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New neurons are continually generated in the subependymal layer of the lateral ventricles
and the subgranular zone of dentate gyrus during adulthood. In the subventricular zone,
neuroblasts migrate a long distance to the olfactory bulb where they differentiate into
granule or periglomerular interneurons. In the hippocampus, neuroblasts migrate a short
distance from the subgranular zone to the granule cell layer of the dentate gyrus to
become granule neurons. In addition to the short-distance inputs, bulbar interneurons
receive long-distance centrifugal afferents from olfactory-recipient structures. Similarly,
dentate granule cells receive differential inputs from the medial and lateral entorhinal
cortices through the perforant pathway. Little is known concerning these new inputs on
the adult-born cells. In this work, we have characterized afferent inputs to 21-day old
newly-born neurons. Mice were intraperitoneally injected with bromodeoxyuridine. Two
weeks later, rhodamine-labeled dextran-amine was injected into the anterior olfactory
nucleus, olfactory tubercle, piriform cortex and lateral and medial entorhinal cortices. One
week later, animals were perfused and immunofluorescences were carried out. The data
show that projection neurons from the mentioned structures, establish putative synaptic
contacts onto 21-day-old neurons in the olfactory bulb and dentate gyrus, in some cases
even before they start to express specific subpopulation proteins. Long-distance afferents
reach middle and outer one-third portions of the molecular layer of the dentate gyrus
and granule and, interestingly, periglomerular layers of the olfactory bulb. In the olfactory
bulb, these fibers appear to establish presumptive axo-somatic contacts onto newly-born
granule and periglomerular cells.
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INTRODUCTION
The subventricular zone of the lateral ventricles (SVZ) and the
subgranular zone (SGZ) of the dentate gyrus (DG) were described
as the two main neurogenic niches of the adult mammalian fore-
brain (Altman, 1962; Altman and Das, 1965; Luskin, 1993; Lois
and Alvarez-Buylla, 1994). Decades later, the functional signifi-
cance of new neurons integrated into adult olfactory bulb (OB)
and DG is only partially known (Aimone et al., 2010; Sahay et al.,
2011; Sakamoto et al., 2014).

In the SVZ, neuroblasts migrate tangentially during about 7
days through the rostral migratory stream to the OB (Alvarez-
Buylla and Garcia-Verdugo, 2002) following 2 major signals,

Abbreviations: AON, anterior olfactory nucleus; BrdU, bromodeoxyuridine; CR,
calretinin; DCX, doublecortin; DG, dentate gyrus; EC, entorhinal cortex; GL,
glomerular layer; GrL, granular cell layer; LEC, lateral entorhinal cortex; MEC,
medial entorhinal cortex; OB, olfactory bulb; PB, phosphate buffer; PBS, phos-
phate buffered saline; PIR, piriform cortex; PSD-95: postsynaptic density-95; RDA,
rhodamine-labeled dextran-amine; SGZ, subgranular zone; SVZ, subventricular
zone; TBS, Tris buffered saline.

structural (astrocytes, vasculature and extracellular matrix) and
molecular (BDNF, Netrins, Slits, etc.) factors (Nguyen-Ba-
Charvet et al., 2004; Whitman et al., 2009; Kaneko et al., 2010).
There, they migrate radially to mature into granule (Petreanu
and Alvarez-Buylla, 2002) or periglomerular (Carlen et al., 2002;
Lledo et al., 2006) interneurons 15 (Petreanu and Alvarez-Buylla,
2002) and 28 (Belluzzi et al., 2003) days after birth, respectively. In
the DG, neuroblasts migrate a short distance from the SGZ to the
granule cell layer to become fully functional neurons after 4–28
days (Van Praag et al., 2002).

