56 ± 0.33 89.50 ± 0.60 87.37 ± 0.22 77.15 ± 0.68

Yangs’ work [27]

Cod1 75.08 ± 1.13 74.75 ± 1.23 75.81 ± 1.20 N/A
Cod2 80.04 ± 1.06 82.17 ± 1.35 76.77 ± 0.69 N/A
Cod3 80.41 ± 0.47 81.86 ± 0.99 78.14 ± 0.90 N/A
Cod4 86.15 ± 1.17 90.24 ± 1.34 81.03 ± 1.74 N/A

Wongs’ work [28] RF + PR-LPQ 93.92 ± 0.36 96.45 ± 0.45 91.10 ± 0.31 88.56 ± 0.63
Yous’ work [29] PCA-EELM 87.00 ± 0.29 87.59 ± 0.32 86.15 ± 0.43 77.36 ± 0.44
Proposed method WSRC 96.28 ± 0.52 99.92 ± 0.18 92.64 ± 1.00 92.82 ± 0.97

exploring the organisms whose PPIs data are not available
and provides appropriate experience for further studies.

3.5. Comparison with Other Methods. Many computational
methods have been proposed for predicting PPIs. Here, we
compare the prediction ability of theWSRCpredictionmodel
using substitution representation matrix based features with
the existing methods on Yeast and H. pylori datasets. Table 6
shows the results performed by six other methods and we
can see that the accuracies obtained by these methods are
between 75.08% and 93.92%. None of these methods gets
higher average accuracy than that of the proposed method,
which is 96.28%. The same is true for considering precision
and sensitivity. Further, the relatively low standard deviations
of these criteria values imply the robust performance of the
proposed method. From Table 7, we can see the comparison
between the proposed method and other previous works on
H. pylori dataset.The accuracies performed by othermethods
are between 75.80% and 87.50%. From Table 8, it can be
observed that our method yields good results similar to
or even better than some other existing methods based on
ensemble classifiers.

It is known that the methods which use ensemble
classifier usually achieve more accurate and robust perfor-
mance than the methods using single classifier. However,
our proposed model obtains good performance similar to
or even better than those obtained by the methods using
ensemble classifier, such as Random Forest and ensemble of
HKNN, by using the single weighted representation based
classifier. Considering these comparisons, it is demonstrated
that the WSRC-based model combining the substitution
representation matrix based features can improve the pre-
diction accuracy compared with the current state-of-the-art
methods. This improvement mainly comes from the choice
of classifier and the novel feature extraction method which
contains the evolutionary information.

4. Conclusions and Discussion

The growing demand for PPIs knowledge is promoting
the development of studies on computational methods for
predicting PPIs in this postgenomic era. In this paper, we
explore a prediction model for PPIs combining weighted

Table 7: Performance comparison of different methods on the H.
pylori dataset.

Model Accu. (%) Prec. (%) Sen. (%) MCC (%)
Phylogenetic
bootstrap [30] 75.80 80.20 69.80 N/A

HKNN [31] 84.00 84.00 86.00 N/A
Signature products
[32] 83.40 85.70 79.90 N/A

Ensemble of
HKNN [33] 86.60 85.00 86.70 N/A

Boosting [34] 79.52 81.69 80.37 70.64
Ensemble ELM
[29] 87.50 86.15 88.95 78.13

Proposed method 86.74 87.01 86.43 76.99

Table 8: Performance comparison of different methods on the
Human dataset.

Model Accu. (%) Prec. (%) Sen. (%) MCC (%)
LDA + RF [35] 96.4 N/A 94.2 92.8
LDA + RoF [35] 95.7 N/A 97.6 91.8
LDA + SVM [35] 90.7 N/A 89.7 81.3
AC + RF [35] 95.5 N/A 94.0 91.4
AC + RoF [35] 95.1 N/A 93.3 91.0
AC + SVM [35] 89.3 N/A 94.0 79.2
Proposed method 96.30 99.59 92.63 92.82

sparse representation based classifier and a novel protein
representation. In the step of feature extraction, employing
discrete cosine transform to extract feature vector from SMR
matrix based on BLOSUM62 has been proven effective to
represent amino acid sequences. Compared with the earlier
methods, the main improvements come from adopting a
novel protein feature representation and from using a pow-
erful classifier. Besides, results show that it is feasible to use
weighted sparse representation based classifier to deal with
protein features. Further, experiments on other independent
protein datasets imply the powerful generalization ability of
the proposed method. Hence, we consider that our proposed
method is feasible, superior, and robust.
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