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Abstract: Chrysin (5,7-dihydroxyflavone) is a natural polyphenolic compound that induces an
anti-inflammatory response. In this study, we investigated the molecular mechanism underlying
the chrysin-induced suppression of C-C motif chemokine ligand 5 (CCL5) gene expression in atopic
dermatitis (AD)-like inflammatory microenvironment. We showed that chrysin inhibited CCL5
expression at the transcriptional level through the suppression of nuclear factor kappa B (NF-κB) in
the inflammatory environment. Chrysin could bind to the ATP-binding pocket of the inhibitor of κB
(IκB) kinase (IKK) and, subsequently, prevent IκB degradation and NF-κB activation. The clinical
efficacy of chrysin in targeting IKK was evaluated in 2,4-dinitrochlorobenzene-induced skin lesions
in BALB/c mice. Our results suggested that chrysin prevented CCL5 expression by targeting IKK
to reduce the infiltration of mast cells to the inflammatory sites and at least partially attenuate the
inflammatory responses. These findings suggested that chrysin might be useful as a platform for the
design and synthesis of small-molecule IKK-targeting drugs for the treatment of chronic inflammatory
diseases, such as AD.
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1. Introduction

Atopic dermatitis (AD) is a chronic inflammatory skin disease that commonly occurs in children.
The cause of AD is yet to be fully elucidated; however, the onset of AD is associated with genetic
and environmental factors, skin architectural defects, and cell-mediated immune dysfunction [1].
T-helper cell (Th2)-predominant inflammatory responses are believed to promote AD pathogenesis
and immunoglobulin E (IgE)-mediated hypersensitivity [2,3], and these are often associated with
intractable chronic itchiness [4]. The chronicity of itching and scratching is a common symptom of AD,
which reduces the quality of life for patients.

Mast cells are multifunctional immune cells that link innate and adaptive immunity and play
a major role in immunoglobulin E (IgE)-mediated hypersensitivity in AD [5]. Activated mast cells
produce various inflammatory mediators, including histamine; lipid mediators, such as prostaglandins;
growth factors; cytokines; and chemokines, such as tumor necrosis factor alpha (TNFα), interleukin

Int. J. Mol. Sci. 2020, 21, 7348; doi:10.3390/ijms21197348 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-4060-6587
https://orcid.org/0000-0001-8984-0273
https://orcid.org/0000-0002-1075-0011
http://www.mdpi.com/1422-0067/21/19/7348?type=check_update&version=1
http://dx.doi.org/10.3390/ijms21197348
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2020, 21, 7348 2 of 14

(IL)-1β, IL-4, and IL-6, which are associated with the pathogenesis of AD [5]. The number of mast cells
increases in most patients with AD and skin lesions in mouse AD models, which implies that mast
cells are involved in the incidence and severity of AD [6].

The inflammatory chemokine C-C motif chemokine ligand 5 (CCL5), also known as regulated
on activation, normal T cell expressed and secreted (RANTES), belongs to the C-C chemokine family
and plays an active role in directing mast cells to inflammatory sites [7]. CCL5 is overexpressed in
the skin of patients with AD [8], and CCL5 antagonism has shown therapeutic efficacy in models of
contact skin inflammation [9]. CCL5 expression is regulated in a cell-type- and stimulus-dependent
manner by several transcription factors, including nuclear factor kappa B (NF-κB), Activator protein 1
(AP1), Nuclear factor for IL6 expression (NF-IL6), Specificity protein 1 (SP1), and Krüppel-like factor
13 [10,11].

Chrysin (5,7-dihydroxyflavone, Figure 1A) is a polyphenolic flavonoid compound that is abundant
in honey, propolis, and carrots. It exhibits multiple biological properties, including anti-inflammatory
and anticancer properties [12]. Chrysin has been shown to inhibit allergen-induced [13] and
TNFα-induced NF-κB activity [14,15] and alleviate AD-like skin lesions in a mouse model [15].
However, the molecular mechanisms underlying the suppression of CCL5 expression and inhibition of
NF-κB activity by chrysin remain unknown.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 14 

number of mast cells increases in most patients with AD and skin lesions in mouse AD models, which 
implies that mast cells are involved in the incidence and severity of AD [6]. 

The inflammatory chemokine C-C motif chemokine ligand 5 (CCL5), also known as regulated 
on activation, normal T cell expressed and secreted (RANTES), belongs to the C-C chemokine family 
and plays an active role in directing mast cells to inflammatory sites [7]. CCL5 is overexpressed in 
the skin of patients with AD [8], and CCL5 antagonism has shown therapeutic efficacy in models of 
contact skin inflammation [9]. CCL5 expression is regulated in a cell-type- and stimulus-dependent 
manner by several transcription factors, including nuclear factor kappa B (NF-κB), Activator protein 
1 (AP1), Nuclear factor for IL6 expression (NF-IL6), Specificity protein 1 (SP1), and Krüppel-like 
factor 13 [10,11]. 

Chrysin (5,7-dihydroxyflavone, Figure 1A) is a polyphenolic flavonoid compound that is 
abundant in honey, propolis, and carrots. It exhibits multiple biological properties, including anti-
inflammatory and anticancer properties [12]. Chrysin has been shown to inhibit allergen-induced [13] 
and TNFα-induced NF-κB activity [14,15] and alleviate AD-like skin lesions in a mouse model [15]. 
However, the molecular mechanisms underlying the suppression of CCL5 expression and inhibition 
of NF-κB activity by chrysin remain unknown. 

