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Abstract: Tumor necrosis factor-alpha (TNF-α)-induced protein 8 (TNFAIP8/TIPE) family, 
including TNFAIP8 (TIPE), TNFAIP8 like-protein 1 (TNFAIP8L1/TIPE1), TNFAIP8 like- 
protein 2 (TNFAIP8L2/TIPE2), and TNFAIP8 like-protein 3 (TNFAIP8L3/TIPE3), plays 
a vital role in regulating inflammatory responses, immune homeostasis, and cancer develop-
ment. Over the last decade, studies have shown that TIPE2 protein is differentially expressed 
in diverse cells and tissues. The dysregulation of TIPE2 protein can lead to dysregulation of 
inflammatory responses and immune homeostasis, and change the basic characteristics of 
cancers. In consideration of the immeasurable values of TIPE2 in diagnosis, treatment, and 
prognosis of various human diseases, this review will focus on the expression pattern, 
structure, and regulatory roles of TIPE2 in inflammation, immunity, and cancers. 
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Introduction
It was reported that chronic inflammation contributes to tumor pathogenesis.1 Immune 
cells can respond to inflammatory stimulations, secreting tumor necrosis factor-alpha 
(TNF-α).2 TNF-α can bind to tumor necrosis factor receptor type 1 (TNFR1) and tumor 
necrosis factor receptor type 2 (TNFR2), activating nuclear factor-κB (NF-κB) signaling 
pathway and inducing the expression of tumor necrosis factor-α-induced protein 8 
(TNFAIP8/TIPE) family proteins, including TNFAIP8 (TIPE), TNFAIP8 like-protein 1 
(TNFAIP8L1/TIPE1), TNFAIP8 like-protein 2 (TNFAIP8L2/TIPE2), and TNFAIP8 
like-protein 3 (TNFAIP8L3/TIPE3).3 All these four proteins consist of a death effector 
domain (DED), except for this, there is no significant sequence similarity with other 
proteins.4–7 TIPE family proteins are highly similar in structure, with approximately 54% 
homology and 75% amino acid sequence similarities. All four members comprise 
a homologous domain, which includes several α-helices and a highly conserved hydro-
phobic cavity.8 Nevertheless, all members exhibit significantly differential expressions 
and seem to play diverse roles in different biological activities among different cells and 
tissues. Previous studies suggest that TIPE and TIPE3 proteins promote cell viability and 
induce drug resistance which ultimately facilitate the development and progression of 
cancers,6,9 and meanwhile, TIPE is also a risk factor of bacterial infection and TIPE3 
serves as a translocator of lipid second messengers.6,10 In contrast, TIPE1 and TIPE2 are 
associated with cell apoptosis and antitumorigenesis.11,12 Particularly, TIPE2 also acts as 
a regulator in inflammatory responses and immune homeostasis.7
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Although Sun et al7 initially introduced TIPE2 and its 
regulatory role in maintaining immune homeostasis in 
2008, the newfound functions and mechanisms of TIPE2 
in inflammation, immunity, and tumors have not been 
comprehensively summarized. In consideration of the 
new vital findings of TIPE2 in regulating inflammation, 
immunity and cancer, it is of great value to learn more 
about it. This current review aimed to summarize the 
expression pattern, structure, and regulatory functions of 
TIPE2 in inflammation, immunity and cancers based on 
the latest literature.

TIPE Proteins: TNFAIP8, TIPE1, 
and TIPE3 and Functions in Human 
Diseases
TNF-α is a cellular signaling regulator, which modulates 
inflammatory response.13 TNF-α binds to TNFR1 and 
TNFR2, activating NF-κB and inducing the expression of 
TIPE proteins. All four TIPE proteins mostly exist in 
cytoplasm, and TIPE2 is also reported to localize in 
nucleus.3 The amino acid sequence comparison of TIPE 
proteins showed that C-terminal residues are significantly 
conserved and N-terminal residues are highly varied. The 
brief functions of TNFAIP8, TIPE1, and TIPE3 in human 
diseases are discussed in the following sections.

TNFAIP8
TNFAIP8 was found in head and neck squamous cell 
carcinoma (HNSCC) cell lines and is the first identified 
TIPE family protein.14 TNFAIP8 is expressed in most 
human tissues. Expression analysis of TNFAIP8 showed 
that it is mainly expressed in bone marrow, immune sys-
tem, gastrointestinal tract, lung and adipose tissues.15 

TNFAIP8 also exists in epididymis, seminal vesicles, tes-
tis, and prostate, and meanwhile, it is expressed in fallo-
pian tube, cervix, and endometrium in women.15