This differentiation and integration implies hodological and
functional changes (Petreanu and Alvarez-Buylla, 2002; Lledo
and Saghatelyan, 2005; Lepousez et al., 2013). Projections from
bulbar mitral and tufted cells to olfactory-recipient areas in the
basal telencephalon (Pro-Sistiaga et al., 2007; Martinez-Marcos,
2009) are reciprocated by centrifugal projections to the bulb aris-
ing from the anterior olfactory nucleus (AON), the olfactory
tubercle (OT), the olfactory amygdala and the piriform (PIR)
and lateral entorhinal (LEC) cortices (Mohedano-Moriano et al.,
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2012). Newly-born olfactory granule cells first receive intrin-
sic GABAergic synaptic connections (3–7 days after birth) and
extrinsic glutamatergic inputs thereafter (Belluzzi et al., 2003;
Carleton et al., 2003; Panzanelli et al., 2009; Lepousez et al.,
2013). New neurons integrate into functional circuits in a “listen
before talk” manner (Whitman and Greer, 2009). These centrifu-
gal inputs and the ambient GABA signals may play an important
role in maintenance and synaptic integration by regulation of
dendritic growth of newly generated neurons in preexisting adult
neuronal networks (Gascon et al., 2006; Mouret et al., 2009;
Pallotto and Deprez, 2014). Interestingly, LEC send centrifugal
inputs to the OB and also projects to the hippocampus.

Dentate granule cells receive, through the perforant path, mas-
sive afferents from the lateral (LEC) and medial (MEC) entorhinal
cortices (Steward, 1976; Witter, 2007), which ends in the outer
and middle one-thirds of the molecular layer of the DG, respec-
tively (Ramón Y Cajal, 1893; Hjorth-Simonsen, 1972; Hjorth-
Simonsen and Jeune, 1972). Newly-born dentate granule cells
initially receive excitatory GABAergic inputs from local interneu-
rons, and this becomes inhibitory only once the glutamatergic
extrinsic input has established, 2 weeks after birth (Overstreet
Wadiche et al., 2005; Toni et al., 2007). In the same manner, these
inputs seem to play an essential role for cell survival, maturation
and maintenance of new dentate granule cells in the hippocampal
circuitry (Van Der Borght et al., 2005; Tashiro et al., 2006; Li et al.,
2012).

Therefore, in the present work we have tried to characterize
inputs arising from different structures onto 21 day-old adult-
born granule cells in the OB and DG of adult mice. These
data could help to understand the anatomical and physiological
changes underlying the integration of neurogenic elements in the
adult brain.

MATERIAL AND METHODS
EXPERIMENTAL ANIMALS
Thirty adult (6 weeks) mice (C57BL/J) of both sexes (15/15) were
obtained from Charles River (Barcelona, Spain) and maintained
under controlled temperature and a 12:12 h light/dark cycle with
food and water ad libitum. Experimental procedures were car-
ried out according to guidelines of the Spanish (RD53/2013)
and European (Directive 2010/63/EU) legislation of the protec-
tion of animals used for experimental purpose, and the Ethical
Committee of Animal Research of the University of Castilla-La
Mancha.

BROMODEOXYURIDINE ADMINISTRATION
BrdU (5-bromo-2′-deoxyuridine, Fluka, Madrid, Spain) admin-
istration included 4 ip doses (at 2-h intervals) of 10 mg/mL BrdU
in phosphate-buffered saline (PBS, 0.15 M NaCl, 0.01 M sodium
phosphate pH 7.4) totalizing a dose of 200 mg/kg in 1 day. This
dose was employed following previous results in our laboratory to
optimize labeling without increasing apoptosis (Martinez-Marcos
et al., 2005; De La Rosa-Prieto et al., 2009a).