In this study, we found that chrysin is able to bind to the ATP-binding pocket of the inhibitor of 
κB (IκB) kinase (IKK), consequently inhibiting the IKK kinase activity and downregulating the NF-
κB signaling pathway, thereby inhibiting the transcription of CCL5 at the gene promoter level. 

 
Figure 1. Effects of chrysin on the inhibition of C-C motif chemokine ligand 5 (CCL5) expression. (A) 
Chemical structure of chrysin (5,7-dihydroxyflavone). (B) Agarose spot migration assay. The RBL2H3 
cell suspension was plated on an agarose spot containing phosphate-buffered saline (PBS) or 25-
ng/mL CCL5. At 6 h after the addition of PBS or CCL5, the chemotactic cells were imaged. The areas 
in the dashed boxes are enlarged in the bottom panels. (C) HaCaT cells were treated with 10-ng/mL 
tumor necrosis factor alpha (TNFα) for 0, 3, 6, and 12 h. Total RNA was isolated, and the levels of 
CCL5 mRNA were measured using reverse transcription (RT)-PCR. Glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) mRNA levels were measured as an internal control. (D) HaCaT cells were 
pretreated with 20 and 40-μM chrysin for 30 min before stimulation with 10-ng/mL TNFα. After 12 h, 
total RNA was isolated, and the levels of CCL5 mRNA were measured using RT-PCR. GAPDH mRNA 
levels were measured as an internal control. (E) HaCaT cells were treated as in (D), and total RNA 
was isolated. The expression level of CCL5 mRNA was quantified using quantitative (Q)-PCR with 
SYBRTM Green-based fluorescent probes. The relative expression fold was normalized to the levels of 

Figure 1. Effects of chrysin on the inhibition of C-C motif chemokine ligand 5 (CCL5) expression.
(A) Chemical structure of chrysin (5,7-dihydroxyflavone). (B) Agarose spot migration assay.
The RBL2H3 cell suspension was plated on an agarose spot containing phosphate-buffered saline
(PBS) or 25-ng/mL CCL5. At 6 h after the addition of PBS or CCL5, the chemotactic cells were imaged.
The areas in the dashed boxes are enlarged in the bottom panels. (C) HaCaT cells were treated with
10-ng/mL tumor necrosis factor alpha (TNFα) for 0, 3, 6, and 12 h. Total RNA was isolated, and the levels
of CCL5 mRNA were measured using reverse transcription (RT)-PCR. Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) mRNA levels were measured as an internal control. (D) HaCaT cells were
pretreated with 20 and 40-µM chrysin for 30 min before stimulation with 10-ng/mL TNFα. After 12 h,
total RNA was isolated, and the levels of CCL5 mRNA were measured using RT-PCR. GAPDH mRNA
levels were measured as an internal control. (E) HaCaT cells were treated as in (D), and total RNA
was isolated. The expression level of CCL5 mRNA was quantified using quantitative (Q)-PCR with
SYBRTM Green-based fluorescent probes. The relative expression fold was normalized to the levels
of GAPDH. Data are expressed as the mean ± SD (n = 3). * p = 0.0111 and *** p < 0.001 by Dunnett’s
multiple comparisons test. (F) HaCaT cells were treated with chrysin and TNFα, as in (E). After 24 h,
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the culture medium was collected, and CCL5 protein levels were measured using the enzyme-linked
immunosorbent assay (ELISA). Data are expressed as the mean ± SD (n = 3). *** p < 0.001 by Dunnett’s
multiple comparisons test.

In this study, we found that chrysin is able to bind to the ATP-binding pocket of the inhibitor of
κB (IκB) kinase (IKK), consequently inhibiting the IKK kinase activity and downregulating the NF-κB
signaling pathway, thereby inhibiting the transcription of CCL5 at the gene promoter level.

2. Results and Discussion

2.1. Effect of Chrysin on the Suppression of TNFα-Induced CCL5 Expression in HaCaT Cells

As CCL5 was observed to enhance the motility of eosinophilic RBL2H3 leukemia cells in the
agarose spot migration assay (Figure 1B), we reasoned that chrysin exhibits anti-inflammatory
activity through the modulation of CCL5, at least partially. To test this theory, we evaluated
the effects of chrysin treatment on CCL5 mRNA expression in HaCaT keratinocytes, a human
skin equivalent cell model. TNFα is a proinflammatory cytokine that plays a major role in the
pathogenesis of AD [16]. Reverse transcription (RT)-PCR analyses showed that TNFα elevated
CCL5 mRNA expression in a time-dependent manner (Figure 1C), whereas the pretreatment with
chrysin reduced TNFα-induced CCL5 mRNA expression in HaCaT cells (Figure 1D). The change in
mRNA levels was quantified by quantitative PCR (Q-PCR) with SYBRTM Green-based fluorescent
probes specific for CCL5. TNFα increased CCL5 mRNA levels by 3.16 ± 0.212-fold; however,
in the presence of 20 and 40-µM chrysin, the CCL5 mRNA levels, which increased under TNFα
induction, decreased by 2.35 ± 0.250- and 1.24 ± 0.144-fold, respectively, compared to those in the
control (Figure 1E). Consistently, findings from the enzyme-linked immunosorbent assay (ELISA) of
the HaCaT-conditioned medium showed that chrysin significantly (p < 0.001, n = 3) reduced the
TNFα-induced accumulation of CCL5 (Figure 1F).