TNFAIP8 inhibits cell apoptosis and facilitates cell via-
bility. TNFAIP8 overexpression in MDA-MB-435 cells of 
breast cancer enhanced the migration of tumor cells via 
upregulation of vascular endothelial growth factor recep-
tor-2 (VEGFR-2), matrix metalloproteinase 1 (MMX-1), 
and MMX-9.16 In non-small-cell lung cancer (NSCLC), 
increased expression of TNFAIP8 was observed in tumor 
tissues, and TNFAIP8 promoted tumor cell proliferation 
and cisplatin resistance through murine double minute 2 
(MDM2)/p53 pathway.17 Moreover, TNFAIP8 reduced the 
phosphorylation of large tumor suppressor gene 1 (LATS1), 

increasing the expression of Yes-associated protein (YAP), 
ultimately enhancing the proliferation and invasion of 
NSCLC cells.18 TNFAIP8 also acted as a tumorigenic 
gene in hepatocellular carcinoma (HCC) via LATS1-YAP 
signaling pathway.19 TNFAIP8 overexpression resulted in 
decreased fatty acid oxidation genes’ expression and 
increased several tumor genes’ expression, such as nuclear 
factor of activated T-cells 5 (NFAT5), metastasis-associated 
lung adenocarcinoma transcript 1 (MALAT1), forkhead box 
protein A1 (FOXA1), and kirsten rat sarcoma viral onco-
gene (KRAS).9 In addition to cancer, Porturas et al20 also 
revealed the biological role of TNFAIP8 in infection. 
TNFAIP8 regulated Listeria monocytogenes infection via 
modulating activity of Ras-related C3 botulinum toxin sub-
strate 1 (Rac1).20

TIPE1
TIPE1 was first identified in 2011 when specific antibody 
was produced. TIPE1 is expressed in various cell types, 
including hepatocytes, intestinal epithelial cells, muscle 
tissues, neurons, and germ cells, but is totally absent in 
mature B lymphocytes and T lymphocytes.21

TIPE1 mostly plays an antineoplastic role in most can-
cers. The interaction between TIPE1 and Rac1 
promotes tumor cell apoptosis via inhibiting C-Jun 
N-terminal kinase (JNK) and p65 activity in primary liver 
cancer. Moreover, the expression of TIPE1 was negatively 
associated with lymph node metastasis of primary liver 
cancer.11 In mice models of NSCLC, TIPE1 inhibited 
tumor growth and facilitated cell apoptosis, indicating that 
TIPE1 could serve as a tumor suppressor of NSCLC.22 

TIPE1 was capable of inhibiting epithelial-mesenchymal 
transition (EMT) via modulating Wnt/β-catenin signaling 
and downregulating MMP-2 and MMP-9 expression, which 
ultimately suppressed the proliferation and migration of 
gastric cancer.23 Additionally, in breast cancer cells, 
TIPE1 suppressed the proliferation, invasion, metastasis, 
and EMT via downregulating the phosphorylation of extra-
cellular signal-regulated protein kinase (ERK).24 In osteo-
sarcoma, TIPE1 was found to suppress the activity of 
monocyte chemotactic protein-1 (MCP-1) to reduce macro-
phage infiltration, thus inhibiting the proliferation of osteo-
sarcoma cells[38].25 In hematological diseases, TIPE1 was 
observed to promote cell apoptosis and inhibit tumor 
growth in RAW264.7 cells by upregulating pro-apoptotic 
members of the B cell lymphoma/leukemia-2 (Bcl-2) 
family.26 However, TIPE1 was also observed to enhance 
the tumorigenicity of cervical cancer cells and 
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promote cancer progression via inhibiting p53 acetylation, 
suggesting that TIPE1 serves as an oncogene in cervical 
cancer.27 Generally, TIPE1 induces cell apoptosis and inhi-
bits tumorigenesis and progression in most cancers.

TIPE3
TIPE3 is mainly expressed in secretory epithelium and 
serves as a carcinogenic molecule.6 TIPE3 is capable of 
shuttling phosphatidylinositol bisphosphate (PIP2) and 
phosphatidylinositol trisphosphate (PIP3) to the plasma 
membrane which can enhance phosphatidylinositol- 
3-kinase (PI3K)-mediated signaling transduction, thus pro-
moting the occurrence and development of cancers.6 The 
increased expression of TIPE3 was identified in colon 
cancer, NSCLC, breast cancer, esophageal cancer, gastric 
cancer, and malignant glioma.28 Knockout of TIPE3 can 
inhibit tumor proliferation, while its overexpression can 
enhance tumor aggressiveness.28 TIPE3 was found to acti-
vate PI3K/protein kinase B (AKT) signaling pathway to 
facilitate tumor cell proliferation and migration in gastric 
cancer.29 TIPE3 also promoted cell metastasis by activat-
ing AKT and NF-κB signals in breast cancer.30 In addition, 
TIPE3 promoted the progression of malignant glioma via 
inhibiting p38 phosphorylation.31 However, it was also 
reported that TIPE3 inhibited the proliferation and inva-
sion of nasopharyngeal carcinoma cells.32

By introducing the brief biological functions of three of 
the TIPE family proteins, we have already laid the founda-
tion to summarize the expression pattern, structure, and 
regulatory functions of TIPE2 in inflammation, immunity, 
and cancers based on the latest literature.

