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ABSTRACT

Objectives: Identifying new relations between medical entities, such as drugs, diseases, and side effects, is typi-

cally a resource-intensive task, involving experimentation and clinical trials. The increased availability of related

data and curated knowledge enables a computational approach to this task, notably by training models to pre-

dict likely relations. Such models rely on meaningful representations of the medical entities being studied. We

propose a generic features vector representation that leverages co-occurrences of medical terms, linked with

PubMed citations.

Materials and Methods: We demonstrate the usefulness of the proposed representation by inferring two types

of relations: a drug causes a side effect and a drug treats an indication. To predict these relations and assess

their effectiveness, we applied 2 modeling approaches: multi-task modeling using neural networks and single-

task modeling based on gradient boosting machines and logistic regression.

Results: These trained models, which predict either side effects or indications, obtained significantly better

results than baseline models that use a single direct co-occurrence feature. The results demonstrate the advan-

tage of a comprehensive representation.

Discussion: Selecting the appropriate representation has an immense impact on the predictive performance of

machine learning models. Our proposed representation is powerful, as it spans multiple medical domains and

can be used to predict a wide range of relation types.

Conclusion: The discovery of new relations between various medical entities can be translated into meaningful

insights, for example, related to drug development or disease understanding. Our representation of medical en-

tities can be used to train models that predict such relations, thus accelerating healthcare-related discoveries.

Key words: machine learning, medical informatics, MeSH headings, literature-based discovery, adverse drug reaction, drug

repositioning

BACKGROUND AND SIGNIFICANCE

Medical knowledge can be expressed using semantic relations be-

tween entities. These entities may include drugs, diseases, side

effects, and proteins, whereas semantic relations may include

“causes” (a drug causes a side effect), “indicated” (a drug is indi-

cated for a disease), and “targets” (a drug targets a protein). The dis-

covery of new relations can be translated into meaningful insights.

For example, a new “treats” relation between an existing drug and

disease entities denotes a potential new indication for the drug. A

new “causes” relation between drug and side effect entities, means it

might have a side effect that is not yet known. The vast increase in

publicly available medical-related data, together with groundbreak-

ing developments in machine learning technologies and processing

power, have created an enormous opportunity for computational-

based predictions of new relations between medical entities. Using

machine learning to predict new relations—for example, a drug’s
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side effects or indications—has many benefits, including being much

more time- and cost-effective than classical methods based on obser-

vational and lab experiments.

Addressing a prediction task using machine learning techniques

requires both a predictive model and a numerical representation of

the input. This numerical representation should ideally capture rele-

vant semantics. Numerous papers published recently focus on predict-

ing new relations between medical entities using various data

representations and predictive models. To predict drug side effects,

also termed adverse drug reactions (ADRs), earlier works used a rep-

resentation based on drug chemical structure.1,2 Other works inte-

grated additional sources such as target proteins of drugs,3–6 medical

literature,3,7–9 social media,8,10 and electronic health records.11 Works

predicting new indications for existing drugs, also termed drug reposi-

tioning,12 have used gene expression data13 or drug side effects14–16 to

represent the drugs. Most of the works on prediction models use clas-

sical approaches, such as logistic regression (LR)17 and kernel-based

methods.3,10 Others have employed additional models such as hidden

Markov models18 and recommender systems.19 Several recent works

use the increasingly popular neural network (NN) models, which

have shown promising results.8,9,11,20

In this work, we develop a new generic representation scheme that

can be utilized by a machine learning model and show its usability by

focusing on the 2 examples described above: predicting drug indica-

tions and ADRs. We use the co-occurrence of Medical Subject Head-

ings (MeSH) terms to generate numeric representations of each drug.

MeSH terms are descriptors that were manually assigned by experts

to each article published in PubMed. These currently include over

28 000 terms from 16 categories, including diseases, chemicals and

drugs, anatomy, phenomena and processes, and others, with a hierar-

chical multilayer structure of relevant semantics.