TRACER INJECTIONS AND PERFUSION
Two weeks after BrdU administration, animals were anesthetized
with a combined dose of ketamine hydrochloride (Ketolar,

Parke-Davis, Madrid, Spain, 1.5 mL/kg, 75 mg/kg) and xylazine
(Xilagesic, Calier, Barcelona, Spain, 0.5 mL/kg, 10 mg/kg). Under
stereotaxic control, rhodamine-labeled dextran-amine (RDA,
10,000 mW, lysine fixable, Molecular Probes, Eugene, OR; 10%
diluted in PBS) was ionophoretically injected (30–80 µm diam-
eter tip; positive current pulses 7/7 s; 2–7 µA; 8–20 min) at the
intended injection sites. Five experimental groups (n = 6, 3 M,
F) totalizing N = 30 rodents were established according to coor-
dinates relative to Bregma: AON (anterior 2.6; lateral 1; depth
2.7), OT (anterior 1.1; lateral 1.5; depth 4.7), PC (anterior 1.1; lat-
eral 2.5; depth 4), LEC (posterior −4.36; lateral 4; depth 2), and
MEC (posterior −4.5; lateral 3.3; depth 3) (Franklin and Paxinos,
2008). In all experimental groups (n = 6), a minimum of five
cases included injections restricted at intended site and, therefore,
comparable.

One week afterwards, animals were anesthetized (as
above) and perfused with saline solution followed by 4%
w/v paraformaldehyde fixative in phosphate buffer (0.1 M
sodium phosphate pH 7.2). Brains were postfixed in 4% w/v
paraformaldehyde, cryoprotected in 30% w/v sucrose, and
sagittally (olfactory bulb) or frontally sectioned (50 µm) using
a freezing sliding microtome (Microm HM450). Sections were
consecutively collected into 96-well plates and maintained at 4◦C
in preserving solution (PBS containing 20% v/v glycerol and 30%
v/v ethylene glycol) for further processing.

IMMUNOFLUORESCENCE PROCEDURES
Sections were rinsed overnight with Tris-buffered saline (TBS;
0.15 M NaCl, 0.05 M Tris, HCl pH 7.6), fixed with 4% w/v
paraformaldehyde in phosphate buffer (PB; 0.1 M sodium phos-
phate pH 7.2) for 30 min at 37◦C, rinsed in TBS (3 × 5 min),
treated with 37% w/v HCl for 20 min at 37◦C and then with
pepsin 0.5 mg/mL in 37% w/v HCl for 20 min at 37◦C. Sections
were rinsed (3 × 10 min) and blocked with 10% normal donkey
serum (Vector Laboratories, Burlingame, CA) in TBS for 30 min.
Sections were then incubated overnight with mouse anti-BrdU
(1:40, Dako, M0744, Glostrup, Denmark) or rat anti-BrdU (1:40;
Santa Cruz, SC-70441, CA, USA) and rabbit anti-calretinin (CR,
1:500, Swant, Bellinzona, Switzerland), goat anti-doublecortin
(DCX, 1:200, Santa Cruz, sc-8066, CA, USA) and rabbit anti-
postsynaptic density-95 (PSD-95, 1:50, Santa Cruz, sc-28941, CA,
USA) antibodies diluted in TBS with 1% v/v normal goat serum
at 4◦C. Antibodies specificity was assessed by using untreated ani-
mals and/or omitting primary antibodies. Sections were rinsed
and incubated with Alexa 405 anti-mouse, Alexa 488 anti-mouse
or anti-rat, Alexa 594 anti-rabbit and Alexa 647 anti-goat (1:200
in TBS with 2% of normal goat serum and 0.2% Triton X-
100; Invitrogen, Eugene, OR), and counterstained using DAPI
(1 µg/ml in TBS, Santa Cruz, SC-3598) for 5 min in the dark.
All sections were mounted and coverslipped with PVA-DABCO
solution (DABCO®).