2.2. Effect of Chrysin on the Inhibition of TNFα-Induced CCL5 Promoter Activity

The 5’-regulatory region of human CCL5 contains multiple cis-acting regulatory elements, including
the NF-κB and Signal Transducer and Transcription (STAT) binding sites, and is regulated in a cell-type-
and stimulus-specific manner [10]. To determine whether chrysin inhibits CCL5 expression at the
transcriptional level, we isolated the 5′-regulatory region of CCL5 spanning nucleotides –1074 to
+45 and generated a set of deletion constructs, –1074/+45, –500/+45, and –100/+45, containing a
luciferase reporter enzyme. Each of these promoter-reporter constructs was transiently transfected
into HaCaT cells, and the levels of luciferase activity were evaluated. We observed that, after TNFα
stimulation, the CCL5 promoter-reporter activity persisted in even the shortest reporter (–93 to +65)
containing a cluster of NF-κB-binding elements, which was subsequently inhibited by chrysin (Figure 2).
These results suggest that chrysin inhibits CCL5 expression at the gene promoter level and that NF-κB
participates in the chrysin-induced suppression of CCL5 transcription.
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were transfected with 0.2 µg of a set of 5′-deletion constructs of CCL5 promoter-reporter plasmids.
At 48 h post-transfection, the cells were treated with 10-ng/mL TNFα in the absence or presence of
chrysin (20 or 40 µM). After 12 h, the cells were harvested, and luciferase reporter activities were
measured. The schematic diagram shows a set of deletion constructs of the CCL5 promoter-reporter
plasmid. Putative Signal Transducer and Transcription (STAT) and nuclear factor kappa B (NF-κB)
binding sites are indicated by grey and black boxes, respectively. Data are expressed as the mean ± SD
(n = 3). * p = 0.0134, ** p = 0.0016, and *** p < 0.0001 by Sidak’s multiple comparisons test.

2.3. Binding of Chrysin to the ATP-Binding Pocket of IKK

Chrysin is known to inhibit NF-κB [13,14]; however, the mechanism underlying the inhibition
of NF-κB activity by chrysin has not been reported to date. As the phosphorylation of IκB by IKK
is the key step in the activation of NF-κB, we hypothesized that chrysin might modulate the IKK
activity. To evaluate this, we performed an in silico molecular docking experiment to predict the
possible binding mode of chrysin to IKK. We used the LigPlot program to analyze the binding
sites. Thirty protein-ligand complexes were generated. The binding energy ranged from −19.3 to
−13.0 kcal/mol. The complex with the lowest binding energy was selected and analyzed using LigPlot.
Nine residues, including Leu21, Gly22, Glu96, Tyr97, Cys98, Asp102, Glu148, Val151, and Ile164,
participated in the hydrophobic interaction with chrysin, and a residue, Thr23, formed a hydrogen bond
(H-bond) (Figure 3A, left). The distance between the 7-hydroxyl group of chrysin and nitrogen of Thr23
that formed an H-bond was 2.88 Å (indicated by the yellow circle). Notably, chrysin was docked in the
same ATP-binding pocket of the reference ligand, 2-azanyl-5-phenyl-3-(4-sulfamoylphenyl)benzamide
(APB) and IKK1 (Figure 3A, right). The 3D images for the chrysin-IKK1 complex were generated using
PyMOL (Figure 3B). This observation suggests that chrysin can bind to the ATP-binding pocket of IKK,
which leads to the inhibition of the NF-κB signaling pathway.
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(A) The interactions between the IKK1 protein and chrysin (left) and the reference ligand, 2-azanyl-
5-phenyl-3-(4-sulfamoylphenyl)benzamide (APB) (right), were analyzed using LigPlot. (B) The 3D
images of the IKK1:chrysin complex (left) and the binding pocket of the chrysin:IKK1 complex (right)
generated using PyMOL. The distance between the 7-hydroxyl group of chrysin and nitrogen of Thr23
that forms an H-bond is 2.88 Å (indicated by the yellow circle).