TIPE2 Expression Pattern
It is known that TIPE2 gene is located on chromosome 1 
(1q21.2–1q21.3) and its protein was first identified in 
autoimmune encephalomyelitis in 2008.7 TIPE2 protein 
was reported to mainly exist in cytoplasm. The expression 
analysis of TIPE2 suggested that it followed a tissue- 
specific expression pattern. TIPE2 was mainly expressed 
in lymphoid and myeloid tissues, and constitutively 
expressed in immune cells.7 The subsequent studies of 
TIPE2 expression showed that it was primarily expressed 
in T lymphocytes, but not B lymphocytes.33 Surprisingly, 
TIPE2 was also detected in endocrine and reproductive 
cells of mice, suggesting its regulatory roles in endocrine 
and reproductive systems.34,35 Besides, different from the 
expression pattern in mice, the expression of human 
TIPE2 was typically observed in non-hematopoietic 

cells.33,35,36 However, high expression of TIPE2 was 
only found in macrophage-derived cells and few cancer 
cells, such as renal cell carcinoma (RCC) and skin squa-
mous cell carcinoma (SSCC), while in most cancer cells, 
the expression of TIPE2 was low or undetectable, includ-
ing bladder cancer, breast cancer, gastric cancer, NSCLC, 
prostate cancer and rectal cancer, indicating that it was 
primarily expressed in mononuclear cells and epithelial- 
derived secretory cells.34

TIPE2 Structure
As shown by the crystal structure of TIPE2, a highly 
conserved hydrophobic cavity is located in the center, 
which is considered to be the binding site for cofactors 
like phospholipid or lipid second messengers.37 

Interestingly, these cofactors share similarities in binding 
pattern, which is exposing inositol head group and insert-
ing lipid tail into the hydrophobic cavity.38 Moreover, 
TIPE2 also consists of six cylindrical antiparallel α- 
helices, which encircle the conserved hydrophobic cavity. 
Of these α-helices, α5-helix is divided by Pro153 into two 
segments, α5a and α5b37 (Figure 1). However, the high- 
resolution structure of TIPE2 exhibits a particular and 
uncharacterized fold, implying that TIPE2 has a unique 
topological structure which is quite different from the 
DED structure of other members of TIPE family.37 It 
was demonstrated that there are 184 amino acids in 
TIPE2 structure, which is much more than those in ordin-
ary DED (approximately 90 amino acids). Furthermore, 
the N-to-C topological structure of TIPE2 is perfectly 
consistent with the C-to-N topological structure of ordin-
ary DED. Therefore, the topological structure of TIPE2 
appears to be a mirror diagram of ordinary DED.37,39

Figure 1 The structure of TIPE2 is shown in two vertical views. The six a-helices 
are colored in green.
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Upstream Regulating Factors of 
TIPE2
TIPE2 is the intermediary molecule in the inhibition of 
cell apoptosis mediated by microRNA-21, while 
microRNA-21 is the direct target of NF-κB. TIPE2 expres-
sion is regulated by microRNA-21 via editing of the cod-
ing region. In activated T lymphocytes and macrophages, 
expression of microRNA-21 is highly upregulated, while 
TIPE2 expression is downregulated. Compared with 
microRNA-21 deficiency, T cells with TIPE2 deficiency 
are clearly insensitive to apoptosis. Therefore, it is obvious 
that microRNA-21 is the upstream regulator of TIPE240 

(Figure 2). Moreover, TIPE2 was significantly upregulated 
in human HeLa cells transfected with OAS/RNase 
L-expressing VACV recombinants, signifying that RNase 
L was a transcriptional regulator of TIPE2.41 Furthermore, 
it was proven that activating protein-1 (AP-1) is an impor-
tant transcriptional regulator of porcine TIPE2. Due to the 
conspicuous sequence similarity of TIPE2 between por-
cine and human, it is supposed that AP-1 may also be 
a regulatory factor in the transcription of human TIPE2.41

Downstream Effect Factors of 
TIPE2
The negative immunomodulatory factor TIPE2 could 
reduce the activation and expression of transforming 
growth factor (TGF)-β-activated kinase 1 (Tak1) through 
blocking the Tak1-TAB1-TAB2 complex formation.42 The 
activation of caspase-8 induced by TIPE2 resulted in the 
reduced levels of AP-1 and NF-κB, which could inhibit 