ANALYSIS OF LABELED CELLS
Sections under study were analyzed using epifluorescence (Nikon
eclipse Ti) and confocal microscopy (Zeiss LSM 710). Brightness,
contrast and gamma of images were adjusted using Irfanview
software and figures arranged and lettered using Canvas software.
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RESULTS
INJECTION SITES
In order to label afferent connections to the olfactory bulb
arising from olfactory-recipient structures (Mohedano-Moriano
et al., 2012) and to the dentate gyrus originating in the entorhi-
nal cortex, injections were aimed at the AON (Figure 1A),
OT (Figure 1B), PIR (Figure 1B), LEC (Figure 1C) and MEC
(Figure 1D), respectively. The resulting anterograde labeling was
analyzed in the different layers of the olfactory bulb (Figure 1E),
particularly in the granule cell (GrL) and glomerular (GL) lay-
ers (Figure 1F) as well as in the caudoventral DG (Figure 1G),
specifically in the molecular layer (Figure 1H).

Injections of RDA in the AON involved both dorsal and
ventral components of the nucleus as well as the intrabulbar
portion of the anterior commissure (Figures 2A,B). Injections

FIGURE 1 | Nissl-stained coronal (B–D,G,H) and sagittal (A,E,F)

sections of olfactory bulb and dentate gyrus. Aci, anterior commissure
intrabulbar; AOB, accessory olfactory bulb; cMEC, caudo-medial entorhinal
cortex; dAON, anterior olfactory nucleus dorsal; DG, dentate gyrus; ePL,
external plexiform layer olfactory bulb; GL, glomerular layer olfactory bulb;
GrL, granular layer; iPL, internal plexiform layer olfactory bulb; LEC, lateral
entorhinal cortex; MCL, mitral cell layer; ML, molecular layer dentate gyrus;
MOB, main olfactory bulbs; OT, olfactory tubercle; PIR, piriform cortex; PL,
polymorph layer of the dentate gyrus; SGZ, subgranular zone; vAON,
anterior olfactory nucleus ventral. Calibration bar for (A) 334 µm; (B y G)

500 µm; (C y E) 250 µm; (D) 167 µm; (F) 100 µm; (H) 50 µm.

in the OT mostly involved cell layer III including islands of
Calleja (Figures 2C,D). Tracer deposits in the PIR were cen-
tered in cell layers II and III (Figures 2E,F). Similarly, injec-
tions in LEC mostly involved supragranular cell layers II and
III (Figures 2G,H); whereas injections in MEC were centered in
infragranular cell layers IV-VI (Figures 2I,J).

ANTEROGRADE LABELING
Tracer injections in the AON (Figures 2A,B) resulted in
anterogradely labeled fibers in the olfactory bulb. Confocal

FIGURE 2 | Injection sites of rhodamine-labeled dextran-amine (RDA)

tracer in anterior olfactory nucleus (A,B), olfactory tubercle (C,D), piriform

cortex (E,F), lateral entorhinal cortex (G,H) and medial entorhinal cortex

(I,J). Aci, anterior commissure intrabulbar; AOB, accessory olfactory bulb;
cMEC, caudo-medial entorhinal cortex; CPu, caudatus putamen; dAON,
anterior olfactory nucleus dorsal; LEC, lateral entorhinal cortex; lo, lateral
olfactory tract; LV, lateral ventricle; MOB, main olfactory bulbs; OT, olfactory
tubercle; PIR, piriform cortex; vAON, anterior olfactory nucleus ventral; VP,
ventral pallidum. Calibration bar for (A,C,E,G,I) 500 µm.
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microscopy showed abundant, thin fibers concentrated in the
granule cell layer (Figure 3A) as evidenced by double label-
ing with calretinin (CR) (Figure 3B). High-power images
revealed labeled fibers around glomeruli in the glomerular layer
(Figure 3C).

Injections in the OT (Figures 2C,D) yielded thick, labeled
fibers under fluorescence (Figure 3D) and confocal (Figure 3E)
microscopy throughout all layers of the OB as evidenced by CR
expression (Figure 3F). Terminal-like fibers concentrated in the
GL (Figure 3G) where they exhibited varicosities (Figure 3H).
Double labeling experiments with CR demonstrated that most
of these fibers were arranged in a periglomerular pattern
(Figures 3C,I).