2.4. Effect of Chrysin on the Inhibition of the IKK Downstream Pathway

To validate the findings of the molecular docking experiments, we examined the inhibitory effect of
chrysin on the IKK downstream signaling pathway. TNFα was observed to induce the phosphorylation
of IκB at Ser32 and p65/RelA at Ser536 within 5 min of treatment (Figure 4A). Notably, IκB was almost
completely degraded to undetectable levels within 15 min—after which, the levels were gradually
restored. When the cells were pretreated with 20 and 40-µM chrysin for 30 min before stimulation
with 10-ng/mL TNFα for 5 min, TNFα-induced IκB and p65/RelA NF-κB phosphorylation reduced
significantly (all p < 0.01, n = 3) in a dose-dependent manner (Figure 4B). Therefore, chrysin suppresses
TNFα-induced NF-κB activation in HaCaT keratinocytes. Although we did not evaluate the effect of
chrysin on the inhibtion of IKK downstream pathways in primary keratinocytes, it has been reported
that chrysin inhibits TNFα plus the interferon gamma (IFNγ)-induced phosphorylation of NF-κB in
primary keratinocytes [15], suggesting that chrysin attenuates IKK downstream signaling pathways by
targeting IKK in skin keratinocytes.
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challenged with 2,4-dinitrochlorobenzene (DNCB) on the dorsal skin. Mice that were challenged with 
DNCB for 21 days developed AD-like skin lesions, and the topical application of chrysin (25 mg/kg) 
improved this clinical symptom (Figure 5A). Increased serum IgE levels are an important diagnostic 
indicator of DNCB-induced AD-like skin lesions [17]. We measured the serum immunoglobulin E 
(IgE) levels in blood samples collected from mice before sacrifice. The topical application of chrysin 
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Figure 4. Effect of chrysin on the inhibition of the downstream signaling pathway of the inhibitor
of κB (IκB) kinase (IKK). (A) HaCaT cells were treated with 10-ng/mL TNFα for different periods
(0–90 min), and the phosphorylation of IκB at Ser32 and p65/RelA NF-κB at Ser536 were observed in
immunoblotting experiments. Total IκB and p65 proteins were used as the internal controls. (B) HaCaT
cells were pretreated with chrysin (20 and 40 µM) for 30 min, then stimulated with 10-ng/mL TNFα
for 5 min. The phosphorylation of IκB and p65/RelA NF-κB were measured by immunoblot analysis.
The band intensity corresponding to each phosphorylated protein was normalized to the total protein
levels for each protein using ImageJ software. The bars represent mean ± SD (n = 3). ** p = 0.0005 and
*** p < 0.0001 by Dunnett’s multiple comparisons test.

2.5. Effect of Chrysin on the Inhibition of NF-κB in 2,4-Dinitrochlorobenzene (DNCB)-Induced Skin Lesions

The efficacy of chrysin in IKK inhibition in vivo was evaluated in BALB/c mice repeatedly
challenged with 2,4-dinitrochlorobenzene (DNCB) on the dorsal skin. Mice that were challenged with
DNCB for 21 days developed AD-like skin lesions, and the topical application of chrysin (25 mg/kg)
improved this clinical symptom (Figure 5A). Increased serum IgE levels are an important diagnostic
indicator of DNCB-induced AD-like skin lesions [17]. We measured the serum immunoglobulin E
(IgE) levels in blood samples collected from mice before sacrifice. The topical application of chrysin
significantly (p < 0.001, n = 5) decreased the serum IgE levels compared to those in DNCB-treated
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mice (Figure 5B). A histopathological analysis, which involved hematoxylin and eosin (H&E) staining,
and a morphometric analysis showed that the DNCB-induced increase in epidermal and dermal
thickenings reduced significantly (p < 0.001, n = 5) upon the topical application of chrysin (Figure 5C).
Previous studies have reported that DNCB increases the phosphorylation of p65 NF-κB in BALB/c
mice models [18,19]. We also observed that the epidermal levels of phosphorylated p65 NF-κB were
high in mice challenged with DNCB; however, the levels decreased substantially upon the topical
application of chrysin (Figure 5D). These results suggest that IKK targeting by chrysin could lead to
the inhibition of NF-κB in vivo.
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Figure 5. Effect of chrysin on the inhibition of NF-κB in 2,4-dinitrochlorobenzene (DNCB)-induced skin
lesions. (A) Illustration of the experimental schedule for the induction of atopic dermatitis (AD)-like
skin lesions and treatment with chrysin (top). Representative images depicting the phenotype of naïve,
DNCB-induced skin lesions, and DNCB + chrysin (25 mg/kg)-treated skin in BALB/c mice (bottom).
The areas in the dashed boxes are enlarged in the bottom panels. (B) Blood samples were collected
immediately before sacrifice on day 22, and the total serum immunoglobulin E (IgE) levels were
measured by the enzyme-linked immunosorbent assay. Data are expressed as the mean ± SD (n = 3).
** p = 0.0002 and *** p < 0.0001 by Dunnett’s multiple comparisons test. (C) Histological analysis.
Paraffin-embedded skin sections were stained with hematoxylin and eosin (H&E). Scale bar, 400 µm.
The thicknesses of the epidermis and dermis were measured using ImageJ. Data are expressed as the
mean ± SD (n = 3). *** p < 0.001 by Dunnett’s multiple comparisons test. (D) Immunohistochemical
staining of phosphorylated p65 (p-p65) in Ser536 in skin tissues treated with DNCB and DNCB + 0.2%
chrysin. The sections were counterstained with H&E. Scale bar, 400 µm. The areas in the dashed boxes
are enlarged in the bottom panels.

2.6. Effect of Chrysin on the Suppression of CCL5 Expression and Infiltration of Mast Cells in DNCB-Induced
Skin Lesions

Next, we visualized the expression pattern of CCL5 in mouse skin tissues by immunofluorescence
staining. Notably, CCL5-positive staining increased considerably in the epidermis of mice challenged
with DNCB, which reduced substantially upon the topical application of chrysin (Figure 6A). It has
been reported that chrysin inhibits mast cell-derived allergic inflammation [13]. To determine whether
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the chrysin-induced suppression of CCL5 expression affects the infiltration of inflammatory cells,
we performed mast cell staining in DNCB-challenged skin tissue sections using toluidine blue (TB).
In accordance with a previous study [19], DNCB increased the infiltration of TB-positive mast cells;
however, this recruitment of TB-positive cells by DNCB was reduced significantly (p < 0.001, n = 5)
upon the repeated application of chrysin (Figure 6B). These results suggest that IKK targeting by
chrysin led to the suppression of NF-κB activity and reduced NF-κB-regulated CCL5 expression,
subsequently suppressing the inflammatory responses and infiltration of inflammatory cells, such as
mast cells, in DNCB-induced skin lesions in BALB/c mice.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 14 

reduced significantly (p < 0.001, n = 5) upon the repeated application of chrysin (Figure 6B). These 
results suggest that IKK targeting by chrysin led to the suppression of NF-κB activity and reduced 
NF-κB-regulated CCL5 expression, subsequently suppressing the inflammatory responses and 
infiltration of inflammatory cells, such as mast cells, in DNCB-induced skin lesions in BALB/c mice. 

