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ABSTRACT 
 
Background: Metabolomics study provides an opportunity to identify novel molecular determinants of altered 
cognitive function.  
Methods: During 2013 to 2016 Bogalusa Heart Study (BHS) visit, 1,177 participants underwent untargeted, 
ultrahigh performance liquid chromatography-tandem mass spectroscopy metabolomics profiling. Global 
cognition and five cognition domains were also assessed. The cross-sectional associations of single metabolites 
with cognition were tested using multiple linear regression models. Weighted correlation network analysis was 
used to examine the covariable-adjusted correlations of modules of co-abundant metabolites with cognition. 
Analyses were conducted in the overall sample and according to both ethnicity and sex. 
Results: Five known metabolites and two metabolite modules robustly associated with cognition across overall 
and stratified analyses. Two metabolites were from lipid sub-pathways including fatty acid metabolism [9-
hydroxystearate; minimum P-value (min-P)=1.11×10-5], and primary bile acid metabolism (glyco-alpha-
muricholate; min-P=4.10×10-5). One metabolite from the glycogen metabolism sub-pathway (maltose; min-
P=9.77×10-6), one from the polyamine metabolism sub-pathway (N-acetyl-isoputreanine; min-P=1.03×10-5), and 
one from the purine metabolism sub-pathway (7-methylguanine; min-P=1.19×10-5) were also identified. Two 
metabolite modules reflecting bile acid metabolism and androgenic steroids correlated with cognition (min-
P=5.00×10-4 and 3.00×10-3, respectively).  
Conclusion: The novel associations of 5 known metabolites and 2 metabolite modules with cognition provide 
insights into the physiological mechanisms regulating cognitive function. 
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INTRODUCTION 
 
Dementia affects 43.8 million adults worldwide [1]. 
Due to increasing longevity globally, the absolute 
number of individuals living with dementia is expected 
to triple by 2050 [2].  Alzheimer’s disease (AD) is the 
most common type of dementia, representing 70% of all 
dementia cases and affecting approximately 5 million 
U.S. adults [3]. As the country’s sixth leading cause of 
death and a leading cause of disability and poor health, 
AD represents a major public health challenge [4]. 
Despite the well-established burden of AD on indivi-
dual patients, their caregivers, and society, there are few 
effective strategies for the early prevention and 
treatment of this debilitating condition.  
 
The long prodromal period preceding AD, which may 
include over a decade of pre-clinical cognitive decline 
followed by mild cognitive impairment (MCI) [5,6], 
provides an opportunity to identify novel molecular 
precursors to clinical symptoms and diagnosis of AD. 
Indeed, previous studies have discovered various blood 
metabolites that can differentiate normal controls from 
those MCI, in addition to AD [7–11]. Although these 
findings are promising, the previous studies have been 
limited in sample size or to the sole use of targeted 
metabolomics approaches which only measure pre-
specified, biological candidate metabolites [7–11]. To 
our knowledge, only one previous study employed 
agnostic untargeted metabolomics profiling to discover 
novel metabolites for early cognitive decline [12]. 
Additional research in this area is critically needed to 
identify novel biomarkers for early AD prediction and 
potential targets for molecular-based interventions 
aimed at AD prevention and early treatment.  
 
In the current study, we aimed to identify novel serum 
metabolites and metabolite networks associated with 
cognition in middle-aged adults, prior to any clinical 
symptoms. Our analysis leveraged data collected from 
the large, biracial Bogalusa Heart Study (BHS), whose 
participants underwent untargeted, ultrahigh per-
formance liquid chromatography-tandem mass spectro-
scopy metabolomics profiling and were carefully 
phenotyped for multiple domains of cognition, along 
with important covariables, at the recently completed 
2013 to 2016 study visit.  
 
RESULTS 
 
Characteristics of the 1,177 BHS metabolomics study 
participants are shown in Table 1. On average, BHS 
participants were middle-aged, obese, with systolic BP, 
glucose, and LDL-C values elevated slightly above the 
normal range. The participants were predominantly 
female, non-smokers, and approximately half were 

current drinkers and had at least a high-school 
education.  As expected, BHS participants tended to 
perform well on all eight tests of cognitive function, 
which measured global cognition as well as the domains 
of verbal memory, attention and concentration, 
processing speed, ability to decode, and executive 
function (Table 1 and Supplementary Figure 1).  
 