Conceptually, this work is closely related to literature-based dis-

covery (LBD) methods, which seek to infer new knowledge from

existing literature in an automated way (see Ref.21 for review). Typi-

cally, these methods use text mining tools to extract terms or con-

cepts, then interpret co-occurrences, potentially semantically

constrained, of such entities as relations. To discover new relations,

LBD methods either explicitly apply the transitivity notion of Swan-

son’s ABC co-occurrence model,22 where “A relates to B” and “B

relates to C” implies “A relates to C”; or searches for entities with

close (under some distance measure) co-occurrence profiles and sug-

gest that these have similar relations. For a review on the different

methods used to extract drug safety information from textual

resources, see Ref.23

MeSH term co-occurrences have been previously used primarily

for tasks related to text mining, such as PubMed document search

or author name disambiguation.24–27 MeSH terms have also been

used for gene–disease association28 and drug–drug interaction.29

Several works have also leveraged MeSH term data for LBD of

drug–ADR associations. Winnenburg and Shah30 used generalized

enrichment analysis to examine associations between drugs and

ADRs at multiple levels of granularity. Shetty and Dalal31 developed

a statistical document classifier for detecting ADRs based on MeSH

terms by filtering irrelevant articles. In another work, Avillach

et al.32 selected specific MeSH terms for 10 drugs and 6 ADRs, and

showed that using direct MeSH co-occurrences between these terms

can differentiate between true and false drug–ADR relationships.

We note that most of these works used small manually selected sub-

sets of terms and simple distance measures or clustering techniques,

rather than a generic representation and machine learning frame-

work, as proposed here.

Our approach expands and generalizes the idea of Avillach

et al.32 (referred to hereinafter as the baseline model) by exploiting

the fact that MeSH term co-occurrences span more than 28 000

terms. We posit that the MeSH co-occurrences-based representation

of each drug encompasses the complex relationship of the drug with

numerous terms from different domains, rather than just using the

direct relationship between the drug and the specific side effects

terms. We demonstrate the usefulness of the proposed general repre-

sentation by training models to predict ADRs or indications using 2

modeling approaches. The first approach uses either gradient boost-

ing machines (GBM) or LR to train an independent predictor for

each task (ie, either a specific ADR or indication). The second ap-

proach implements a multi-task NN that trains a single model over

all tasks (all ADRs or indications). Both approaches perform signifi-

cantly better than the baseline model. Furthermore, we show that a

multi-task NN learner performs slightly better than single-ADR

classifiers in the ADR prediction task, suggesting limited but consis-

tent inter-ADR information. The simpler single model LR approach

performs slightly better in the drug indications prediction task. This

may be due to sparsity and limited available data.

Suggesting new relations between medical entities can be trans-

lated into important insights. Our representation provides a more

holistic view of an entity’s characteristics, which can accelerate the

pace of such discoveries.

MATERIALS AND METHODS

MeSH term co-occurrences
The MEDLINE Co-Occurrences files (MRCOC, available at https://

ii.nlm.nih.gov/MRCOC.shtml) contain the summary of all MeSH

terms that occur together in the citations available from PubMed.

PubMed currently comprises more than 29 million citations of bio-

medical literature from MEDLINE, life science journals, and online

books. We downloaded the 2019 summary file and preprocessed it

to accumulate data from all the past years covering both major and

non-major topics. We extracted a total of 28 320 MeSH terms,

5 095 060 pairs of MeSH terms, and 117 654 465 co-occurrences,

which we used to generate the numeric representation.

Extraction of drug indications and ADRs
The Side Effect Resource, also known as the SIDER database,33 con-

tains public information on drugs, their ADRs, and indications. The

database (Version 4.1) contains information on 1430 drugs and 5868

ADRs/indications. In our analysis, we removed ADRs/indications that

appear in fewer than 10 drugs, which reduced the total number of

ADRs to 1657 and indications to 424. We thus generated 2 Boolean

matrices. The first was for the drug–ADR relationship of size 1430 by

1657, which contains 150 412 (6.35%) positive and 2 219 098

(93.65%) negative relationships. The second was for the drug-

indications relationship of size 1430 by 424, which contains 10 416

(1.72%) positive and 595 904 (98.28%) negative relationships.

