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Abstract: Rootstock grafting is an important method to improve the yield and quality of seedlings.
Pumpkin is the rootstock of watermelon, melon, and cucumber, and the root phenotype of rootstock is
an important reference for breeding. At present, the root phenotype is mainly measured by scanners,
with which it is difficult to achieve non-destructive and in situ measurements. In this work, we
propose a method for non-destructive measurement of the root phenotype on the surface layer of the
root ball of pumpkin rootstock plug seedlings and an accurate estimation of the surface area, length,
and volume of total root using an AZURE KINECT sensor. Firstly, the KINECT is used to capture
four-view color and depth images of the root surface, and then multi-view images are spliced to
obtain a complete image of the root surface. After preprocessing of the images, we extract the roots
from the root ball. For root phenotype measurements, the surface areas of the surface roots and root
ball are calculated, followed by calculating root encapsulation. Next, the non-overlapping roots in
the surface root image are extracted, and the ratio of the surface area to the skeleton length is used as
the average diameter of total root. Based on the high correlation between the surface area of surface
root and the surface area of total root, a linear fitting model is established to estimate the surface
area, length, and volume of total root. The experiment ultimately showed that the measurement
error for the average diameter of total root is less than 30 µm, and consistency with the scanner is
higher than 93.3%. The accuracy of the surface area of total root estimation was found to be more
than 88.1%, and the accuracy of the root length of total root estimation was observed to be greater
than 87.2%. The method proposed in this paper offers similar accuracy to a scanner, which meets the
needs of non-destructive root phenotype research. This method is expected to replace root scanners
for high-throughput phenotypic measurements and provides a new avenue for root phenotype
measurements of pumpkin rootstocks. This technology will provide key basic data for evaluating the
root growth of pumpkin rootstocks.

Keywords: grafting seedlings; roots; phenotype; pumpkin; RGBD

1. Introduction

Grafting is a widely used technique in the production of fruit-bearing vegetables [1].
Pumpkin has the characteristics of stress resistance and vigorous growth and is widely used
as a rootstock for watermelon, melon, and cucumber in production. Pumpkin rootstock
grafting can improve the nutrient absorption and water-use efficiency of watermelon and
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other crops [2,3]. The root phenotype is closely related to water and nutrient uptake and
the stress resistance of rootstocks. Root length, root number, surface area of total root, etc.,
can be used to characterize the intrinsic absorption capacity for nutrients and water [4].
Further root phenotypes such as the average diameter of total root, surface area, and root
length of total root can be used to evaluate the root morphology of rootstocks [5]. Therefore,
non-destructive determination of the root phenotype of rootstocks is very important for
cultivar selection.

Studies must identify important root parameters through modeling to simplify the
characterization of the root system [6]. At present, measuring the root phenotype of
rootstock mainly relies on manual tools and instruments, such as a measuring ruler, the
three-dimensional root coordinate container method, the plant root chamber isotope tracer
method, the fine root chamber sampling measurement, and root scanners [7]. Artificial
measurements can only offer destructive sampling detection, not the continuous obser-
vation of plants. Moreover, such measurements are time-consuming. Non-destructive
measurement technology for roots has thus become a hot topic in the phenotypic field.
X-ray [8], MRI [9], thermal pulse [10], micro-root tube [11], ground penetrating radar [12],
root box [13], and other methods have been studied and applied. These non-destructive
measurement methods have created a new direction in root research. Compared to these
active detection methods, visible light imaging technology is often used to build low-cost
and high-throughput non-destructive testing systems. For example, Wang et al. proposed
an image-based high-throughput system that integrates simple and reliable root image
acquisition hardware and an automatic root image processing algorithm [14]. Hui et al.
developed an image-based semi-automatic root phenotype method for field crops; this
method can be applied to the three-dimensional reconstruction of the root structure in field
growth to improve the input of data-driven models seeking to simulate root growth, solute
transport, and water absorption [15]. Yuko et al. developed a new automatic analysis
method for digital photos; this method is suitable for identifying adventitious roots as a
feature of the root structure in root canals [16]. Since visible light cannot penetrate the
measured object, this method can only be used for the non-destructive measurement of
surface roots that emerged on the surface of the soil compounds. However, the phenotypic
parameters of such surface roots on the soil compounds are closely related to the complete
roots included in the soil compounds, which is of great significance for understanding
the structure and function of plant roots. For example, Wu et al. found, through non-
destructive testing of the surface root traits of rice, that the ratio of the surface root to
aboveground area had a similar normal distribution, which played a certain role in crop
yield estimation and breeding [17].