Association of single metabolites with cognitive tests 
 
A total of 14 metabolites achieved Bonferroni corrected 
significance in the overall and/or ethnicity-sex stratified 
analyses (Figure 1 and Supplementary Figure 2). 
Among them, 6 metabolites were robustly association 
with cognition phenotypes, demonstrating consistent 
effect directions across all analyses. These metabolites 
included 5 known biochemicals (Table 2) and 1 still 
unrecognized biochemicals (Supplementary Table 1). 
One of these metabolites, maltose, was negatively 
associated with global cognition score [minimum P-
value (min-P) =9.77E-06]. Five metabolites were 
associated with the processing speed cognitive domain. 
Among them, four metabolites were negatively 
associated with digit coding test scores, including: N-
acetyl-isoputreanine which belongs to the amino acid 
super pathway (min-P =1.03E-05), 9-hydroxystearate 
which belongs to the lipid super pathway (min-P 
=1.11E-05), 7-methylguanine which belongs to the 
nucleotide super pathway (min-P =1.19E-05), and 
unknown metabolite X-21840 (min-P =4.32E-06). From 
the lipid super pathway, the remaining metabolite, glyco-
alpha-muricholate (min-P =4.10E-05), was positively 
associated with trail making test A scores. The remaining 
8 metabolites, which reached Bonferroni-corrected 
significance in the overall or either ethnicity-sex-specific 
analysis, had inconsistent effect directions across the 
groups (Supplementary Table 2). Although not 
significant by the stringent criteria used in the current 
study, these promising metabolites included two 
associated with the global cognition domain (3-
hydroxyoctanoate and phosphoethanolamine), one 
associated with the verbal memory domain (3-
methoxytyrosine), two associated with the attention & 
concentration domain [1-palmitoyl-GPC (16:0) and 1-
palmitoyl-2-stearoyl-GPC (16:0/18:0)], one associated 
with the processing speed domain [1-(1-enyl-palmitoyl)-
2-palmitoleoyl-GPC (P-16:0/16:1)], and two associated 
with the executive function domain [methionine sulfone 
and 1-stearoyl-2-oleoyl-GPC (18:0/18:1)].  
 
Pearson correlations between the six robustly identified 
metabolites are presented in Figure 2. Metabolites 
associated with digit coding and trail making test A, 
which both measure the processing speed cognitive 
domain, were all modestly to moderately correlated, 
with correlation coefficients ranging from 0.08 to 0.44. 
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   Table 1. Characteristics of BHS participants (n=1,177). 
Characteristic Overall White Male 

(n=324) 
White Female 

(n=449) 
Black Male 

(n=150) 
Black Female 

(n=254) 
Age(years), mean (SD) 48.11 (5.26) 48.92 (4.91) 48.15 (5.08) 47.27 (6.03) 47.53 (5.38) 
<=12 years (high school), n (%)  589 (50.04%) 156 (48.15%) 176 (39.20%) 105 (70.00%) 152 (59.84%) 

Vocabulary score, mean (SD) 26.54 (9.83) 28.87 (8.94) 30.43 (9.30) 20.23 (7.88) 20.42 (7.91) 
Depression, n (%) 124 (10.54%) 26 (8.02%) 60 (13.36%) 11 (7.33%) 27 (10.63%) 

Smoking, n (%)      
   Never  600 (50.98%) 158 (48.77%) 243 (54.12%) 50 (33.33%) 149 (58.66%) 

   Former  348 (29.57%) 105 (32.41%) 133 (29.62%) 47 (31.33%) 63 (24.80%) 
   Current  229 (19.46%) 61 (18.83%) 73 (16.26%) 53 (35.33%) 42 (16.54%) 

Drinking, n (%)      

   Never  138 (11.72%) 13 (4.01%) 55 (12.25%) 17 (11.33%) 53 (20.87%) 