Tracer deposits in the PIR (Figures 2E,F) resulted in scarce,
thin fibers mostly distributed into the GrL (Figure 3J). Confocal
microscopy revealed that these fibers occasionally showed vari-
cosities (Figure 3K). The preferential expression in the granule
cell layer was assessed by CR immunoreactivity (Figure 3L).

Experiments with RDA in the enthorinal cortex, aimed at the
LEC (Figures 2G,H) and MEC (Figures 2I,J) labeled fibers along

the perforant path that formed plexuses in the DG. Specifically,
injections in LEC gave rise a band of labeled, varicose fibers in
outer one-third of the molecular layer of the DG (Figure 4A);
whereas injections in the MEC yielded a band of varicose fibers
in the middle one-third of the molecular layer (Figure 4B). This
labeling was only observed in all cases in the most caudoventral
DG, from −3 to −4 mm posterior from bregma (Franklin and
Paxinos, 2008).

IMMUNOFLUORESCENCE
Confocal z-stacks images after injections in the AON
(Figures 2A,B), showed BrdU-labeled nuclei in the GL sur-
rounded by terminal fibers indicating presumptive axo-somatic
synaptic contacts (Figures 5A–D). In the GrL, BrdU-labeled cells
(Figure 5E), co-expressing CR (Figure 5F), were in close prox-
imity to RDA-labeled fibers (Figure 5G), suggesting also putative
axo-somatic contacts onto double labeled cells (Figure 5H). In
experiments including RDA injections in the OT (Figures 2C,D),
BrdU-labeled cells (Figure 5I) also expressed CR (Figure 5J)
and RDA-labeled fibers (Figure 5K) suggesting contacts on the

FIGURE 3 | Tract-tracing and immunofluorescence experiments. Sagittal
sections of the anterior olfactory bulb showing incoming rhodamine-labeled
dextran-amine (RDA)-fibers from injections into the anterior olfactory nucleus
(A–C), olfactory tubercle (D–I) and piriform cortex (J–L) showing a
rhodamine-labeled dextran-amine (RDA) under epifluorescence (D,G,J) and

confocal (A,B,C,E,F,H,I,K,L) microscopy. CR, calretinin; ePL, external
plexiform layer olfactory bulb; GL, glomerular layer olfactory bulb; GrL,
granular layer; iPL, internal plexiform layer olfactory bulb; MCL, mitral cell
layer; MOB, main olfactory bulbs. Calibration bar for (A,B) 25 µm; C 10 µm;
(D) 100 µm; (E,F) 200 µm; (G–L) 50 µm.
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cell body of these cells (Figure 5L). In the cases with deposits
in the PIR (Figures 2E,F), some BrdU-labeled cells (Figure 5M)
co-expressed CR (asterisks in Figure 5N) and some others
do not (arrowheads in Figure 5N). Fibers labeled with RDA
(Figure 5O) appears to reach BrdU-labeled cells (arrowheads in

FIGURE 4 | Double immunofluorescence for DAPI (blue) and

rhodamine-labeled dextran-amine (RDA) (red) showing lateral (LEC)

and medial (MEC) entorhinal cortices. LEC (A) and MEC (B) end in the
outer and middle one-thirds of the molecular layer (ML) of the dentate
gyrus, respectively. Calibration bar for (A,B) 25 µm. GrL: granular layer.

Figure 5P) as well as BrdU- and CR-expressing cells (asterisk in
Figure 5P). High magnification images demonstrated that 21
day-old BrdU-labeled cells (Figure 5Q), even not co-expressing
CR (Figure 5R), were surrounded by labeled, beaded, terminal
fibers (Figure 5S), establishing putative contacts (Figure 5T).