The root phenotype of the rootstock is important, but there is currently no relevant
non-destructive testing technology available. Instead, a root scanner is widely used. This
destructive and cumbersome measurement method greatly limits the advancement of root
related research. To take into account the comprehensiveness, accuracy, and high through-
put of the measurement, this paper proposes a non-destructive measurement and complete
root phenotype estimation method for the surface root phenotype of plug seedlings using
an RGBD camera. We also carried out related research on widely used pumpkin rootstocks.
Firstly, an Azure Kinect sensor, a sensor for RGBD provided (generated) by Microsoft was
used to capture color and depth images of the four perspectives of pumpkin rootstock roots
based on a two-dimensional code pattern. Then, according to two-dimensional code feature
detection and matching, RGBD images of the four perspectives are spliced into a whole
image containing the complete surface root. After that, the root nodules are segmented
from the background using the edge segmentation algorithm based on the maximum
connected domain, and an image segmentation algorithm based on homomorphic filtering
and the FRANGI [18] method is designed to separate the surface root from the root ball.
Then, the root length, surface area, average diameter, and encapsulation (root area to soil
area ratio) of the surface root are calculated, and the surface area, length, and volume of
the total root are estimated. The experimental results showed that this method provides
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good measurement accuracy for many varieties of pumpkin rootstocks and represents a
useful example of low-cost and high-throughput non-destructive measurement technology
for seedling roots.

2. Materials and Methods
2.1. Experimental Location, Equipment, and Design

The experiment was conducted in a plant growth room in 2021 at the National Center
of Vegetable Improvement at Huazhong Agricultural University, Central China (30◦270′ N,
114◦200′ E and an altitude of 22 m above sea level). In this experiment, we used the random
sampling of six varieties of pumpkin seedlings, with 15–20 randomly selected seedings
from each cultivar taken as the experimental object. Image acquisition was performed
14 days after the emergence of seedlings. The image acquisition and algorithm develop-
ment platform used in this study mainly included an Azure Kinect sensor, a black curtain
(posted 2D code), three constant light sources, a darkroom, and a general-purpose com-
puter [Core i5-9300H (Intel Corporation, Santa Clara, America)/8G (SAMSUNG, Seoul, Ko-
rea)/1T (SAMSUNG, Seoul, Korea)/GTX1650 (NVIDIA, Santa Clara, America)/Windows
10 Operating System (Microsoft, Seattle, America)]. The programming environments were
Python/MATLAB2019a and the OpenCV4.0/computer vision toolbox, with GPU parallel
computing used for acceleration. The image acquisition method is shown in Figure 1.
The seedlings were placed in the center of the darkroom in front of the curtain. Manual
operation of the computer program was used to control the Azure Kinect when shooting
the image. Each shot was obtained by manually rotating the plant sample 90◦, and a total of
four groups of RGBD images were taken (color image resolution of 1280× 720, depth image
resolution of 1280 × 720). After the root images were taken, the root was washed with
water, scanned with an Epson Expression 12000XL scanner (Epson Corporation, Nagano,
Japan), and analyzed with the WinRHIZO Pro software. A series of phenotypic parameters
were then measured, including the root average diameter, surface area, and root length of
total root. The data obtained by the root scanner were subsequently used as the reference
values for algorithm verification.
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2.2. Growth Conditions and Plant Materials