   Former  379 (32.20%) 109 (33.64%) 145 (32.29%) 48 (32.00%) 77 (30.31%) 

   Current  660 (56.07%) 202 (62.35%) 249 (55.46%) 85 (56.67%) 124 (48.82%) 

BMI (kg/m2), mean (SD) 31.37 (7.79) 30.46 (6.05) 30.12 (7.40) 31.13 (8.58) 34.87 (8.88) 

SBP (mmHg), mean (SD) 123.08 (16.72) 125.35 (13.69) 117.28 (14.45) 131.50 (15.86)  125.46 (20.68) 

Glucose(mg/dl), mean (SD) 106.07 (34.64) 106.90 (26.73) 103.88 (35.65) 107.55 (31.81) 108.03 (42.47) 

LDL cholesterol(mg/dl), mean (SD) 114.61 (35.06) 116.97 (33.74) 116.04 (33.91) 108.02 (35.82) 112.95 (37.81) 
Global cognition, median (IQR) 0.52 (7.68) 0.71 (6.91) 2.98 (6.80) -3.80 (6.39) -1.36 (7.32) 
Verbal Memory      
   Logical memory I, median (IQR) 20.00 (10.00) 20.00 (9.00) 22.00 (9.00) 17.00 (10.00) 18.00 (8.00) 
   Logical memory II, median (IQR) 16.00 (10.00) 16.00 (10.00) 18.00 (9.00) 12.00 (8.00) 14.00 (8.00) 
   Logical memory II-recognition, 
median (IQR) 24.00 (4.00) 24.00 (4.00) 25.00 (4.00) 22.00 (5.00) 23.00 (4.00) 

Attention and Concentration      
   Digit span forward, median (IQR) 11.00 (4.00) 12.00 (4.00) 12.00 (4.00) 10.50 (4.00) 11.00 (4.00) 
   Digit span backward, median (IQR) 7.00(3.00) 8.00 (4.00) 8.00 (4.00) 6.00 (3.00) 7.00 (2.00) 
Processing Speed      
   Digit coding, median (IQR) 60.00 (24.00) 57.00 (20.00) 67.00 (23.00) 45.00 (20.00) 59.00 (25.00) 
   Trial making test A, median (IQR) 0.42 (0.21) 0.43 (0.20) 0.39 (0.18) 0.48 (0.25) 0.44 (0.21) 
Ability to Decode      
   Word reading, median (IQR) 42.00 (13.00) 45.00 (10.00) 46.00 (9.00) 36.00 (16.00) 37.00 (13.00) 
Executive function       
   Trial making test B, median (IQR) 0.91 (0.53) 0.89 (0.48) 0.83 (0.44) 1.16 (0.67) 1.01 (0.57) 

Data are presented as mean (standard deviation) or median (interquartile range) for continuous variables and as percentage for 
categorical variables. 
BMI: body mass index 
SBP: systolic blood pressure 
LDL: low-density lipoprotein 
SD: standard deviation 
IQR: interquartile range 
 



www.aging-us.com 5127 AGING 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 1. Volcano plots of effect sizes versus –log10 P values for all 1202 metabolites among BHS participants, according 
to cognitive domain. (A) Global cognition; (B) Processing speed (digit coding test); (C) Processing speed (trail making test A). 
 

 
Figure 2. Heat map displaying pairwise correlation coefficients for the six identified metabolites. 
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Associations of metabolite modules with cognitive 
tests 
 
The 9 metabolite modules identified among BHS 
participants are depicted in Figure 3 and Supplementary 
Figure 3. A module comprised of metabolites involved 
in primary and secondary bile acid metabolism were 
consistently associated with processing speed. This 
module demonstrated negative associations with digit 
coding test scores (min-P =6.00E-04), where higher test 
score values represent better test performance, and 
positive associations with TMT A scores (min-P 
=5.00E-04), where lower test score values represent 
better test performance. The network of eight 
metabolites most highly correlated with this module’s 
eigenmetabolite value (r>0.70) are presented in Figure  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Additionally, a module comprised of metabolites 
involved in androgenic steroids was associated with 
global cognition score. This module demonstrated 
positive associations with global cognition score (min-P 
=3.00E-03), where higher test score values represent 
better test performance. The network of seven meta-
bolites most highly correlated with this module’s 
eigenmetabolite value (r>0.70) are presented in Figure 
5. 
 