In addition, we used the observational medical outcomes part-

nership (OMOP) reference dataset,34 which is a smaller ADR refer-

ence standard. It includes 4 ADRs and 182 drugs and contains both

positive and negative associations between drugs and ADRs.

Mapping drug IDs to MeSH terms
In the SIDER database, drugs are represented using the PubChem

compound identifier (CID).35 The MeSH co-occurrences data, on

the other hand, uses MeSH terms (or MeSH unique IDs) to represent
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medical terms, specifically the drug terms. Since our drug feature

space uses MeSH terms, we had to map CIDs to MeSH terms to gen-

erate the drug representation. To generate a direct mapping between

these 2 types of terms, we devised several automatic and semi-

automatic heuristics. First, we extracted the drug names from the

MeSH Descriptor Files in ASCII, available on the NLM website

(https://www.nlm.nih.gov/databases/download/mesh.html). We then

extracted the CID compound names from PubChem API and used

regular expressions to match the compound names to the MeSH

descriptors. Some drugs were mapped to the MeSH Supplementary

Concept Records. Although these are not part of the co-occurrences

data, they do contain a reference to the nearest MeSH term descrip-

tor, which we used for the actual mapping. This procedure success-

fully mapped about 90% of the terms. The rest of the drug names

were manually curated and mapped to MeSH terms by finding the

nearest descriptors using the ATC codes, and the links from SIDER

to the PubChem and STITCH36 databases. Some drug names were

mapped to multiple MeSH descriptors, for which the co-occurrences

were summed. All 1430 drug names were mapped to one or several

MeSH descriptors.

The mapping between the drugs in the OMOP dataset and the

MeSH descriptors was done by either direct name matching or man-

ually, as described above.

Generation of drug representation
We mapped each drug Di i ¼ 1; . . . ; 1430ð Þ to a specific MeSH

term for which we generated a numeric representation, used for the

learning process. The representation of Di is a feature vector

Vi ¼ fVijg28 320
j¼1 , where Vij ¼ Co–occur Di;Tj

� �
is the number of

co-occurrences of drug Di and MeSH term Tj. Each drug is thus rep-

resented by a feature vector of length 28 320 such that the dimen-

sions of the input matrix is 1430 by 28 320 containing 31.75%

non-zero elements. The drug representation actually holds the co-

occurrence information between the drug and all types of MeSH

terms, including other drugs, diseases, ADRs, symptoms, anatomical

parts, and biological processes; this offers a more complete picture

of the complex semantic relationship between drugs and other medi-

cal terms. It is important to note that replacing drugs with a differ-

ent term group (eg, diseases, symptoms, or therapeutics), generates a

corresponding representation that can be used for other generic pre-

diction tasks.

Prediction methods
Term-frequency normalization

The drug representation includes co-occurrence frequencies between

each drug and all other MeSH terms. These numbers have to be nor-

malized to account for the variability in the total number of drug

occurrences. We implemented 3 normalization methods:37 maxi-

mum term-frequency normalization (Max-TF), in which each coor-

dinate in the representation vector is divided by the maximum value

of that vector; LogþMax-TF, in which the logarithm of the terms

count is taken followed by Max-TF; and TF–inverse document fre-

quency, which is commonly used in text mining and information re-

trieval for term normalization.

Machine learning models

To examine the prediction performance of the drug representation

on the 2 tasks, we used 3 types of models:

1. Multilayer fully connected NN architecture, implemented using

PyTorch.38 This model gets the drug representation vector of

size 28 320 as input. It outputs a vector of size 1657 for the

ADRs task and 424 for the indications task, corresponding to

the full list of possible ADRs/indications. Using a Sigmoid func-

tion for the output layer, we get a probability-like number for

each output term representing the strength of its relation to the

input drug.

2. GBM, implemented using the LightGBM package.39 This non-

linear ensemble classifier method uses sequential decision trees,

which are considered “weak” classifiers. In each iteration, an ad-

ditional decision tree is added to improve the prediction

obtained so far by the previous trees.

3. LR, implemented using Scikit-learn.40

The NN model is a multi-task learning model that performs the

prediction for all ADRs or indications simultaneously.41 This ena-

bles it to take advantage of possible interactions between different

output variables in its learning process. The latter 2 methods are

used to predict only one output term at a time; so for each ADR/in-

dication we trained a different model. We applied probability cali-

bration for the different models,42 but because the obtained

performance was significantly reduced we report below the results

without calibration.