Triple labeling experiments in the DG including injections
in the entorhinal cortex combined with synaptic (Kosel et al.,
1981) and maturational markers reveal hodological changes
in newly-born neurons. Experiments including RDA injections
in MEC (Figures 2I,J) reveal BrdU-positive cells in the SGZ
(Figure 6A) and RDA-labeled fibers in the middle one-third
of the molecular layer (Figure 6B). Interestingly, the expres-
sion of the postsynaptic marker PSD-95 (Figure 6C) matches
that of RDA-labeled fibers (Figure 6D) thus suggesting presump-
tive synaptic contacts. The expression of doublecortin (DCX),
a marker of neuroblasts during maturation and even matura-
tion –up to 1 month after birth (Torubarova et al., 1981)-,
shows the dendritic tree of young neurons occupying the full
extent of the molecular layer (Figures 6E,F). Expression of PSD-
95 (Figure 6G) (Kosel et al., 1981) suggests synaptic contacts on

FIGURE 5 | Double and triple immunofluorescence againts

bromodeoxyuridine (BrdU) (blue), calretinin (CR) (green) and

rhodamine-labeled dextran-amine (RDA) (red). Asterisks indicate
newly-born olfactory granule cells co-expressing BrdU and CR and

establishing contacts with RDA-labeled terminal fibers from AON
(A-H), OT (I-L) and PIR (M-T). Arrowheads show contacts between
BrdU+ cells and RDA-labeled fibers. Calibration bar for (A–D) 10 µm,
(E–T) 20 µm.
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FIGURE 6 | Triple labeling experiments in dentate gyrus. (A–D)

Newly-born granule cells (green) were found in SGZ and arrows indicate
connections between PSD-95+ cells (red) and rhodamine-labeled
dextran-amine (RDA)-labeled fibers (blue) from cMEC. (E–H) Some of DCX+

cells (green), which are also localized in SGZ, express PSD-95 (red). (I–L)

Arrowheads point out contacts between afferent RDA-labeled fibers (blue)
from cMEC and BrdU (green)/DCX (red) double labeled cells. Calibration bar
for (A–C) 50 µm.

these cells (Figure 6H). Occasionally, BrdU-labeled cells (arrow
in Figure 6I) and the resulting RDA labeling (Figure 6J) com-
bined with DCX expression (arrowheads in Figure 6K) revealed
BrdU-labeled cells (arrow in Figure 6L) displaying an apical den-
drite (arrowheads in Figure 6L) reaching the zone of RDA-labeled
fibers after injections in the MEC (Figure 6L). Because of BrdU
protocol using HCl, immunodetection of some proteins, includ-
ing PSD-95 and DCX becomes less sensitive as can be observed in
Figures 6E vs. K.

In this sense, it is interesting to note that the length of the
apical dendrites of DG granule cells -based on DCX expression
and in agreement with previous studies (Torubarova et al., 1981)-
is 95.5 µm ± 5.4 (s.e.m.) and 94.3 µm ± 6.9 (s.e.m.) in the
caudoventral and rostrodorsal molecular layer of the DG, respec-
tively. The outer and middle one-thirds of the molecular layer
begin at 118.4 µm ± 9.8 (s.e.m.) and 74.2 µm ± 2.4 (s.e.m.) from
the granule cell layer, respectively; which suggest that less 10% of
the dendritic tree of DCX-positive granule cells reach the outer
portion of the molecular layer.

DISCUSSION
The data of the present work show that 3-week-old neurons born
in the adult brain appear to receive inputs from distant structures.
Newly-born granule and periglomerular cells in the OB, some
of which co-express CR, could receive perisomatic inputs from
axons of neurons located in the AON, OT or PIR (Figure 5). The
centrifugal fibers, especially those originating in the AON and OT,
appear to reach periglomerular cells (Figures 3C,G–I, 5A–D).
Newly-born granule cells in the DG display apical dendrites over
which axons from the MEC appear to make synapses in the mid-
dle one-third of the molecular layer. Although our results do not
show it, the possibility that inputs from LEC reach the distal

one-third of dendrites of newly-born cells cannot be discarded
(Figure 7). Electron microscopy experiments have been carried
out in order to further asses our results (see Supplementary
Material), although results have been inconclusive due to tech-
nical difficulties.