DISCUSSION 
 
The current study robustly identified novel associations 
of six individual metabolites and two metabolite 
modules with cognition phenotypes among BHS 
participants. Identified metabolites included 5 known 

Table 2. Novel metabolites achieving significance in BHS participants. 

Super Pathway Sub Pathway Metabolite BHS Sample ES SE P 

Global Cognition 
Carbohydrate Glycogen Metabolism Maltose1 Overall -0.67 0.15 9.77E-06 

White Male -0.65 0.25 9.66E-03 
White Female -1.01 0.31 1.12E-03 

Black Male -0.47 0.35 1.76E-01 
Black Female -0.07 0.38 8.60E-01 

Processing Speed 
Amino Acid Polyamine Metabolism N-acetyl-isoputreanine*2 Overall -3.11 0.70 1.03E-05 

White Male -0.95 1.23 4.41E-01 
White Female -3.66 1.32 5.71E-03 

Black Male -2.47 1.55 1.15E-01 
Black Female -4.82 1.85 9.77E-03 

Lipid Fatty Acid, Monohydroxy 9-hydroxystearate2 Overall -2.79 0.63 1.11E-05 
White Male -1.44 1.17 2.18E-01 

White Female -2.35 0.99 1.82E-02 
Black Male -3.61 1.76 4.23E-02 

Black Female -5.06 1.69 2.98E-03 
Nucleotide Purine Metabolism, Guanine containing 7-methylguanine2 Overall -9.46 2.15 1.19E-05 

White Male -9.14 3.78 1.61E-02 
White Female -10.55 3.91 7.18E-03 

Black Male -8.42 5.29 1.14E-01 
Black Female -5.89 5.12 2.51E-01 

Lipid Primary Bile Acid Metabolism Glyco-alpha-muricholate**3 Overall 0.01 0.0032 4.10E-05 
White Male 0.01 0.0045 1.58E-02 

White Female 0.02 0.01 1.27E-03 
Black Male 0.01 0.01 1.54E-01 

Black Female 0.01 0.01 2.19E-01 
ES=Effect size; SE=Standard error. Adjusted for age, gender, ethnicity, cigarette smoking, drinking, education, depression, vocabulary, 
BMI, SBP, LDL-C and glucose. 
* Indicates compounds that have not been officially confirmed based on a standard, but we are confident in its identity. 
** Indicates a compound for which a standard is not available, but we are reasonably confident in its identity. 
1. Associated with global cognition score.   
2. Associated with digit coding test.   
3. Associated with trail making test A. 
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biochemical compounds along with 1 still unidentified 
analyte. Among the 5 known metabolites, one involved 
in glycogen metabolism, maltose, was associated with  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

global cognition. An additional four metabolites 
associated with the processing speed cognitive domain 
including: N-acetyl-isoputreanine, an amino acid  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3A. Correlations of metabolite modules with cognition. Global cognition (global cognition score). 
 

 

Figure 3B. Correlations of metabolite modules with cognition. Processing speed domain (digit coding test). 
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involved in polyamine metabolism; 9-hydroxystearate, a 
mono-hydroxy fatty acid metabolite; 7-methylguanine, 
a nucleotide involved in guanine containing purine 
metabolism; and glyco-alpha-muricholate, a metabolite 
involved in primary bile acid metabolism. Bolstering 
findings from the single metabolite analysis, a 
correlated network of metabolites involved in primary 
and secondary bile acid metabolism, which included 
glycol-alpha-muricholate, consistently associated with 
processing speed. In addition, one metabolite module 
comprised of metabolites related to androgenic steroids, 
which were not identified in the single metabolite 
analyses, were correlated with global cognition score. In 
aggregate, these findings identify several novel 
biomarkers of cognitive function in middle-aged adults, 
prior to clinical symptoms and onset of AD.  
 