caspase-1 activation and consequently promote Fas- 
induced cell apoptosis.43 TIPE2 also inhibited mitogen- 
activated protein kinase (MAPK) and NF-κB pathways 
via inhibiting nucleotide binding oligomerization domain- 
2 (NOD2), leading to the downregulation of NOD2- 
mediated inflammatory signals44 (Figure 2). In addition, 
TIPE2 was found to antagonize JNK, NF-κB, and 
p38MAPK pathways via hampering nuclear translocation 
of c-Fos, c-Jun and NF-κB and reduced the degradation of 
NF-κB inhibitor alpha (IKBα)7 (Figure 2). Regulatory 
T cells (Tregs) with TIPE2 deficiency were observed to 
secrete lower levels of cell surface markers like cytotoxic 
T-lymphocyte-associated protein-4 (CTLA-4) and fork-
head box protein 3 (Foxp3), and anti-inflammatory cyto-
kines like interleukin (IL)-10 and transforming growth 
factor (TGF)-β, leading to IL-2 dysregulation and 
enhanced NF-κB activation.45,46 In TIPE2-deficient mye-
loid cells, polyinosinic-polycytidylic acid (Poly(I:C))- 
mediated dsRNA signaling pathway was overactive, 
while Poly(I:C) was capable of downregulating TIPE2 
expression mediated by downstream cytokines.47 

Furthermore, TIPE2 was found to regulate Rac1-signal 
transducer and activator of transcription 3 (STAT3) and 
ERK1/2 signaling pathways and downregulate the expres-
sion levels of cyclin D1 and cyclin D3 in mice model of 
injury-induced restenosis disease48 (Figure 2).

Apart from what was clarified previously, TIPE2 also 
decreased the phosphorylation of PI3K and Akt by inhibit-
ing the activation of c-myc, cyclin D1 and β-catenin, 
which led to inhibition of PI3K/Akt and Wnt/β-catenin 
signaling pathways49,50 (Figure 2). TIPE2 also participated 
in downregulating PI3K/Akt/glycogen synthase kinase 3β 
(GSK3β)-mediated β-catenin signaling via inhibiting the 
phosphorylation of Akt, which resulted in increased phos-
phorylation of GSK3β and eventually led to decreased 
nuclear translocation of β-catenin51 (Figure 2). In arthritic 
fibroblast-like synoviocytes, death receptor 5 (DR5) 
expression was upregulated by TIPE2, which could acti-
vate caspase, suppress NF-κB, and ultimately result in 
apoptosis of synoviocytes52 (Figure 2). Besides, it was 
proven that TIPE2 upregulated pro-apoptotic proteins’ 
expression such as Bcl-2 associated X (Bax), caspase-3, 
and caspase-9, facilitated the cleavage of poly ADP ribose 
polymerase (PARP), and downregulated the expression 
levels of anti-apoptotic proteins such as Akt, Bcl-xl and 
ERK1/253 (Figure 2). Moreover, it was demonstrated that 
TIPE2 could downregulate vascular endothelial growth 
factor (VEGF), suggesting its function of attenuating 

Figure 2 Downregulation of TIPE2 heightens activating EMT, proliferation, angio-
genesis, migration, invasion, and metastasis of malignant cells, ultimately facilitating 
tumorigenesis and progression of cancers. ↑- upregulate; ↓- downregulate.
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angiogenesis54 (Figure 2). Additionally, TIPE2 also played 
a role in the activation of interferon regulatory factor 4 
(IRF4) signaling pathway to increase p27 expression and 
subsequently inhibited cell proliferation55(Figure 2).

Functions of TIPE2 in Inflammation 
and Immunity
TIPE2 is a crucial regulatory factor of inflammatory 
responses and immune homeostasis, which can suppress 
T cell receptor (TCR) and Toll-like receptor (TLR).7 

Decreased expression of TIPE2 was associated with lethal 
inflammatory conditions in mice and autoimmune diseases 
in humans, suggesting its indispensable role in maintaining 
immune homeostasis.34 Knocking out TIPE2 in mice led 
to inflammation in multiple organs, splenomegaly, and 
even death.7 Besides, the loss of TIPE2 was also asso-
ciated with higher serum levels of proinflammatory fac-
tors, such as IL-6, IL-17, IL-21, and TNF-α, and lower 
serum levels of anti-inflammatory factors, like IL-10 and 
TGF-β, resulting in enhanced proliferation and differentia-
tion of T lymphocytes thus inducing inflammatory cells’ 
aggregation, overactive responses, and inflammatory 
diseases.4 On the contrary, TIPE2 selective expression 
was relevant in preventing hyperreactivity and maintaining 
immune homeostasis.56 In the differentiation of dendritic 
cells, TIPE2 activated PI3K-PKCδ-MAPK signaling path-
way to increase the expression of CD80CD86mRNA, 
a marker of dendritic cells’ maturity, indicating that 
TIPE2 could enhance immune responses under homeo-
static state by suppressing peripheral immune tolerance.45