 
Figure 6. Effect of chrysin on the suppression of CCL5 expression and the infiltration of mast cells in 
DNCB-induced skin lesions. (A) Immunofluorescence staining of CCL5 using rhodamine red-X-
conjugated secondary antibody (red) in skin tissues treated with DNCB and DNCB + 0.2% chrysin. 
Nuclei were counterstained using Hoechst 33258 (blue). Scale bar, 400 μm. Magnified view of the 
areas in the dashed boxes are provided in the right panels. (B) Mast cells were stained with 0.1% 
toluidine blue in skin tissues treated with DNCB and DNCB + chrysin (25 mg/kg). The areas in the 
dashed boxes are enlarged in the bottom panels. The dotted circles indicate the infiltrating mast cells 
(blue spots). Scale bar, 200 μm. The number of mast cells per 2.5 cm2 of area was counted. Graph data 
are expressed as the mean ± SD (n = 5). *** p < 0.0001 by Dunnett’s multiple comparisons test. 

3. Materials and Methods 

3.1. Materials 

Chrysin, 2,4-dinitrochlorobenzene (DNCB), toluidine blue (TB), and hematoxylin and eosin 
(H&E) staining kits were obtained from Sigma-Aldrich (St. Louis, MO, USA). Low-melting agarose 
was purchased from Lonza (Rockland, ME, USA). CCL5 was obtained from PeproTech (London, UK). 
TNFα was obtained from ProSpec-Tany TechnoGene, Ltd. (Ness-Ziona, Israel). A Firefly Luciferase 
Assay System was obtained from Promega (Madison, WI, USA). Anti-CCL5 antibody was obtained 
from Invitrogen (Thermo Fisher Scientific, Waltham, MA, USA), and anti-IKKα/β, -IκB, -phospho-
IκB (Ser32), -p65/RelA, and -phospho-p65/RelA (Ser536) antibodies were obtained from Cell 

Figure 6. Effect of chrysin on the suppression of CCL5 expression and the infiltration of mast
cells in DNCB-induced skin lesions. (A) Immunofluorescence staining of CCL5 using rhodamine
red-X-conjugated secondary antibody (red) in skin tissues treated with DNCB and DNCB + 0.2%
chrysin. Nuclei were counterstained using Hoechst 33258 (blue). Scale bar, 400 µm. Magnified view of
the areas in the dashed boxes are provided in the right panels. (B) Mast cells were stained with 0.1%
toluidine blue in skin tissues treated with DNCB and DNCB + chrysin (25 mg/kg). The areas in the
dashed boxes are enlarged in the bottom panels. The dotted circles indicate the infiltrating mast cells
(blue spots). Scale bar, 200 µm. The number of mast cells per 2.5 cm2 of area was counted. Graph data
are expressed as the mean ± SD (n = 5). *** p < 0.0001 by Dunnett’s multiple comparisons test.

3. Materials and Methods

3.1. Materials

Chrysin, 2,4-dinitrochlorobenzene (DNCB), toluidine blue (TB), and hematoxylin and eosin (H&E)
staining kits were obtained from Sigma-Aldrich (St. Louis, MO, USA). Low-melting agarose was
purchased from Lonza (Rockland, ME, USA). CCL5 was obtained from PeproTech (London, UK).
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TNFα was obtained from ProSpec-Tany TechnoGene, Ltd. (Ness-Ziona, Israel). A Firefly Luciferase
Assay System was obtained from Promega (Madison, WI, USA). Anti-CCL5 antibody was obtained
from Invitrogen (Thermo Fisher Scientific, Waltham, MA, USA), and anti-IKKα/β, -IκB, -phospho-IκB
(Ser32), -p65/RelA, and -phospho-p65/RelA (Ser536) antibodies were obtained from Cell Signaling
Technology (Danvers, MA, USA). Secondary antibody conjugated to rhodamine red-X was obtained
from Jackson ImmunoResearch Laboratories (West Grove, PA, USA).

3.2. Cells and Cell Culture

Human keratinocyte HaCaT cells were obtained from Cell Lines Service (Eppelheim, Germany)
and maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum
(HyClone, Logan, UT, USA) and penicillin-streptomycin (Sigma-Aldrich, St. Louis, MO, USA).

3.3. Reverse Transcription-PCR (RT-PCR)

Total RNA was isolated using a TRIzol RNA extraction kit (Invitrogen, Carlsbad, CA, USA).
cDNA was synthesized from 1 µg of total RNA using an iScript cDNA synthesis kit (Bio-Rad, Hercules,
CA, USA). RT-PCR was performed using a reverse transcriptase enzyme (Promega) and gene-specific
PCR primers. The PCR primers and the thermal cycling conditions used in this study were as follows:

• CCL5 forward, 5′-ACA GGT ACC ATG AAG GTC TC–3′,
• CCL5 reverse, 5′–GCA AAT TTG TGT AAG TTC AGG–3,
• Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) forward, 5′–CCA AGG AGT AAG AAA

CCC TGG AC–3′, and
• GAPDH reverse, 5′–GGG CCG AGT TGG GAT AGG G–3′.