Baseline models

We considered 2 baseline models. The first model outputs, for each

drug and ADR or indication, the normalized co-occurrence number

(we reported results using the LogþMax-TF normalization de-

scribed above, as it gave the best results among the 3 normalization

methods). Similar to 32, we then used these numbers for the classifi-

cation tasks. The second baseline model is based on disproportional-

ity analysis where the proportional reporting ratio score was

calculated as described, for example, in Montastruc et al.43 For clar-

ity, we report only the results for the best model among the 2 base-

line models and note that their performance is typically comparable.

Hyperparameter tuning and model evaluation

We randomly divided the list of drugs into 5 groups and performed

a 5-fold cross-validation where 3 folds were used for training, 1 for

validation, and 1 for testing. We report the results accumulated over

the test groups.

For each of the 3 machine learning models, we used the valida-

tion folds to tune and optimize the parameters. We reported the

results on the test folds using the best parameters obtained from the

validation folds. For all models, we optimized over the 3 term-fre-

quency normalization methods mentioned above, as well as the L2

regularization parameter. For the NN model we also optimized the

number and size of the hidden layers. Mean-squared error was used

as the loss function. See the Supplementary Information for the final

selection of model parameters.

We optimized the models using the precision-recall area under

the curve (PRAUC) as a performance measurement. The reported

results of the 3 models use the hyperparameters that achieved the

highest PRAUC scores on the validation folds. See the “Discussion”

section for the rationale behind using the PRAUC score as the per-

formance measurement. When reporting PRAUC scores we also re-

port standard deviation calculated over the 5-folds. Micro- and

macro-averaging yielded similar results thus we report only the

macro-averaging.
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To capture another aspect of the model performance we calcu-

lated the top K ranking results. As opposed to PRAUC, ranking does

not depend on global thresholds, rather it uses the top sorted scores.

We generated 2 types of top rankings; the first relates to each drug

separately and counts how many of the top K predicted ADRs/indi-

cations are labeled positive. The second relates to each ADR/indica-

tion term separately and counts how many of the top K scores for

this term belong to drugs that have a positive relationship with that

term.

RESULTS

We hypothesized that repeated references to medical terms alongside

drug names in scientific literature correspond to drug characteristics.

Therefore, we propose to leverage Medical Subject Headings (MeSH)

term co-occurrences as a multifaceted representation of drugs; statisti-

cal analysis of the suggested representation is provided below. To

demonstrate its usability, we trained models to predict ADRs as well

as indications from drug MeSH term co-occurrences, and compared

the predictive power of single- and multi-task models.

MeSH term representation
Overall, the MeSH vocabulary includes 28 320 terms, organized in

a multi-level hierarchy. Table 1 illustrates the per-category term dis-

tribution. Notably, 32.7% of MeSH terms are classified as

“Chemicals and Drugs” and 15.3% as “Diseases” (note that terms

can belong to multiple categories). Table 2 illustrates the drugs sub-

category distribution (again, terms can belong to multiple catego-

ries). Examining the drug representation, we see that most drugs are

classified as either “Organic Chemicals” (38.3%) or “Heterocyclic

Compounds” (29.1%). Overall, 91% of drugs co-appear with 1000

or more terms and 40% coincide with more than 5000 terms [me-

dian number of terms 3800, interquartile range (IQR) 1969–7837;

Figure 1, left, shows the entire distribution]. Conversely, almost

6000 MeSH terms co-appear with �50 drugs and only 8% co-occur

with most drugs (median number of drugs: 192, IQR 65–413; Fig-

ure 1, right, shows the entire distribution). Examples of MeSH terms

that co-appear with many drugs include some generic terms such as

“Humans” and “Rats”, but most are drug-related terms such as

“Dose–Response Relationship, Drug”, “Treatment Outcome”, and

“Drug Therapy, Combination”.