In the mice model of clinical chronic kidney allograft 
rejection, TIPE2 was found to exhibit a high transcription 
level in peripheral blood and kidney biopsy samples, and 
significantly reduced immunological rejections, suggesting 
that TIPE2 could be a diagnostic biomarker in monitoring 
chronic kidney allograft rejection.57 A similar result was 
also observed in corneal allograft rejection and acute car-
diac allograft rejection, implying the immunoregulatory 
role of TIPE2 in graft rejection.58,59 In rheumatoid arthritis 
mice models, TIPE2 was found to inhibit Rac activation 
and IRF3 phosphorylation, and thus significantly reduced 
proinflammatory cytokines’ expression in synovial fibro-
blasts stimulated by lipopolysaccharide; these foundings 
could help in designing novel strategies for the prevention 
and treatment of rheumatoid arthritis.60 Adding to this, 
DR5-caspase-NF-κB signaling pathway mediated by 
TIPE2 was also involved in anti-inflammatory responses 

in rheumatoid arthritis.52 Moreover, it was demonstrated 
that significantly amplified phosphorylation of JNK, p38, 
and IκBα was observed in TIPE2-deficient macrophages, 
and TIPE2 was found to participate in modulating 
L-arginase metabolism from nitric oxide to urea to sup-
press inflammatory responses.61 Inpatients with asthma 
and systemic lupus erythematosus, TIPE2 mRNA expres-
sion in peripheral blood mononuclear cells (PBMC) was 
notably decreased, meaning that TIPE2 serves as an anti- 
inflammatory regulator to reduce inflammation 
intensity.62,63 In chronic hepatitis B virus infection, the 
expression of TIPE2 was reduced and negatively corre-
lated with the serum levels of virus load and hepatitis 
markers.64 The reduced TIPE2 expression was also identi-
fied in PBMC from patients with primary biliary cirrhosis, 
which enhanced monocytes’ sensitivity to TLR ligands.65

In the mice model of myocardial ischemia/reperfusion 
injury, it was proven that TIPE2 suppressed the activation 
of NOD2 and downstream factors, MAPK and NF-κB, 
inversely regulating NOD2-mediated inflammatory 
responses.44 Furthermore, TIPE2 was remarkably 
expressed in CD4+CD25+ Tregs of Bal b/c nude mice, 
and when TIPE2 was silenced by small interfering RNA 
(siRNA) or completely knocked out, CD4+CD25+ Tregs 
were capable of elevating T-cell proliferation and differ-
entiation, revealing that TIPE2 was associated with the 
immunosuppressive function of CD4+CD25+ Tregs.66 

TIPE2 also functioned as a suppressor of AP-1 and NF- 
κB via binding to and activating caspase-8, which could 
promote Fas-induced cell apoptosis.43 Stimulated by oxi-
dized low density lipoprotein (OX-LDL), macrophages 
with TIPE2 deficiency exhibited amplified JNK, NF-κB, 
and p38MAPK signals, elevated the expression level of 
proinflammatory cytokines, and enhanced inflammatory 
responses.67 Consistent with this new finding, in the 
LDLR (-/-) mice with TIPE2 deficiency on a high-fat 
diet, the atherosclerosis formation was apparently aggra-
vated and OX-LDL was found to downregulate the tran-
scription of TIPE2 mRNA.67 In the mice model of injury- 
induced restenosis, TIPE2 overexpression was found to 
reduce activity of macrophages and impede proliferation 
and differentiation of vascular smooth muscle cells by 
blocking G 1/S phase transition via Rac1-STAT3 and 
ERK1/2 signaling pathways, consequently inhibiting vas-
cular neointima and atherosclerosis formation.48,68 TIPE2 
blocked the activation and nuclear translocation of STAT3 
in a Rac1-dependent manner.48 These results prove TIPE2 
to be an inhibitor of atherosclerosis and that it may serve 
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as a therapeutic target for treating certain kinds of 
diseases.48,67,68 Interestingly, atorvastatin was shown to 
increase TIPE2 expression mediated by lipopolysaccharide 
in RAW264.7 cells, resulting in decreased expression of 
downstream inflammatory mediators, including nitric 
oxide synthase and NF-κB.69

Apart from these functions, TIPE2 also played a part in 
preventing stroke. When blocking the middle cerebral 
artery of mice with TIPE2 deficiency, the infarction 
volume, neurological dysfunction, and inflammatory 
cells’ infiltration in ischemic hemisphere were signifi-
cantly exacerbated.70 Another study demonstrated that 
TIPE2 mRNA expression in survivors was much higher 
than that in dead, showing a prominent odds ratio on 
3-month mortality.71 These findings implied that TIPE2 
regulated inflammatory responses of stroke and showed 
an important neuroprotective effect on brain cells, suggest-
ing its potential as a diagnostic and prognostic biomarker 
for acute ischemic stroke.70,71 Moreover, TIPE2 was also 
capable of modulating inflammation intensity by regulat-
ing macrophage polarization via suppressing mammalian 
target of rapamycin complex1 (mTORC1) activation.72 

Interestingly, TIPE2 null mice were susceptible to pseudo-
monas aeruginosa (PA) infection and showed serious ker-
atitis. Mechanistically, decreased inflammatory cell 
infiltration and NF-κB signaling were found to participate 
in TIPE2-mediated immunoregulation.73