The PCR conditions were as follows: denaturation at 94 ◦C (5 min), followed by 30 cycles
comprising denaturation at 94 ◦C (30 s), annealing at 58 ◦C (30 s), and elongation at 72 ◦C (1 min).
The amplified products were electrophoresed in a 2% agarose gel containing ethidium bromide and
observed under UV light.

3.4. Quantitative Real-Time PCR (Q-PCR)

The mRNA levels were quantified using an iCycler iQ system with an iQ SYBR Green Supermix
kit (Bio-Rad, Hercules, CA, USA). Validated commercial Q-PCR primers and SYBR Green-based
fluorescent probes specific for CCL5 (id: qHsaCIP0028116) and GAPDH mRNA (id: qHsaCEP0041396)
were obtained from Bio-Rad (Hercules, CA, USA). The thermal cycling conditions used for PCR were
as follows: denaturation at 95 ◦C for 2 min, followed by 40 cycles performed using a step program
(95 ◦C for 10 s and 60 ◦C for 45 s). The relative expression levels of CCL5 mRNA were normalized to
those of GAPDH using the software provided by the manufacturer.

3.5. Agarose Spot Migration Assay

Chemotactic migration was analyzed in the agarose spot migration assay according to a process
described previously [20], with minor modifications introduced. Low-melting agarose (0.5%) in PBS
was heated in a microwave and stirred for complete dissolution. When the agarose particles completely
dissolved, the liquid agarose solution was cooled to 40 ◦C, followed by mixing with only PBS or PBS
supplemented with CCL5 (final: 25 ng/mL) in a 1.5-mL Eppendorf tube. Next, 10-µL drops of agarose
solution containing PBS or CCL5 were placed on each sterile glass coverslip in a 6-well plate using a
cut pipette tip and were allowed to cool for 10 min at 4 ◦C to solidify the agar spots. A suspension of
RBL2H3 cells in PBS was plated on the spot-containing coverslips and allowed to adhere for 4 h in an
incubator at 37 ◦C. The cells were incubated overnight at 37 ◦C with a culture medium containing 0.1%
fetal bovine serum. After 6 h, the motile cells that penetrated the agarose spot were analyzed under a
microscope (EVOS FL Auto, Bothell, WA, USA).
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3.6. Enzyme-Linked Immunosorbent Assay (ELISA)

CCL5 secreted in the culture medium was quantified using an ELISA kit (Biolegend, London, UK)
according to the manufacturer’s instructions. In brief, the captured antibodies were coated on a Nunc
C bottom immunoplate. The wells were washed three times with 50-mM Tris buffer (pH 8.0) containing
0.14-M NaCl and 0.05% Tween 20 (TBST). The collected culture supernatants and standard solutions
were added to the wells, and the plates were incubated at 37 ◦C for 2 h. The wells were washed three
times with TBST solution, 50 µL of biotin-conjugated anti-CCL5 antibody (1:200) was added, and the
cultures were incubated at 37 ◦C for 1 h. After washing five times with TBST solution, horseradish
peroxidase-conjugated tracer antibody was added to each well, and the cultures were incubated for
an additional 1 h. An enzymatic reaction was initiated by adding tetramethylbenzidine substrate
solution (containing 100-mM sodium acetate buffer (pH 6.0) and 0.006% H2O2), followed by incubation
at 37 ◦C for 20 min. The reaction was terminated by adding an acidic solution (reaction stopper,
1-M H2SO4), and the absorbance was measured at 450 nm using an ELISA plate reader (SoftMax Pro;
Molecular Devices, Sunnyvale, CA, USA). The final concentration of CCL5 was calculated using the
standard curve.

3.7. Construction of Human CCL5 Promoter-Reporter Constructs

A CCL5 promoter fragment spanning nucleotides –1074 to +45 upstream of the transcription start
site was synthesized from human genomic DNA (Promega, Madison, WI, USA) by PCR using the
primers 5′-GAG GGC AAC TGG GTT CTG AT-3′ (forward –1074F) and 5′-GAG GTC CAC GTG CTG
TCT TG-3′ (reverse, +45R). The amplified PCR products were ligated to a T&A vector (RBC Bioscience,
Taipei County, Taiwan) and digested with KpnI and BglII. The products were ligated at the KpnI and BglII
sites of the pGL4 basic vector (Promega), yielding pCCL5-Luc(–1074/+45). Several deletion constructs
of the human CCL5 promoter fragments were synthesized by PCR using the pCCL5-Luc(–1074/+45)
construct as a template plasmid. The forward primer sequences were 5′-TGA GTG TGC TCA CCT CCT
TT-3′ (−500/+45) and 5′-TGT GCA ATT TCA CTT ATG AT-3′ (–100/+45). One reverse primer, +45R,
was used to generate all the deletion constructs. The amplified PCR products were ligated into the
T&A vector and then digested using KpnI and BglII. The products were ligated into the KpnI and BglII
sites of the pGL4 basic vector. The insert sequence of each construct was verified by DNA sequencing
(Macrogen, Seoul, Republic of Korea).