Prediction models
To demonstrate the usefulness of the proposed representation in in-

ferring new relations between medical entities, we focus here on pre-

dicting relations of 2 types: (1) a drug causes an ADR and (2) a drug

treats an indication. The filtered SIDER data (see “Materials and

Methods” section for details) includes 1657 ADRs with a median of

34 drugs causing an ADR (IQR 17–92); and only 424 indications,

each shared by a median of 18 drugs (IQR 13–27).

We trained 3 types of classification models: per-task LR and

GBM applied, separately, for each ADR and indication; and a multi-

task NN applied, collectively, on all ADRs or indications. We report

the performance of these models using 3 measures: the average pre-

cision within the top-K drugs, over all ADR or indication prediction

models; the PRAUC (see “Discussion” section for the rationale be-

hind this choice); and the average precision within the top-K ADRs

or indications, over all drugs. The former measure assesses each

model separately. The latter 2 measures combine predictions across

multiple single-task models; thus, they are potentially more sensitive

to cross-model lack of calibration. We also report a baseline perfor-

mance, as described in the “Materials and Methods” section.

We first assessed single-task performance, measured as the mean

precision within the top K-drugs, for each relation type (Figure 2).

The performance of all 3 models for both relation types is signifi-

cantly higher than the baseline model (see Supplementary Figure

S1), demonstrating the utility of our representation. It is interesting

to note for both ADR and indication predictions that the perfor-

mance of LR only slightly decreases across all values of K, while

GBM and NN performance deteriorate more significantly with K.

Consequently, GBM and NN, which initially outperform LR, obtain

reduced precision on higher values of K.

Next, we evaluated model performance across all tasks. Figure 3

depicts the precision recall curves of the 3 trained model types in pre-

dicting ADRs and indications. Among the 2 single-task algorithms,

LR consistently performs better than GBM. Both algorithms outper-

form the multi-task NN in predicting indications but not ADRs. Fo-

cusing on the high-precision range, LR and NN obtain similar

performance, while GBM lags behind. Notably, the baseline model

(see “Materials and Methods” section) achieved a PRAUC score of

0.126 0.01 in the ADR task and 0.20 6 0.07 in the indication task,

significantly lower than the 3 machine learning models (see Figure 3).

Finally, we zoom in on the top-K predicted ADRs and indica-

tions for each drug (Figure 4). Consistent with model performance

in the high-precision range (Figure 3, insets), the multi-ADR NN

model slightly outperforms the 2 types of single-ADR models and

LR obtains higher average precision than GBM. LR is somewhat

higher in the top-ranked indications per drug. Again, all models sig-

nificantly outperform the baseline (see Supplementary Figure S1).

In summary, none of the 3 models significantly outperform the

other 2, and selecting the best model depends on the goals of the

task. The NN model performs slightly better in the high precision

range in both ADR and indication prediction tasks (Figure 3) and in

ranking ADRs for each drug (Figure 4, left). However, the LR model

has a higher PRAUC value in the indication task and favorable and

more stable results most top-ranking comparisons (Figure 2, Fig-

ure 3, right, and Figure 4, right), especially for higher K values.

To further examine the usability of MeSH co-occurrences data

for predicting ADRs and to demonstrate the advantage of using ma-

chine learning methods for that task, we used the OMOP dataset,34

which includes data on 4 ADRs as described in Table 3. Since there

are only 4 ADRs and little overlap between the different ADR-drug

data we ran only the single-task models LR and GBM and not the

multi-task NN model. As shown in Table 3 both these models out-

perform the baseline performance.

Partial representation performance

To explore the contribution of the different feature types (see Ta-

ble 1) we used the SIDER database and calculated the overall

PRAUC scores using different features subsets as shown in Table 4.

Note that we divided the diseases-related MeSH terms into 2 groups:

signs and symptoms (consisting of terms with the MeSH prefix code

of C23.888) and all other disease terms. The reason is that the signs

and symptoms MeSH terms contain most of SIDER’s ADRs and in-

dication terms corresponding to direct co-occurrences between fea-

tures and labels. We calculated the results in Table 4 using the LR

model. Results for the GBM and NN models show similar trends

and thus are not reported. It can be seen that using subsets of the

features achieve similar results to using all features (except for signs

and symptoms, which includes a relatively small number of fea-

tures), indicating redundancy in the feature space.
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DISCUSSION

We presented a drug representation generated using MeSH co-

occurrence data and showed its potential by using it to predict both

ADRs and drug indications without any prior drug information.