During cultivation, the day and night temperatures were 28 and 18 ◦C, respectively;
the photosynthetic photon flux density was 170 µmol·m−2·s−1, with a 14/10 h photoperiod;
and the daytime relative humidity was 65–85%. The sum of irrigated water for each plug
tray was 3.3 L during vegetation growth. Plants were fertilized with water-soluble fertilizer
(Product number: 20-10-20 + TE, 1000 times liquid, Hubei Greencare Agriculture Co., Ltd.,
Wuhan, China). Pumpkin varieties used in this study included cv. ‘Qingyan Rootstock
No.1’ (Qingdao Academy of Agricultural Sciences, Qingdao, China), ‘Cucumber Rootstock
RC1901’ (Qingdao Golden Ma Ma Agricultural Science and Technology Co., Ltd., Qingdao,
China), ‘Cucumber Rootstock RC1902’ (Qingdao Golden Ma Ma Agricultural Science and



Plants 2022, 11, 1144 4 of 14

Technology Co., Ltd., Qingdao, China), ‘Cucumber Rootstock RC1903’ (Qingdao Golden Ma
Ma Agricultural Science and Technology Co., Ltd., Qingdao, China), ‘Cucumber Rootstock
RC1904’ (Qingdao Golden Ma Ma Agricultural Science and Technology Co., Ltd., Qingdao,
China), and ‘Cucumber Rootstock RC1905’ (Qingdao Golden Ma Ma Agricultural Science
and Technology Co., Ltd., Qingdao, China). Seventy-two seedlings were cultivated for
each variety. From among all prepared seedlings, 50 seedlings were randomly chosen
and analyzed.

2.3. Multi-View Color-Image and Depth-Image Mosaic Method for the Surface Root System of Root
Ball of Pumpkin Rootstock Based on External Feature Points

Stitching four surface root images from four angles into one image is the premise of
complete and accurate root measurement. The feature-based image stitching algorithm is
particularly dependent on the number and quality of feature points, so it has a good effect
on image stitching with more feature points. However, this algorithm’s effect on images
with fewer feature points is poor [19]. To date, there is still no mature theory or technology
for small-scale image stitching, but the method based on external feature points offers the
possibility to register images lacking their own feature points [20]. The surface root image
features of grafted seedlings are relatively monotonous, and the two-dimensional code
pattern is used as the background to provide sufficient feature points. As shown in Figure 2,
Harris corner detection [21], feature descriptor extraction, and feature matching [22] are
used to realize the stitching of surface root color images. After that, use of the adaptive non-
maximal suppression (ANMS) [23] method and outlier removal based on random sample
consensus (RANSAC) can help obtain a more accurate homography matrix. Finally, based
on this matrix, the four-view color images can be transformed into a single intact image to
complete the mosaic of color images of surface roots. For stitching of the depth map, the
official alignment function provided by Microsoft is used here to align the depth map to
the color map, and then the homography matrix calculated above is used to complete the
stitching of the depth maps. The region of interest (ROI) is set in the RGBD image, and the
sub-images containing the surface roots are output for subsequent processing.
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2.4. Precision Segmentation Method for the Surface Root Image of Root Ball of Plug Seedling
2.4.1. Surface Root Image Preprocessing for Root Ball of Plug Seedling

Step 1: Image enhancement. First, we increase the light intensity of the stitched surface
root color image and then use Gamma transform to improve the contrast of the image.

Step 2: Background removal based on edge. The Sobel operator is then used to extract
the edges, and the disk structure element is used to extend the pixels (dilate the image) to
the extracted edges. Then, we can use hole filling based on morphology [24], corrosion
based on diamond structure elements, and open operation based on disk structure elements.
Next, the pixel area of the connected domain is detected, and the connected domain, less
than half of the total pixel, is removed to obtain images that contain only the surface roots
or only the soil matrix.