One single metabolite, maltose, and one metabolite 
module comprised of androgenic steroid related 
metabolites associated with global cognition in the 
current analysis. As one of the major disaccharides, 
maltose is produced by the breakdown of starch and can 
be further metabolized into two glucose molecules [13]. 
Similar to glucose, serum insulin concentrations have 
been empirically demonstrated to increase in response 
to intravenous maltose infusion [14–16], with maltose 
providing twice the calories for the same volume and 
concentration of glucose [14,15]. While insulin resistance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and obesity, in the context of the metabolic syndrome, 
have been independently linked to cognitive decline 
[17,18], our study demonstrated a persistent inverse 
relation between maltose and cognitive phenotypes even 
after adjustment for BMI, systolic BP, and fasting LDL-
C and glucose levels. While future research in this area 
is needed, these data suggest potentially novel bio-
logical pathways linking maltose to cognition. In 
addition to maltose, network analyses suggested a role 
for androgenic steroid metabolites in global cognition. 
Sex differences in cognitive function and certain 
neuropsychiatric diseases have been reported previously 
[19–21]. Consistent with findings reported here, sex 
hormones, including androgens, were believed to be 
important drivers underlying these associations [20,22]. 
Our findings add to the previous literature, suggesting 
that within each sex group and after adjusting for sex, 
androgenic steroid metabolite levels directly associate 
with cognition.   
 
Four correlated metabolites and one metabolite module 
associated with the processing speed cognitive domain 
in our analyses. Among them, three metabolites 
associated with the digit coding test and included N-
acetyl-isoputreanine, 9-hydroxystearate and 7-methyl-
guanine. N-acetyl-isoputreanine is a purported by-
product of aldehyde dehydrogenase (ALDH) enzymatic 
action and end-product of polyamine metabolism [23].   

Figure 3C. Correlations of metabolite modules with cognition. Processing speed domain (trail making test A). 
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Figure 4. Heat map displaying pairwise correlation coefficients for the network of metabolites 
representing the significant primary and secondary bile acid metabolism pathway. 
 

 

Figure 5. Heat map displaying pairwise correlation coefficients for the network of metabolites 
representing the significant androgenic steroids pathway. 
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ALDH is an enzyme critical to alcohol metabolism 
while polyamine metabolism plays an important role in 
cell growth and differentiation. Since both ALDH 
activity and polyamine metabolism have been 
implicated in cognitive dysfunction, the results of this 
analysis suggest a potentially shared biological 
mechanism of action [24–30]. As an endogenous lipo-
peroxidation product, 9-hydroxystearate is poorly 
studied but its parent compound, 9-hydroxystearic acid, 
is a well-known negative regulator of histone de-
acetylase (HDAC) [31,32]. HDAC can remove the 
acetyl group from histone proteins, thereby decreasing 
gene transcription rates [33]. Histone acetylation levels 
have previously been linked to cognitive dysfunction 
[33–35], and HDAC inhibitors are considered pro-
mising future therapeutic agents for the treatment of AD 
[34]. While we are the first to link 7-methylguanine to a 
complex cognition phenotype, this metabolite has 
previously been associated with Huntington’s disease 
(HD), a monogenic disorder with profound effects on 
cognitive and motor function [36]. Furthermore, urine 
levels of 7-methylguanine are a well-known indicator of 
tobacco smoking, which has been previously linked to 
cognitive decline and may suggest a novel biological 
mechanism mediating this relation [37–39]. In 
aggregate, the potential biological relevance of these 
metabolites to cognition strongly support a need further 
study of their temporal relations to cognitive decline. 
 
The remaining metabolite associated with processing 
speed was identified by the TMT A test. The recently 
identified glyco-alpha-muricholate metabolite belongs 
to the primary bile acid metabolism sub-pathway, which 
is essential for the digestion of dietary fats and the 
secretion of lipids [40]. Bolstering the evidence for its 
role in cognition was our observation of a network of 
correlated primary and secondary bile acid metabolism 
metabolites, including glycol-alpha-muricholate, that 
collectively and consistently associated with processing 
speed as measured by both the digit coding and TMT A 
assessments. Furthermore, animal models have 
demonstrated the therapeutic benefits of taurourso-
deoxycholic acid, an endogenous bile acid, in both AD 
and HD pathologies [41,42]. In humans, altered bile 
acid profiles have also been reported in AD [43], with 
our findings further adding evidence of its potentially 
important role in the earlier regulation of cognition. 
 