Roles of TIPE2 in Cancers
TIPE2 can antagonize the oncogene Ras.12 It was capable 
of preventing Ras from forming a complex via binding to 
domains of RalGDS proteins, ultimately reducing the acti-
vation of downstream effectors Akt and Ral and maintain-
ing dynamic balance between cell survival and 
apoptosis.12 Complete knockout of TIPE2 contributed to 
increased Akt and Ral activation, dysregulation of exocyst 
complex formation, enhanced cell proliferation, and 
reduced cell apoptosis. Conversely, elevated expression 
of TIPE2 promoted cell apoptosis and significantly pre-
vented Ras-induced tumorigenesis, proving that it might 
be a potential suppressor and drug target for neoplastic 
diseases.12

Compared with the control group, TIPE2 was promi-
nently upregulated, while myxoma resistance protein 1 
(MX1) was downregulated in RCC cells and tissues74 

(Table 1). Moreover, TIPE2 was negatively correlated 
with MX1 expression level and positively with Tumor 
Node Metastasis (TNM) stage, indicating its tumorigenic 

role in RCC pathogenesis74 (Table 1). A similar result was 
also observed in colon cancer samples and elevated expres-
sion of TIPE2 was positively associated with lymphatic 
metastasis and Dukes stage. TIPE2 inhibited caspase-8 
activity and regulated TLR4-mediated inflammatory effects 
to promote the progression of colon cancer cells, suggesting 
that TIPE2 could be a new target for clinical colon cancer 
treatment43 (Table 1). TIPE2 expression level in rectal 
cancer tissues was also much higher than that in adjacent 
normal tissues. TIPE2 suppressed proliferation, growth, 
migration, and invasion of rectal adenocarcinoma cells via 
inhibiting Wnt/β-catenin and TGF-β/Smad2/3 signaling 
pathways, indicating it might be a potential target in rectal 
adenocarcinoma treatment75 (Table 1). In the study of papil-
lary thyroid carcinoma (PTC), TIPE2 overexpression was 
observed in tumor samples, and inhibited viability, prolif-
eration, and invasion of PTC cells. Furthermore, TIPE2 
attenuated tumor invasiveness via inhibition of Rac1, 
resulting in reduced MMP-9 and uPA expression, indicating 
its crucial role in predicting tumor aggressiveness of PTC76 

(Table 1). In Non-Hodgkin’s lymphoma (NHL), the 
increased expression of TIPE2 was identified in both per-
ipheral T cell lymphoma and diffuse large B-cell lymphoma 
(DLBCL), and TIPE2 expression in DLBCL was stronger 
than that in T lymphoma. Besides, among DLBCL, TIPE2 
expression in germinal center of B-cell (GCB) type was 
much stronger than that in non-GCB type, indicating that 
TIPE2 may serve as a prognostic predictor of better survival 
for DLBCL77 (Table 1). Furthermore, TIPE2 was also 
observed to modulate the crosstalk between SSCC and 
tumor-associated macrophages (TAMs). The deficiency of 
TIPE2 in TAMs was capable of abolishing the phenotypic 
modification of TAMs exerted by SSCC cells when co- 
cultured together. Additionally, higher expression of 
TIPE2 in TAMs was relevant to a worse 5-year overall 
survival, highlighting TIPE2 as a promising predictor of 
prognosis and a new therapeutic target for SSCC78 

(Table 1).
Contrary to the expression profile of previously mentioned 

cancers, the expression level of TIPE2 in patients with primary 
hepatocellular carcinoma (HCC) was significantly weak or 
undetectable, which showed a negative correlation with 
tumor migration and invasion. In HCC cell lines, TIPE2 
deficiency activated metastasis-associated PI3K/AKT cascade 
and Rac1 signaling pathways, and then enhanced F-actin 
polymerization, and increased the secretion of MMP-9 and 
urokinase-type plasminogen activator (uPA), which ultimately 
facilitated tumor proliferation and migration.79,80 
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Correspondingly, TIPE2 overexpression significantly elimi-
nated the effects of lipopolysaccharide on TNF-α expression 
and abrogated the effects of TNF-α on the upregulation of 
MMP-3/MMP-13, activation of ERK1/2 and NF-κB, ulti-
mately suppressing TNF-α-induced primary HCC metastasis 
via inhibition of MMP-3/MMP-13, ERK1/2 and NF-κB sig-
naling cascades81 (Table 1). In addition, the non-structural 
protein NS5A which is encoded by hepatitis C virus (HCV) 
was involved in the degradation of TIPE2, resulting in 

genomic DNA instability and HCV-induced hepatocellular 
carcinogenesis.82 TIPE2 might be a new diagnostic and ther-
apeutic target for primary hepatocellular carcinoma.12,79–82

Downregulation of TIPE2 was also identified in glioma 
cells and tissues. Increased TIPE2 expression was found to 
inhibit proliferation, migration, and EMT of glioma cells 
through decreasing the levels of β-catenin, c-myc, and 
cyclin D1 in hypoxia-induced Wnt/β-catenin pathway49 