Step 3: Homomorphic filtering. To reduce the influence of light, as shown in Figure 3,
we can attenuate the low-frequency components through homomorphic filtering, enhance
the high-frequency parts of the image, and effectively retain fine roots.
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2.4.2. Surface Root Image Segmentation Algorithm

As shown in Figure 4, the root system of plug seedlings has a local linear structure,
and the root thickness is different, so the Hessian matrix is sensitive to the linear segment
structure for detecting the root system. That is, we can use the Gaussian functions of
different scales (G(x, y; σ)) to smooth the preprocessed rootstock root image and then
calculate the filtered Hessian matrix. Then, eigenvalues λ1 and λ2(λ1 < λ2) of the Hessian
matrix at each scale can be calculated. With the Gaussian smoothing parameter (σ) as the
standard deviation, for the linear structure of roots, when the scale factor most strongly
matches the actual width of roots, the output of the filter is the largest. Thus, as a spatial
scale factor, iteration can obtain outputs at different scales. The half width of the window
rectangle for local characteristic analysis is generally 3σ. When the root diameter is smaller
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than the width and height of the corresponding window rectangle at the current scale, the
eigenvalues of the Hessian matrix of tubular roots satisfy the following formula:

λ1 ≈ 0, λ1 ≤ λ2 (1)
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Moreover, the Hessian matrix is a symmetric matrix. Through feature decomposition
of the Hessian matrix, two eigenvalues and corresponding eigenvectors can be obtained.
The eigenvectors of the Hessian matrix satisfy the orthogonal relationship, and the two
eigenvalues can represent the intensity of the root image. The distribution of the root is
tubular, and the change in gray level along the root direction is small; thus, the second-order
differential response in the Hessian matrix is also small. The second-order differential
response of the Hessian matrix is stronger when the gray level changes greatly across
the root direction. The matrix background is a relatively uniform smooth region, and
the second-order differential response in the Hessian matrix is also small. That is to say,
the eigenvalues of the Hessian matrix are large or small at the root pixels. At the root
intersection, the two eigenvalues of the Hessian matrix are larger; at the background point,
the eigenvalues of the Hessian matrix are small.

According to the filtering method proposed by FRANGI, we obtained the root pixel
response function and then obtained the root pixel to propose the matrix pixel. As shown
in Equations (2) and (3), β ∈ [0.3, 2], c ∈

[
10−5, 10−6] can be used to adjust the difference

between bulk impurities such as linear rootstock roots and matrix foam rocks. Here, c is
the parameter that controls the overall smoothness of linear objects. The half width of the
window rectangle of pixel p in the root map with the matrix is generally 3σ. When the
window corresponding to different diameters matches the root diameter, v(S) will obtain
the maximum response v(p):

RB =
|λ1|
|λ2|

, S = ‖H‖F =
√

∑
j≤D

λ2
j (2)

V(S) =

 0, i f λ2 > 0,

exp
(
− R2

B
2β2

)(
1− exp

(
− S2

2c2

)) (3)

where RB is the Linearity measure in 2D and accounts for the eccentricity of the second
order ellipse, and S represents the norm of all eigenvalues.

The response function of the root pixels belonging to pumpkin rootstock in multi-scale
is as follows:

v(p) = max
σ∈[σmin,σmax]

V(S) (4)

2.5. Phenotypic Data Mining, Non-Destructive Measurement, and Accurate Estimation

Key phenotypes of rootstock root phenotypes include the average diameter of total
root (ADTR, µm), surface area of surface root (SASR, cm2), density of surface root (DSR),
length of total root (LTR, cm), and volume of total root (VTR, cm3). Among them, the
average diameter of total root, surface area of surface root, and density of surface root
could be directly calculated using the algorithm in this paper, while prediction models
were established for other phenotypes to provide estimations.
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2.5.1. Non-Destructive Measuring Method for Average Diameter of Total Root