The current study has several strengths. To our 
knowledge, this is the largest untargeted metabolomics 
study of cognition conducted to date. The large sample 
size enabled analyses stratified by both ethnicity and 
sex, allowing us to report 6 metabolites that may be 
relevant to diverse populations. Furthermore, meta-
bolomics profiling, covariable measurement, and 
cognition phenotyping was conducted using a stringent 

study protocol with rigorous quality assurance and 
quality control procedures employed. Certain 
limitations should also be mentioned. As a cross-
sectional study, this analysis cannot establish a temporal 
relationship between the identified metabolites and 
cognition phenotypes. Thus, prospective studies of these 
metabolites are needed to assess the etiologic relevance 
of our findings. To minimize false positive findings, 
only metabolites with consistency in effect direction 
across the mutually exclusive ethnic and sex groups 
were considered robustly significant in the current 
analysis. However, this rigorous control of type 1 error 
may have limited our ability to detect metabolites with 
effects that are relevant to specific populations. The 
eight metabolites that achieved Bonferroni corrected 
significance but lacked consistency in effect directions 
across ethnic- or sex-groups warrant confirmation by 
future studies.    
 
The current study identified novel associations of five 
metabolites of known biochemical structure and two 
metabolite modules with cognition. Although we are the 
first to describe these metabolite-cognition signals, the 
biological pathways represented by the identified 
metabolites generally demonstrated clear relevance to 
cognition, providing additional qualitative support of 
our findings. In aggregate, this study offers new insights 
into the molecular mechanisms regulating cognitive 
function. Furthermore, the metabolites reported here 
should be evaluated for their longitudinal relationships 
with cognitive decline and development of MCI and 
dementia. 
 
MATERIALS AND METHODS 
 
Study population 
 
The BHS is a community-based long-term study 
investigating the natural history of cardiovascular 
disease among a biracial sample (65% white and 35% 
African-American) of residents from Bogalusa, 
Louisiana, begun in 1973 by Dr. Gerald Berenson. 
From 1973 to today, 7 surveys were conducted in 
children and adolescents aged 4 to 17 years, and 11 
surveys were conducted among adults aged 18 to 51 
years who had been examined previously as children. 
The current BHS cohort includes 1,298 participants 
born between 1959 and 1979 who were screened at least 
2 times during childhood and 2 times during adulthood 
for cardiovascular disease risk factors. Data and 
specimens collected in the 2013 to 2016 follow-up visit 
were used in cross-sectional analysis of these 
participants. Among the 1,298 eligible participants, 
those missing metabolomics (n = 37), covariable 
(n=80), or cognition test data (n=20) were excluded, 
leaving 1,177 participants for the study.  
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Informed consents were obtained from all the Bogalusa 
Heart Study participants after detailed explanation of 
the study. The study was approved by the Institutional 
Review Board at Tulane University.  
 
Metabolite profiling 
 
Untargeted, ultrahigh performance liquid chromato-
graphy-tandem mass spectroscopy (UPLC-MS/MS) was 
conducted by Metabolon© using BHS serum samples 
that had been stored at -80°C since the 2013 to 2016 
visit [44]. Rigorous quality assurance was conducted 
during metabolomics profiling which included the use 
of blanks, blind duplicates (5% of the BHS samples), 
and standard biochemical compounds which were 
integrated into every analyzed sample. Untargeted 
metabolomics profiling resulted in the detection and 
quantification of 1,466 metabolites. These included 956 
known biochemical compounds in pathways related to 
amino acids (n=184), carbohydrates (n=25), cofactors 
and vitamins (n=34), energy (n=9), lipids (n=408), 
nucleotides (n=41), peptides (n=35), and xenobiotics 
(n=220). An additional 510 unnamed compounds 
currently lacking chemical standards were also 
quantified. These metabolites were labeled with an “X” 
followed by numbers (e.g., X-12345) and may be 
identified upon the eventual acquisition of a matching 
purified standard (or via classical structural analysis).  
 