The representation spans many term categories, as defined by the

MeSH descriptor hierarchy, which provides a comprehensive picture

of the relationship between all available MeSH terms. MeSH index-

ing is the task of manually assigning relevant MeSH terms to bio-

medical literature. Although the indexing procedure is currently

relatively slow and expensive, it is a carefully reviewed and high-

quality process that has been shown to be robust and highly infor-

mative.24–29,44 We take advantage of this fact and use it, for the first

time as far as we know, to generate a general-purpose drug represen-

tation that can be used by a machine learning algorithm. We empha-

size that our method does not rely on the availability of existing

knowledge (but rather uses only co-occurrences) to predict the entire

ADRs or indications labeling, enabling a “cold start”

prediction. This is in contrast to other methods (eg, Refs 9,19) which

delete a subset of ADRs for each drug, and then use the other drug’s

known ADRs to predict the deleted ones.

One of the big challenges in medical data analysis is the use of

multiple terminologies and standards across different knowledge-

bases and databases.45 Consequently, combining multiple data sour-

ces that use different terminology standards poses significant

challenges. In our case, we had to map drug CIDs (used by SIDER)

to MeSH terms, which currently do not have a direct structured

mapping. To this end, we used heuristics that include automatic and

semi-automatic procedures, as described in the “Materials and

Methods” section. This mapping is provided as a Supplementary

File, for the benefit of the entire community.

We reported results using PRAUC score, as it is a more appropri-

ate measure when high precision is more important than high sensi-

tivity. In the case of ADR prediction, and even more so for

indication prediction, we focused on obtaining a high true positive

rate because it is important that the positive predictions be correct

with a high probability. As opposed to PRAUC, receiver operating

characteristics (ROC) AUC takes into account true negatives; in our

case, the data are very much biased toward easy-to-predict negative

examples. This makes the ROCAUC score inappropriate as a perfor-

mance measurement (see also Discussion in Ref 46). To demonstrate

this point, we doubled the number of ADRs/indications by syntheti-

Figure 1. Drug and MeSH term co-occurrences; the number of drugs that co-appear with any number of MeSH terms (left) as well as the number of MeSH terms

that coincide with different number of drugs (right). MeSH: Medical Subject Headings.

Table 1. MeSH term count per category

Category # Terms % Terms

Chemicals and drugs 10 086 32.7

Diseases 4711 15.3

Organisms 3678 11.9

Analytical, diagnostic and therapeutic

techniques, and equipment

2885 9.4

Phenomena and processes 2227 7.2

Anatomy 1802 5.8

Healthcare 1687 5.5

Psychiatry and psychology 1042 3.4

Anthropology, education, sociology,

and social phenomena

573 1.9

Technology, industry, and agriculture 565 1.8

Disciplines and occupations 403 1.3

Geographicals 385 1.2

Information science 338 1.1

Named groups 260 0.8

Humanities 171 0.6

Note. The full tree structure can be found in the NLM MeSH website

(https://meshb.nlm.nih.gov/treeView).

Abbreviation: MeSH: Medical Subject Headings.

Table 2. Drug count per MeSH term sub-category

Sub-category # Drugs % Drugs

Organic chemicals 1228 38.3

Heterocyclic compounds 933 29.1

Polycyclic compounds 257 8.0

Amino acids, peptides, and proteins 245 7.6

Inorganic chemicals 164 5.1

Hormones, hormone substitutes, and

hormone antagonists

84 2.6

Nucleic acids, nucleotides, and nucleosides 71 2.2

Carbohydrates 67 2.1

Lipids 64 2.0

Biological factors 40 1.2

Pharmaceutical preparations 20 0.6

Note. Categories with less than 20 drugs are omitted.