The average diameter of total root is a key phenotypic parameter that represents the
potential ability of roots to penetrate the soil and branches through hydraulic conductivity.
Root diameter is also the focus of this measurement. There is surface root overlap in plug
seedlings, and the stronger the root is, the more serious the overlap will be. There are many
overlapping and parallel roots in the surface layers of root nodules, which makes it difficult
to estimate the average diameter. In light of this issue, we proposed an estimation method
for overlapping roots, as shown in Figure 5. Here, there is an important feature in the
surface root image. The non-overlapping roots (hereafter referred to as non-overlapping
roots) in the surface root image cannot be reproduced by expansion after corrosion, and
the overlapping roots can be restored to the original pixel size after expansion. Based
on this feature, firstly, the non-overlapping roots were removed using a morphological
operation, and the non-overlapping root images in the surface root image were retained.
Then, the surface root image and the overlapping root image were subtracted to obtain an
approximate image of non-overlapping roots.
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Firstly, the internal parameters of the depth camera were obtained via calibration, and
then the RGBD image of the root ROI was transformed into a point cloud. The actual area
of the ROI (SROI) was calculated according to the point cloud, and then the unit area of the
pixel and the unit distance between the pixels were calculated according to Equations (5)
and (6):

SPix =
SROI

∑ Pix
(5)

Lpix =
√

SPix (6)

where SROI is the actual area of the ROI, ∑ Pix is the total number of pixels in the ROI, SPix
is the actual area of a single pixel, and Lpix is the length of unit pixels.
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In the second step, the skeleton of non-overlapping roots was extracted to obtain the
pixel length of the skeleton as the length of non-overlapping roots, as shown in Equation (7):

TLSRNO−skeleton = ∑ PixNO−skeleton × 1.2Lpix (7)

where TLSRNO−skeleton is the total length of the surface non-overlapping root skeleton, and
∑ PixNO−skeleton is the total number of pixels of the non-overlapping root skeleton. Because
the skeleton length is calculated here according to the pixel diagonal and the pixel edge
length, the average pixel edge length and pixel diagonal length is taken (1.2 times Lpix).

In the third step, the diameter of non-overlapping roots can be defined as the ratio
of non-overlapping root area to non-overlapping root length, which can be used as the
average diameter of roots, as shown in Equations (8) and (9):

SASRNO = SPix ×∑ PixNO (8)

ADTR ≈ ADSRNO =
SASRNO
TLSRNO

=
SASRNO

TLSRNO−skeleton
(9)

where SASRNO is the surface area of surface non-overlapping root, ADTR is the average
diameter of total root, ADSRNO is the average diameter of surface non-overlapping root,
and TLSRNO is the total length of surface non-overlapping root.

2.5.2. Calculation of Root Encapsulation (Density of Surface Root)

Root encapsulation (density of surface root) refers to the ability of plant roots to
encapsulate the soil matrix and also represents the size of root–soil contact. As the main
determinant for the whole root’s ability to absorb water and nutrients, this parameter can
be defined as the ratio of the surface area of surface root to the surface area of the soil
matrix, as shown in Equation (10):

DSR =
SASR
SSAM

× 100% =
∑ Pixr

∑ Pixa
× 100% (10)

Equation (10) is the calculation equation for root encapsulation, namely, the density of
surface root, where DSR is the density of surface root, SASR is the surface area of surface
root, and SSAM is the surface area of the surface matrix; ∑ Pixr is the sum of the surface
root image pixels extracted from the matrix; and ∑ Pixa is the sum of the root pixels with
the surface substrate.

2.5.3. Prediction Model for the Surface Area and Length of Total Root

1. Estimating the Surface Area of Total Root (SATR)

Using the density of surface root (DSR) obtained above, the surface area of the surface
roots can be obtained according to Equation (11):

SASR = DSR× Sa (11)

where SASR is the surface root surface area, and Sa is the surface soil area of plug
seedlings. We used the linear regression method to establish the prediction model for
the non-destructive measured value/observed value of the surface area of total root, and
the fitting results are shown in Figure 6a. The equation for estimating the surface area of
total roots is as follows:

SATR = 2.16556× SASR + 7.6522 (12)
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Figure 6. (a) Prediction model for the surface area of total root. (b) Prediction model for the length of
total root.

2. Estimating the Length of Total Root (LTR)

The calculation equation for the length of total root (LTR) is provided in Equation (13):

LTR =
SATRP
ADTR

(13)

where SATRP is the predicted value for the surface area of total root, and ADTR is the
average diameter of total root.

We used the linear regression method to establish a prediction model for the non-
destructive measured value/calculated value of the complete root length, and the fitting
results are shown in Figure 6b.