Prior to the statistical analysis, additional quality control 
and manipulation of the metabolite data was 
undertaken. Batch effects were assessed using principal 
components analysis, which revealed no evidence of 
clustering of metabolite data by run-days. Data filtering 
removed 213 metabolites that were missing or below 
the detection threshold in more than 80% of samples 
and 51 metabolites with a reliability coefficient <0.3 
based on blind duplicate analysis. Among the 1,202 
metabolites passing quality control, 167 were missing or 
below the detection threshold in 50% to 80% of the 
samples. Similar to previous analyses [45], these 
metabolites were analyzed as ordinal variables after 
categorization into one of three mutually exclusive 
groups: 1) missing or below-the-detection-limit; 2) 
below the median of detectable values; or 3) greater 
than or equal to the median of detectable values. The 
remaining 1,035 metabolites were analyzed as 
continuous variables, where the minimum observed 
value was imputed for metabolites with missing or 
below-the-detection-limit values.  
  
Measurement of study covariables  
 
Covariable data were collected following stringent 
protocols that have been employed consistently at each 
clinical study visit [46]. Questionnaires were 

administered to obtain information on demographic 
characteristics (including age, gender, ethnicity, and 
education) and lifestyle risk factors (including cigarette 
smoking and alcohol consumption). Depression was 
assessed using the CES-D instrument [47], which has 
been validated previously and used extensively for 
research purposes [48,49]. Anthropometric measures 
were obtained by trained staff with participants in light 
clothing without shoes. During each visit, body weight 
and height were measured twice to the nearest 0.1 kg 
and 0.1 cm, respectively. The mean values of height and 
weight were used to estimate body mass index (BMI), 
which was calculated as weight in kilograms divided by 
height in square meters. Blood pressure (BP) was 
measured in the morning in triplicate by each of two 
trained observers using a mercury sphygmomanometer 
with the participant in a relaxed, sitting position. 
Systolic and diastolic BP levels were measured as the 
first and fifth Korotkoff sounds, respectively. The mean 
of the six BP values were used to estimate BP at each 
study visit. 
 
Participants were instructed to fast for 12 hours prior to 
the blood sample collection. Serum total cholesterol 
(TC), high density lipoprotein cholesterol (HDL-C), and 
triglyceride (TG) levels were assayed using an 
enzymatic procedure as part of a lipid panel (Laboratory 
Corporation of America, Burlington, NC, USA) [50,51]. 
Low-density lipoprotein cholesterol (LDL-C) was 
calculated using the Friedewald equation (LDL-C = TC 
- HDL-C - TG/5) for those with TG less than 400 mg/dl 
[52]. Glucose was measured in adults using a multi-
chemistry (SMA20) profile by enzymatic procedures 
using the multichannel Olympus Au-5000 Analyzer 
(Olympus, Lake Success, New York) [53]. 
 
Measurement of cognition phenotypes 
 
Global cognitive function and specific cognitive 
domains were assessed during the 2013-2016 visit using 
a battery of eight standard tests (Supplementary Figure 
1). Tests were conducted by trained technicians and 
included the following: 1) Logical Memory I (WMS-
IV), assessing narrative memory under a free recall 
condition; 2) Logical Memory II (WMS-IV), assessing 
long-term narrative memory with free recall; 3) 
Recognition (WMS-IV), assessing long-term narrative 
memory with recognition tasks; 4) Digit Span (WAIS-
IV),  assessing attention, working memory and execu-
tive function via two tasks (Digit Span Forward and 
Digit Span Backward); 5) Word and Letter Reading 
(WRAT-4), assessing decoding capability; 6) 
Vocabulary (WAIS-IV), assessing word knowledge and 
verbal concept formation; 7) Digit Symbol Coding 
(WAIS-IV), assessing processing speed and working 
memory; and 8) Trail Making Test (TMT), assessing 
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visual search, scanning, speed of processing, mental 
flexibility, and executive function via two tasks (TMT 
forms A and B). For all tests except for the TMT, higher 
scores reflect better cognitive function. For the TMT, 
the opposite is true, with lower scores indicating better 
cognitive function.  
 