3.8. Luciferase Promoter-Reporter Assay

HaCaT cells were seeded onto 12-well plates and transfected with 0.1 µg of each CCL5
promoter-reporter construct using Lipofectamine™ 2000 (Invitrogen) according to the manufacturer’s
instructions. At 48 h post-transfection, the cells were treated with TNFα in the presence or absence
of chrysin (20 and 40 µM). After 8–12 h, the cells were harvested, and the levels of firefly luciferase
activity were measured using the Dual-GloTM Luciferase assay system (Promega). The relative level of
luciferase activity in the untreated cells was designated 1. Luminescence was measured using a dual
luminometer (Centro LB960; Berthold Tech, Bad Wildbad, Germany).

3.9. Immunoblot Analysis

HaCaT cells were lysed in ice-cold buffer containing 50-mM Tris-HCl (pH 7.4), 1% NP-40,
0.25% Na-deoxycholate, 500-mM NaCl, 1-mM ethylenediaminetetraacetic acid, 1 mM-Na3VO4,
1-mM NaF, 10-µg/mL leupeptin, and 1-mM phenylmethylsulfonyl fluoride. Proteins were separated
by electrophoresis in a 10% SDS-polyacrylamide gel and transferred to nitrocellulose membranes.
After incubation with the appropriate primary and secondary antibodies, the blots were developed
using an enhanced chemiluminescence detection system (GE Healthcare, Piscataway, NJ, USA).
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3.10. Molecular Docking

To elucidate the binding modes between chrysin and IKK1, in silico docking experiments were
performed using the Sybyl 7.3 software (Tripos, St. Louis, MO, USA) built on an Intel Core 2 Quad
Q6600 (2.4 GHz) Linux PC. There are five three-dimensional (3D) structures of IKK1 deposited in the
Protein Data Bank (PDB): 3brt, 5ebz, 5tqw, 5tqx, and 5tqy. One of them, 3brt.pdb, only includes residues
between 732 and 745, owing to which, it could not be considered for constructing the 3D structure for
use in the current study. The others include residues from 10–660. While the structures 5ebz, 5tqw,
and 5tqx were determined by cryoEM, and their resolution was 5.60 Å, 5ebz.pdb was determined by
X-ray crystallography, and its resolution was 4.50 Å. Therefore, 5ebz.pdb was selected for constructing
the 3D structure in this study [21]. Its gene originated in Homo sapiens, and Spodoptera frugiperda was
used as the expression system. It consists of a trimer of IKK1 dimers; chain A (Gly10–Glu660) was
selected for the docking experiment, and 2-azanyl-5-phenyl-3-(4-sulfamoylphenyl)benzamide was
used as a reference ligand. The binding site was analyzed using the LigPlot program provided by the
European Bioinformatics Institute (Cambridgeshire, UK) [22]. The apo-protein without the ligand was
prepared using Sybyl 7.3. The chrysin 3D structure deposited in PubChem (CID code 5281607, National
Center for Biotechnology Information, Bethesda, MD, USA) was used after energy minimization using
the molecular mechanics algorithms provided in Sybyl 7.3. All 3D images were constructed using
PyMOL (The PyMOL Molecular Graphics System, Version 1.0r1, Schrödinger, LLC, New York, NY,
USA).

3.11. Mice

BALB/c mice (7-week-old, male) were obtained from Orient Bio, Inc. (Seongnam, Korea). The mice
were housed in a specific pathogen-free environment at a temperature of 20 ± 2 ◦C and relative
humidity of 50% ± 10% and were maintained under a 12-h light-12-h dark cycle.

3.12. Induction of Atopic Dermatitis-like Skin Lesions in Mice

DNCB was dissolved in a 1:3 (v/v) mixture of acetone:olive oil. After the dorsal skin was shaved,
BALB/c mice were randomly divided into three groups: group I, naïve, group II, DNCB + vehicle,
and group III, DNCB + 8% chrysin (n = 5 each). All mice, except those in the naïve group, were
treated with 4% SDS on the dorsal skin to disrupt the skin barrier. After 4 h, 100 µL of 1% DNCB was
challenged once daily, and this was repeated for 3 days. After a 4-day rest period, a treatment with 100
µL of 4% SDS and 0.5% DNCB was repeated once daily, five times weekly, for 2 weeks (from days 8–21).
Chrysin powder (250 mg) was dissolved in 1 mL of dimethyl sulfoxide to prepare a stock solution.
Group III mice were applied with chrysin (25 mg/kg) from day 7 (once daily, five times weekly for
2 weeks). The animal experiments were conducted according to the guidelines for animal experiments
and procedures approved by the Konkuk University Institutional Animal Care and Use Committee
(IACUC, Seoul, Republic of Korea), and all experimental methods were confirmed to be in accordance
with the relevant guidelines and regulations (approval number KU19129).