The length of total root (LTR) estimation equation is as follows:

LTRP = 2.9723× LTR + 16.83062 (14)

3. Calculating Volume of Total Root (VTR)

The volume of total root (VTR) is calculated using Equation (15):

VTR = π

(
ADTR

2

)2
× LTRP (15)

where VTR is the volume of total root, ADTR is the average diameter of total root, an
LTRP is the length of total root.

3. Results
3.1. Performance Test of Images Using the Surface Root Segmentation Algorithms

To test the performance of image segmentation, we used four common image segmen-
tation algorithms to compare the results for artificial root extraction, including the proposed
algorithm, Gabor-filter-based FRANGI extraction method, K-means unsupervised clus-
tering method, and genetic-algorithm-based maximum inter-class variance method. The
experimental results for Qingyan Rootstock NO.1 are shown in Figure 7. Four groups of
RGBD images were taken by manually rotating each plant sample 90◦ and then analyzing
the results. The results show that the proposed method can better remove the matrix while
retaining fine roots, and produces an optimal segmentation effect.
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Figure 7. Comparison of surface root extraction methods. (a) Artificially extracted root images of
Qingyan Rootstock NO.1. (b) The proposed algorithm. (c) Gabor-filtering-based FRANGI segmented
images. (d) K-means unsupervised clustering method segmented images. (e) Genetic algorithm
based on maximum interclass variance method segmented images. (f) Unsegmented images.

3.2. Measurement Results and Analysis of Average Diameter of Pumpkin Rootstock

Next, we expanded the analysis to six pumpkin rootstock varieties. As shown in
Figure 8, analysis of 50 randomly selected groups among the six pumpkin rootstock varieties
yielded an average diameter measurement accuracy of 93.3%, a maximum measurement
error of 65 µm, a minimum measurement error of 2 µm, and an average measurement
error of 29 µm. The average diameter of the total root measurement method proposed in
this paper offers good measurement accuracy and can completely replace the use of a root
scanner for non-destructive measurements.
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3.3. Prediction Results and Analysis of Total Root Phenotypes of Pumpkin Rootstocks 

Figure 8. The average diameter of total root measurement results and analysis chart. (a) Comparison
of the mean values of measured predictive and observed root diameters. (b) Deviation of the
measured average diameter of total root.

3.3. Prediction Results and Analysis of Total Root Phenotypes of Pumpkin Rootstocks

The prediction model based on the average root diameter of pumpkin rootstock can
estimate five key agronomic parameters, including surface area, diameter, volume, and
encapsulation. As shown in Figure 9, the measured values for the surface area of total
root among the 20 groups of pumpkin rootstocks were randomly selected and input into
the prediction model. The prediction accuracy of the predicted value reached 88.1%, the
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maximum measurement error was 7.022 cm2, the minimum prediction error was 0.159 cm2,
and the average prediction error was 3.083 cm2. The experimental results showed that
the surface area of surface root is highly correlated with the surface area of total root
and that the surface area estimation method of total root proposed in this paper offers
good accuracy.
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The measured values for length of total root among the 20 groups of pumpkin root-
stocks were randomly selected and input into the prediction model. As shown in Figure 
10, the prediction accuracy of the predicted value reached 87.2%, with a maximum pre-
diction error of 36.06 cm, a minimum prediction error of 2.24 cm, and an average predic-
tion error of 20.82 cm. Considering the inevitability of such errors, we believe that the non-
destructive measurement of the length of total root of pumpkin rootstocks basically meets 
the measurement requirements. 

Figure 9. Prediction results and analysis of surface area of total root. (a) Comparison between the
predictive and observed value. (b) The deviation of predictive value of surface area of total root.