(Table 1). Low expression of TIPE2 was also identified 

Table 1 TIPE2 Protein Expression, Function and Signaling Molecules in Cancers

Cancer Expression Function Signaling Molecules Reference

Bladder cancer Low - - 34,35

Breast cancer Low ↓tumorigenesis, EMT, proliferation, migration, invasion, 

progression

↓β-catenin, cyclin D1, c-myc, 

Akt, TNF-α, IFN-γ, p38

91–93

Cervical cancer Low - - 34,35,95

Colon cancer High ↑tumorigenesis, Dukes stage, lymph node metastasis ↓caspase-8 43

ESCC Low ↓tumorigenesis, EMT, proliferation, tumor growth, invasion, 

migration

↓β-catenin, cyclin D1, c-myc, 87

Endometrial 

cancer

Low ↓tumorigenesis, EMT ↓β-catenin 94

Gastric cancer Low ↓EMT, tumorigenesis, migration, invasion, lymph node 

metastasis

↓PI3K/Akt/GSK3β/ERK1/2, β- 

catenin; ↑p27

51,53,55,89,90

Glioma Low ↓proliferation, migration, EMT ↓β-catenin, cyclin D1, c-myc 49

HCC Low ↓tumorigenesis, Proliferation, invasion, Migration, lymph 
node Metastasis

↓PI3K/AkT/ERK1/2, Rac1, 
MMP-3 & 9 & 13, NF-κB, uPA

12,79–82

NHL High ↑prognosis - 77

NSCLC Low ↓proliferation, migration, Invasion, angiogenesis, Clinical 

stage, lymph node Metastasis, cisplatin Resistance

↓Rac1, VEGF, mTOR, F-actin 

polymerization

83–85

Osteosarcoma Low ↑apoptosis, ↓cisplatin Resistance ↓Tak1-NF-κB, MDR1, AP-1 86

OTSCC Low ↓Tumor growth, invasion, Migration ↓Foxp3 88

Ovarian cancer Low - - 34,35

Prostate cancer Low ↓tumorigenesis, EMT, migration, invasion ↓PI3K/Akt 50

PTC High ↓proliferation, migration, invasion ↓Rac1, uPA, MMP-9 76

Rectal cancer High ↓tumorigenesis, proliferation, invasion, migration, ↓Wnt/β-catenin, smad2/3, TGF- 
β

75

RCC High ↑TNM stage ↓MX1 74

SSCC High ↓prognosis - 78

Abbreviations: Akt, protein kinase B; EMT, epithelial-mesenchymal transition; ERK, extracellular signal-regulated kinase; ESCC, esophageal squamous cell carcinoma; Foxp3, forkhead 
box protein 3; GSK3β, glycogen synthase kinase 3β; HCC, hepatocellular carcinoma; IFN-γ, interferon-γ; MAPK, mitogen-activated protein kinases; MDR1, multidrug resistance 1; MMP, 
matrix metalloproteinase; mTOR, mammalian target of rapamycin; MX1, myxoma resistance protein 1; NF-κB, nuclear factor-κB; NHL, non-Hodgkin’s lymphoma; NSCLC, non-small- 
cell lung cancer; OTSCC, oral tongue squamous cell carcinoma; PI3K, phosphatidylinositol 3-kinase; PTC, papillary thyroid carcinoma; RCC, renal cell carcinoma; RCC, renal cell 
carcinoma; Rac1, Ras-related C3 botulinum toxin substrate 1; SSCC, sksquamous cell carcinoma; TNF-α, tumor necrosis factor alpha; TGF-β, transforming growth factor-β; TNM, 
tumor node metastasis; uPA, urokinase plasminogen activator; VEGF, vascular endothelial growth factor; ↑, increase/upregulation; ↓, decrease/downregulation.
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in prostate cancer, and TIPE2 selective overexpression in 
prostate cancer cell lines was capable of attenuating 
tumorigenesis, migration, invasion, and EMT via inhibit-
ing PI3K/Akt pathway. TIPE2 might function as 
a promising therapeutic target for prostate cancer50 