ADULT-BORN GRANULE CELLS IN THE ADULT OLFACTORY BULB AND
DENTATE GYRUS
It has been estimated that 30.000 cells per day are generated bilat-
erally in the mouse SVZ (Lois and Alvarez-Buylla, 1994); and
that about 650.000 neuroblasts are present in granule cell layer
of the OB 30 days after H3thymidine administration (Petreanu
and Alvarez-Buylla, 2002). This process seems quantitatively less
relevant in the DG, since the SGZ daily produce approximately
9000 and 1200 neuroblasts per day in rats and mice, respec-
tively (Kempermann et al., 1997; Christie and Cameron, 2006).
This totalizes about 0.1% of all DG cells (West et al., 1991; Rapp
and Gallagher, 1996; Cameron and McKay, 2001). Approximately
50% of new-born cells survive and 80% of those become fully
mature neurons (Dayer et al., 2003). More than 650.000 new
granule cells are present in the hippocampus of 3-months old
rats (Snyder and Cameron, 2012). However, in humans, a recent
study measuring 14C concentration in neuronal nuclei found a
high turnover rate in the human hippocampus, 700 new neu-
rons are added in each side per day, corresponding to an annual
turnover of 1.75% of the neurons. These rates are comparable
in middle-aged human and mice, suggesting adult hippocampal
neurogenesis plays an important role in the maintenance of brain
function (Spalding et al., 2013).

SVZ mainly provides GABAergic granule and periglomeru-
lar new interneurons to the OB. Granule cells are the main
population of axonless, GABAergic interneurons in the OB. These
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FIGURE 7 | Schematic diagram of one horizontal section of the mouse brain summarizing the neurogenic processes and the main afferent

connections to the olfactory bulb and dentate gyrus.

interneurons appear to modulate the activity of mitral and tufted
cells optimizing olfactory function by reducing overlap of odor
representation in these projection cells (Mori and Shepherd, 1994;
Yokoi et al., 1995; Isaacson and Strowbridge, 1998). Granule cells
receive both GABAergic and glutamatergic synaptic inputs from
cortical areas (Price and Powell, 1970) and OB intrinsic neurons
(Bovetti et al., 2011). Granule cells receive two functionally differ-
ent glutamatergic synaptic inputs: mitral cells excite granule cells
mainly through distal dendrodendritic synapses; whereas proxi-
mal smaller dendritic spines receive contacts from cortical neu-
rons. Thus, these feedback inputs mainly coming from the AON,
OT, PIR, and LEC (Anaya-Martinez et al., 2006; Mohedano-
Moriano et al., 2012) can gate dendrodendritic inhibition (Balu
et al., 2007).

Dentate granule cells are one of the most intriguing cells in
the central nervous system since they are glutamatergic neurons,
but also express, inter alia, GABA, suggesting that they can act
as inhibitory cells (Gutierrez, 2003; Gutierrez and Heinemann,
2006). These cells have been demonstrated to be involved in cer-
tain learning and memory tasks (Toga and Lothman, 1983; Shors
et al., 2001; Snyder et al., 2005; Deng et al., 2009) and in emotional
and spatial behaviors (Saxe et al., 2006; Clelland et al., 2009;
Goodman et al., 2010).