The measured values for length of total root among the 20 groups of pumpkin root-
stocks were randomly selected and input into the prediction model. As shown in Figure 10,
the prediction accuracy of the predicted value reached 87.2%, with a maximum predic-
tion error of 36.06 cm, a minimum prediction error of 2.24 cm, and an average prediction
error of 20.82 cm. Considering the inevitability of such errors, we believe that the non-
destructive measurement of the length of total root of pumpkin rootstocks basically meets
the measurement requirements.
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4. Discussion

Due to the characteristics of stress resistance and vigorous growth, pumpkin is often
used as the rootstock of watermelon and cucumber and is beneficial for the absorption of
nutrients and water in grafted watermelon and other crops. The root phenotype of the
rootstock is closely related to the water absorption and resistance of grafted seedlings. Root
phenotype parameters can be used to evaluate root morphology and judge the quality
of rootstocks. Root scanners, which are destructive and tedious to use, are currently
widely employed to measure pumpkin rootstock phenotypes. In this study, we proposed
a non-destructive, easy-to-implement, high-throughput method for measuring the root
phenotypes of pumpkin rootstocks. This method is expected to advance root-related
research. In addition to directly measuring the average diameter of the superficial root
system, this method also estimates the surface area and length of the complete root system,
and the overall measurement accuracy is very good. Several key considerations in this
study are discussed below.

4.1. Discussion of the Root Image Stitching Algorithm

The effect of image stitching is very important and directly affects the measurement
accuracy of the root phenotype. The image mosaic method based on the background of
the two-dimensional code pattern used in this paper is simple and effective. However,
inevitably, the axis of the root system was not oriented in a straight line during the rotation
process, which led to the four images of the root system having different degrees of
difference relative to the two-dimensional code pattern. This factor led to certain errors in
the image stitching results, especially the stitching of the first and fourth images, which
presented a small amount of residual overlapping areas. The use of electromechanical
devices for stable rotation of the root system can reduce such errors. It is necessary to
further develop an automated root mapping device and supporting software system to
prepare for large-scale root phenotype measurements.

4.2. Discussion of the Root Image Segmentation Algorithm

The vermiculite, perlite, and other substances in the matrix can be similar in color to
the root system, leading to parts of these impurities being mistakenly divided into the root
system, resulting in the measured value of the root phenotypic parameters being too large.
Using colored perlite or similar materials can eliminate this error. Conversely, we could
explore the use of more advanced algorithms, such as deep learning methods, for more
precise segmentation.

4.3. Discussion on the Calculation Method for the Root Phenotype

Although the non-overlapping part of the superficial root system has a certain repre-
sentativeness, there is also a certain degree of chance, as well as unavoidable slight errors in
estimating the average diameter of the root system using this part. Other root phenotypes
are based on data for the average diameter and, therefore, have a range of errors. However,
based on the experimental results, this method still offers high measurement accuracy. In
addition, a linear fitting method was used in this study to estimate the parameters of the
complete root system. Whether there are different fitting methods for the root system in
different growth stages needs to be further explored.

4.4. Discussion of Method Adaptability

Seedling methods, seedling varieties, cultivation time, and other factors will lead to
changes in the root systems of seedlings. The six cultivars used in this experiment had
good measurement accuracy, which demonstrated the effectiveness of the method outlined
in this paper. Whether the non-destructive testing method for pumpkin seedling roots can
be directly applied to other seedlings remains to be verified by future experiments.
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5. Conclusions

The method proposed in this paper can measure seedling root phenotypes in a high-
throughput and non-destructive manner, and the measurement accuracy was comparable
to that of a root scanner, which can meet the needs of seedling root research. By using a
depth sensor to acquire multiple color and depth images of root stocks and then removing
the overlapping areas of the multi-view images through stitching and fusion, the superficial
roots in the images were segmented, and a series of phenotypic parameters were measured.
Among these parameters, the encapsulation and average diameter of total root were the
results of direct calculations. The measurement accuracy of the most critical average
diameter of total root reached 93.3% with deviation of ±0.03 mm (30 µm). Using these
measured data and the artificially measured phenotype data of the intact root for fitting,
the residuals of the fitting were all less than 10%, which demonstrates the strong correlation
of the surface area and predictability of other measurement parameters between the surface
root system and total root system. This study provides a new direction for non-destructive
measurement of the pumpkin rootstock root phenotype and will provide key basic data for
root growth research of rootstock.
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