To estimate global cognition, crude scores from the 
eight tests were Z-score transformed to a mean of 0 and 
standard deviation of 1. After flipping the sign of the 
TMT test, scores were summed for each study 
participant. 
 
To normalize the distributions of the cognitive function 
phenotypes, crude scores were normalized using a rank-
based inverse normal transformation. The transformed 
values were then rescaled to reflect the original trait 
distribution (multiplying by the original standard 
deviation), which should provide meaningful effect 
estimates in association analyses [54]. 
 
Statistical analysis 
 
Characteristics of study participants were presented as 
means and standard deviations (SDs) or median and 
interquartile range (IQRs) for continuous variables and 
as percentages for categorical variables. 
 
Association of single metabolites with cognition 
phenotypes 
Multiple linear regression models were used to analyze 
the associations between each metabolite and cognition 
phenotype after adjustment for age, gender, ethnicity, 
cigarette smoking, drinking, education, depression, 
vocabulary, BMI, systolic BP, LDL-C, and glucose. 
Analyses were performed in the overall sample and 
according to both ethnicity and sex. A stringent 
Bonferroni correction for testing 1,202 metabolites was 
employed, corresponding to an α-threshold of 4.16×10-5 
(0.05/1202). To minimize false positive findings, only 
metabolites achieving this p-value in any of the overall 
or ethnicity-sex specific analyses, and displaying 
consistent effect directions across all analyses, were 
considered statistically significant. Pairwise correlations 
of identified metabolites were assessed using Pearson 
correlation. All statistical analyses were performed in 
SAS (version 9.4; SAS Institute, Cary, NC) and in R 
(version 3.3.3).  
 
Associations of metabolite modules with cognition 
phenotype 
To identify networks of highly correlated serum 
metabolites among BHS participants, weighted 
correlation network analysis (WGCNA) was utilized 
[55]. Unlike principal component analysis, this 
unsupervised data reduction technique allows for 

dependency between components, which may more 
accurately represent the related biological pathways of 
identified metabolites [55,56].  A description of 
WGCNA and its application to metabolomics studies 
has been reported previously [55,57]. Briefly, the 
metabolite network was constructed as an adjacency 
matrix based on the weighted pairwise-correlations of 
all metabolites [58]. Modules, defined as densely 
interconnected metabolites, were then identified from 
the network using an unsupervised hierarchical 
clustering approach [59]. For each module, an eigen-
metabolite was generated. This measure represents the 
module’s first principal component and can be 
interpreted as its weighted average metabolite value. 
Because preliminary analyses revealed similar 
metabolite clustering across ethnic groups, metabolite 
modules were constructed using metabolite data for the 
1,202 metabolites passing quality control among all 
study participants. To determine which biological 
pathways were best represented by each module, the 
metabolites most strongly correlated with each 
module’s eigenmetabolite (r>0.70) were identified, and 
the sub-pathways representing those metabolites were 
used to label each module. 
 
Adjusted cognition phenotype measures were created 
using the residual values generated by regressing each 
raw cognition phenotype on age, gender, ethnicity, 
cigarette smoking, drinking, education, depression, 
vocabulary, BMI, SBP, LDL-C and glucose. The 
correlations between each module (eigenmetabolite) 
and the adjusted cognition phenotypes were then 
estimated in the overall sample and according to both 
ethnicity and sex. To correct for testing 9 serum 
metabolite modules (eigenmetabolites), a Bonferroni 
corrected α-threshold of 5.56×10-3 (0.05/9) was 
employed. Similar to the single metabolite study, 
modules achieving this p-value in any of the overall or 
ethnicity-sex specific analyses and demonstrating 
consistent effect directions across all analyses, were 
considered significant. These analyses were performed 
using the WGCNA package in R (version 3.3.3). 
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