3.13. Tissue Preparation And Histopathological Analysis

Dorsal skin tissues of mice were removed, fixed with 100% acetone solution, and embedded
in paraffin. Skin sections 5 µm in thickness were cut using a microtome (Leica Microsystems,
Wetzlar, Germany). After dewaxing, the sections were stained with H&E. Images of each section were
acquired using a light microscope (EVOS FL Auto, Bothell, WA, USA), and the epidermal and dermal
thicknesses were measured from the digital images using ImageJ 1.52a (National Institutes of Health,
Bethesda, MD, USA). The infiltrating mast cells were stained with 0.1% TB. The number of TB-positive
cells in 2.5 cm2 was counted.
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3.14. Immunohistochemical and Immunofluorescence Stainings

Paraffin-embedded dorsal skin sections were deparaffinized using xylene and rehydrated by
treating with a graded ethanol series. Skin specimens were treated with hydrogen peroxide for 15 min
to block endogenous peroxidase activity, followed by immersion in 1-mM EDTA (pH 8.0) at 70 ◦C
for 20 min. After rinsing with PBS, the sections were placed in a blocking buffer containing 7% goat
serum for 1 h and incubated with primary anti-p65/RelA antibody overnight at 4 ◦C. After washing
with PBS, the sections were incubated with biotinylated anti-goat IgG secondary antibodies for 1
h and then incubated with an avidin/biotin complex for 30 min. Skin sections were stained with
3,3′-diaminobenzidine tetrahydrochloride for 5 min and counterstained with H&E.

For the fluorescent immunohistochemical analysis, each skin section was treated with a CCL5
antibody (1:100 dilution), followed by overnight incubation at 4 ◦C. After washing with PBS, the sections
were incubated with rhodamine red-X-conjugated secondary antibody (1:300 dilution) at room
temperature for 1 h. Nuclei were stained with Hoechst 33258 for 10 min. After washing with
PBS, the sections were mounted on slides using a fluorescence mounting medium (ProLong Gold
Antifade Reagent; Invitrogen). The fluorescence images were evaluated using an EVOS FL fluorescence
microscope (Advanced Microscopy Group, Bothell, WA, USA).

3.15. Measurement of Serum IgE Levels

Mouse blood samples were collected before sacrifice, and the serum IgE levels were measured
using an ELISA MAX™ Standard Set Mouse IgE Kit (BioLegend, San Diego, CA, USA), as described
previously [23]. Color development was quantified by measuring absorbance at 450 nm using an
ELISA plate reader (SoftMax Pro; Molecular Devices, Sunnyvale, CA, USA).

3.16. Statistical Analysis

Data are expressed as the mean ± standard deviation (SD). Statistical analysis was performed
using one-way analysis of variance (ANOVA), followed by Dunnett’s or Sidak’s multiple comparisons
tests using GraphPad Prism version 8.4.2 (GraphPad Software, Inc., La Jolla, CA, USA). In all analyses,
a p-value < 0.05 was considered to indicate statistically significant differences.

4. Conclusions

The transcription factor NF-κB is a major regulator of inflammation that is responsible for the
expression of multiple inflammatory cytokines and chemokines [24]. The NF-κB family consists of
five members: c-Rel, p65/RelA, RelB, p50/NF-κB1, and p52/NF-κB2 and mediates the transcription of
various target genes as various homo- or heterodimers [25]. Of these, p65/RelA is the most abundant
form. In the resting state, NF-κB is localized in the cytoplasm and remains in an inactive form by
binding to the inhibitor of κB (IκB) protein. This interaction prevents the translocation of NF-κB
to the nucleus. Following cellular activation, IKK is activated, which consequently phosphorylates
IκB, leading to the dissociation of IκB from p65 NF-κB and the eventual activation of NF-κB [26,27].
The activated NF-κB complex is then translocated to the nucleus, where it binds to the NF-κB-binding
sites in the promoter region of the regulated genes [28]. Therefore, the phosphorylation of IκB by IKK
is critical for the initiation of NF-κB activation [29].

In this study, we observed that chrysin suppresses CCL5 expression at the transcriptional level
by suppressing NF-κB in the inflammatory environment. Using an in silico molecular docking
experiment, we predicted that chrysin could bind to the ATP-binding pocket of IKK, which prevents
IκB degradation and NF-κB activation. The clinical efficacy of chrysin in targeting IKK was evaluated in
DNCB-challenged skin lesions in BALB/c mice. It suppresses CCL5 expression, reduces the infiltration
of mast cells into the inflammatory sites, and at least partially alleviates the inflammatory response of
inflamed skin challenged with DNCB. Based on these findings, we suggest that chrysin might serve as
an IKK inhibitor for the treatment of chronic inflammatory diseases, such as AD. To directly prove
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the binding between chrysin and IKK, more detailed studies, such as precipitation experiments using
agarose-coupled chrysin and surface plasmon resonance experiments, are needed.

In conclusion, this study first demonstrated that chrysin inhibits NF-κB-dependent CCL5
expression by directly targeting IKK in the AD-like skin inflammatory microenvironment. Our findings
contribute to a better understanding of the mechanistic insights into the biological effects of chrysin on
anti-inflammatory activity.
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Abbreviations

AD atopic dermatitis
APB 2-azanyl-5-phenyl-3-(4-sulfamoylphenyl)benzamide
CCL5 C-C motif chemokine ligand 5
DNCB 2,4-dinitrochlorobenzene
ELISA enzyme-linked immunosorbent assay
GAPDH glyceraldehyde 3-phosphate dehydrogenase
H&E hematoxylin and eosin
H-bond hydrogen bond
IgE immunoglobulin E
IκB inhibitor of κB
IKK inhibitor of κB kinase
IL interleukin
NF-κB nuclear factor kappa B
Q-PCR quantitative real-time PCR
RANTES regulated on activation, normal T cell expressed and secreted
RelA v-rel Avian reticuloendotheliosis viral oncogene homolog A
RT-PCR reverse-transcription polymerase chain reaction
TB toluidine blue
Th2 T-helper cell (Th2)
TNFα tumor necrosis factor-alpha
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