Abbreviation: MeSH: Medical Subject Headings.
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cally adding negative mock ADR/indications examples with low pre-

diction scores. This caused the ROCAUC score of the NN to go up

from 0.88 to 0.94 in the ADR prediction task and from 0.84 to 0.92

in the drug indications prediction task. In both cases, the PRAUC

did not change, since it is not affected by true negatives. We also

note that the ROCAUC score of the GBM model is slightly higher

than the other 2 models, unlike what is depicted from the above

PRAUC-based analysis. This is possibly due to better performance

in the high sensitivity range. For completeness, we report the

ROCAUC results in Supplementary Table S1.

We focused on 2 important tasks: prediction of ADRs and drug

indications. ADRs represent the fourth leading cause of death in the

United States, with an economic impact of more than $30B annually.47

Predicting drug indications can potentially reduce the many years and

enormous costs of drug development.48 An important advantage of our

method is that it can be applied to additional tasks for other groups of

medical entities and relations between them, by using a similar repre-

sentation scheme on the input data. It can also be used for unsupervised

tasks such as symptoms classification or hierarchical clustering of dis-

eases. We plan to explore these extensions in future work.

CONCLUSION

Selecting the data representation has a critical impact on the predic-

tive power of machine learning models. We showed that a relatively

simple representation scheme, based on medical term co-

occurrences, can be effectively used for various prediction tasks re-

lated to drug development, namely prediction of ADRs and drug

indications. We compared 2 modeling approaches: multi-task

modeling based on NN and a combination of single-task modeling

Figure 2. Task-specific performance. Markers indicate the average per-ADR (left) and per-indication (right) precision within the top-K ranked drugs (x-axis). ADR:

adverse drug reaction.

Figure 3. Overall prediction accuracy. Precision-recall curves plotted for the 3 trained model types in predicting ADRs (left) and indications (right); the PRAUC is

shown in parentheses. The inset zooms in on the high precision range. ADR: adverse drug reaction; PRAUC: precision-recall area under the curve.
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based on either GBM or LR. All approaches achieved comparable

results with marginal differences, depending on the specific task, but

all outperformed the baseline model. Our suggested representation

is relevant for a broad spectrum of prediction tasks that can be

expressed using a generic semantic graph of various medical entities

and relations.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.
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Figure 4. Per-drug performance. Markers indicate the average per-drug precision within the top-K ranked ADRs (left) and indications (right). ADR: adverse drug re-

action.

Table 3. Model performance for the OMOP data

ADR # of drugs with positive and negative relation LR GBM Baseline

Acute kidney injury 24 positive, 63 negative 0.83 6 0.08 0.81 6 0.10 0.50 6 0.22

Chemical and drug induced liver injury 81 positive, 36 negative 0.91 6 0.04 0.94 6 0.02 0.85 6 0.08

Myocardial infarction 36 positive, 65 negative 0.66 6 0.17 0.59 6 0.24 0.51 6 0.16

Gastrointestinal hemorrhage 24 positive, 67 negative 0.77 6 0.27 0.76 6 0.13 0.56 6 0.24

Note. For each ADR, the table shows the number of drugs in the OMOP data (mapped to MeSH) with positive relation (drug causes the ADR) and negative re-

lation (drug does not cause the ADR) and the PRAUC scores for all single-task models.

Abbreviations: ADR: adverse drug reaction; GBM: gradient boosting machines; LR: logistic regression; MeSH: Medical Subject Headings; OMOP: observa-

tional medical outcomes partnership; PRAUC: precision-recall area under the curve.

Table 4. PRAUC scores using subsets of the features

Features types used # of features PRAUC score ADRs PRAUC score indications

All features 28 320 0.48 6 0.01 0.34 6 0.03

All except drugs and diseases 13 523 0.48 6 0.01 0.32 6 0.03

Drugs 10 086 0.47 6 0.01 0.32 6 0.03

Diseases without signs and symptoms 4344 0.47 6 0.01 0.35 6 0.03

Signs and symptoms 367 0.46 6 0.01 0.27 6 0.03

Baseline 1 0.12 6 0.01 0.20 6 0.07

Note. For each feature group, the table shows the number of features and the corresponding PRAUC scores for the ADRs and indications tasks.

Abbreviations: ADR: adverse drug reaction; PRAUC: precision-recall area under the curve.
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