(Table 1). The decreased expression of TIPE2 was also 
identified in NSCLC and selective overexpression of 
TIPE2 was found to attenuate lymph node metastasis and 
clinical stage.83 TIPE2 suppressed cell colony formation 
and tumor angiogenesis through reducing Rac1 activation, 
downstream factors F-actin polymerization and VEGF 
expression, which consequently inhibited angiogenesis, 
invasion, and metastasis of NSCLC cells.84 It was also 
reported that TIPE2 reduced cisplatin resistance by indu-
cing cell autophagy via mTOR signaling pathway in 
NSCLC and thus improved the prognosis of NSCLC 
patients85 (Table 1). Interestingly, a similar result was 
also identified in osteosarcoma. TIPE2 significantly 
blocked multidrug resistance1 (MDR1) promoter from 
transcribing via suppressing Tak1-NF-κB and AP-1 signal-
ing pathways, which greatly reduced MDR1 transcription 
and improved the sensitivity of osteosarcoma cells to 
cisplatin86 (Table 1). In accordance with findin50 in 
NSCLC, TIPE2 was also downregulated in esophageal 
squamous cell carcinoma (ESCC). It was demonstrated 
that TIPE2 suppressed tumorigenesis and progression of 
ESCC through inhibiting Wnt/β-catenin signaling 
pathway87 (Table 1). The newest clinical result of oral 
tongue squamous cell carcinoma (OTSCC) showed that 
TIPE2 also had low expression in OTSCC and enforced 
overexpression of it affected biological behavior in vitro 
and suppressed tumor growth in vivo via negatively reg-
ulating Foxp3+ Treg cells88 (Table 1).

Compared with normal gastric mucous cells, TIPE2 
expression in gastric cancer samples was decreased. 
Selective expression of TIPE2 in gastric cancer cell lines 
was found to upregulate activity of N-Ras and p27 via IRF4 
signaling pathway, which led to attenuating cell prolifera-
tion and growth.55,89 Additionally, due to the upregulation 
of p27, TIPE2 suppressed the progression of gastritis to 
gastric cancer.55,89 It was identified that EMT played an 
indispensable role in tumorigenesis and progression of gas-
tric cancer. In the in-vitro experiments, the expression level 
of EMT biomarkers like Snail1 and Snail2/Slug was sup-
pressed by TIPE2, and moreover, TIPE2 attenuated inva-
siveness of gastric cancer cells via downregulating β- 
catenin signaling through inhibition of AKT and activation 
of GSK3β, ultimately reversing EMT process and inhibiting 

the invasion, migration, and metastasis of gastric cancer 
cells.51,90 Furthermore, attenuation of Akt and ERK1/2 
signaling mediated by TIPE2 was also involved in the 
apoptosis of gastric cancer cells53 (Table 1). The functions 
of TIPE2 in breast cancer have already been confirmed. 
TIPE2 expression in breast cancer cells and tissues was 
much lower when compared with normal ones, and similar 
to its role in gastric cancer, enforced expression of TIPE2 
distinctly impededtumor growth, proliferation, migration, 
invasion, and EMT in breast cancer cells, like MDA-MB 
-231 cells.91,92 Mechanistically, limited expression of β- 
catenin, c-myc, cyclin D1 and decreased phosphorylation 
of p38 and Akt mediated by TIPE2 were involved in the 
suppression of occurrence and development of breast can-
cer cells.91,92 Moreover, it was defined that TIPE2 also 
induced CD8+ T cells and natural killer (NK) cells to secrete 
more cytokines, like interferon-γ (IFN-γ) and TNF-α, which 
in turn enhanced CD8+ T cells and NK cells’ cytotoxicity 
and antitumor immune responses in spleen and tumor 
microenvironment, ultimately inhibiting the development 
and metastasis of breast cancer cells93 (Table 1). In endo-
metrial cancer cells, TIPE2 bound with β-catenin and 
decreased its nuclear translocation, suppressing EMT and 
tumorigenesis of endometrial cancer cells94 (Table 1). The 
expression level of TIPE2 was extremely weak or undetect-
able in bladder, cervical and ovarian cancers, but the 
mechanisms remain unknown currently34,35,95 (Table 1).

Conclusions and Perspectives
The expression pattern and biological functions of TIPE2 
have been ceaselessly explored in the last decade. In 
addition to regulating inflammation and maintaining 
immune homeostasis, TIPE2 also acts as an indispensable 
suppressor in most cancers. This present review summar-
ized the expression pattern, structure, and regulatory func-
tions of TIPE2 in inflammation, immunity, and cancers 
based on the latest literature. The differential expression 
and unique functions of TIPE2 indicate that it is a potential 
biomarker for diagnosis and prognosis as well as 
a promising drug target for treatment of TIPE2- 
associated cancers. However, how to conveniently apply 
TIPE2 to clinical diagnosis and prognosis remains 
unknown. We put forward an assumption that the accurate 
serum expression quantity of TIPE2 in each specific can-
cer must be detected and the particular diagnostic thresh-
old and reference range of each specific cancer should be 
reasonably formulated. Although drug therapy targeting 
TIPE2 seems to be beneficial and is promising to prolong 
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the survival time of cancer patients, the emerging issue, 
whether targeted therapy is secure and whether it will 
bring about severe side effects, deserves more considera-
tion and needs more clinical trials to verify it.

Gaining insight into the expression pattern, structure, 
and functions of TIPE2 is of great significance for the 
prevention and treatment of various human diseases, espe-
cially malignant tumors. As far as what has been clarified 
about TIPE2, there is still a lack of comprehensive and 
precise cognition of it, much work is needed to uncover 
the underlying mysteries of this novel protein.
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