INPUTS ONTO ADULT-BORN GRANULE NEURONS
Newly-born olfactory granule cells first receive GABAergic synap-
tic connections 3–7 days after birth, when the neuroblasts stop
tangential migration and begin morphological maturation; and,
1 week thereafter, they begin to receive glutamatergic affer-
ents (Belluzzi et al., 2003; Carleton et al., 2003; Panzanelli
et al., 2009). Functional synapses at early stages of newly-born
granule cells may establish a substrate for experience-depend
regulation of adult neurogenesis and it can be important for
long-term survival as data on blockade of glutamatergic activ-
ity have demonstrated (De Lima et al., 2004; Gascon et al., 2006;
Panzanelli et al., 2009). Specifically, these centrifugal inputs may
play an important role in maintenance and synaptic integration
by regulation of dendritic growth of newly generated neurons
in preexisting adult neuronal networks (Gascon et al., 2006;
Mouret et al., 2009). However, knowledge about first synapses
originating in neurons located in distant structures, includ-
ing timing or specific origin is poor. In the present work, we
have shown that olfactory afferents from AON, OT, and PIR
reach and presumptively establish perisomatic contacts onto 21
day-old granule and periglomerular cells in the OB (Figure 5),
even before they start to express specific olfactory population
proteins.

Frontiers in Neuroanatomy www.frontiersin.org February 2015 | Volume 9 | Article 4 | 7

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


De La Rosa-Prieto et al. Projections to adult-born neurons

Newly-born granule cells in the DG initially receive excitatory
GABAergic inputs from local interneurons and this becomes
inhibitory only once the glutamatergic extrinsic input from the
EC has established, 2 weeks after birth (Overstreet Wadiche et al.,
2005; Toni et al., 2007), showing most dendritic spines at 21–
28 days after birth (Zhao et al., 2006). On the one hand, Li
et al. (2012) have recently demonstrated that early GABAergic
inputs may control the integration of maturing neurons to the
adult hippocampal network. It has been shown that reduction of
glutamatergic input implies loss of interneurons in other brain
regions (De Lima et al., 2004). Many studies reveal the impor-
tance of entorhinal inputs to dentate granule cells. For example,
unilateral or bilateral olfactory bulbectomy implies a rapid, tran-
sient increase in apoptosis in the dentate gyrus ipsilateral to
the removed OB and lesions of the MEC significantly increase
the number of dividing cells in the dentate gyrus in adult rats
(Pope and Wilson, 2007). Data suggest that afferent input by
NMDA receptor activation slows neuronal birth during adult-
hood (Cameron et al., 1995). Thereby, inputs seem to play a
relevant role for cell survival, maturation and integration of new
dentate granule cells once they reach maturity.

Dentate granule cells receive, through the perforant path, mas-
sive afferents from LEC and MEC (Steward, 1976; Witter, 2007).
This pathway uses glutamate as primary neurotransmitter via
NMDA receptors (White et al., 1977; Collingridge, 1989) but
also presents a small GABAergic population (Germroth et al.,
1989). Interestingly, neurons located in LEC send apical den-
drites to layer I where they receive afferents from axons of bulbar
mitral and tufted cells (Kosel et al., 1981; Martinez-Marcos and
Halpern, 2006; Martinez-Marcos, 2009). Neurons located in lay-
ers II, V, and VI of LEC send axons to the outer one-third of
the molecular layer of the DG; whereas the corresponding cells
of MEC establish synapse in the middle one-third of this layer
(Ramón Y Cajal, 1893; Hjorth-Simonsen, 1972; Hjorth-Simonsen
and Jeune, 1972) (Figure 6). The dentate gyrus, therefore, receives
olfactory information through the entorhinal cortex (Kosel et al.,
1981) and the ventral subiculum and CA1 projects back to the
OB (De La Rosa-Prieto et al., 2009b; Mohedano-Moriano et al.,
2012). These data suggest that dentate granule cells could be also
involved in olfactory processing, specifically in pattern separation
for olfactory learning (Gilbert et al., 2001; Kesner et al., 2011),
odor discrimination (Eichenbaum et al., 1988) and olfactory
memory (Staubli et al., 1984).
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