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Abstract: Variable domains of camelid antibodies (so-called nanobodies or VHH) are the smallest
antibody fragments that retain complete functionality and therapeutic potential. Understanding of the
nanobody-binding interface has become a pre-requisite for rational antibody design and engineering.
The nanobody-binding interface consists of up to three hypervariable loops, known as the CDR loops.
Here, we structurally and dynamically characterize the conformational diversity of an anti-GFP-
binding nanobody by using molecular dynamics simulations in combination with experimentally
derived data from nuclear magnetic resonance (NMR) spectroscopy. The NMR data contain both
structural and dynamic information resolved at various timescales, which allows an assessment
of the quality of protein MD simulations. Thus, in this study, we compared the ensembles for the
anti-GFP-binding nanobody obtained from MD simulations with results from NMR. We find excellent
agreement of the NOE-derived distance maps obtained from NMR and MD simulations and observe
similar conformational spaces for the simulations with and without NOE time-averaged restraints.
We also compare the measured and calculated order parameters and find generally good agreement
for the motions observed in the ps–ns timescale, in particular for the CDR3 loop. Understanding
of the CDR3 loop dynamics is especially critical for nanobodies, as this loop is typically critical for
antigen recognition.

Keywords: single-domain antibody; nanobody; NMR; molecular dynamics simulations

1. Introduction

Camelids such as camels, dromedaries, llamas, alpacas, guanacos, and vicuñas contain
heavy-chain-only antibodies, which consist of a stable and soluble single-antigen-binding
variable domain [1–3]. Single-domain antibodies (VHHs), also known as nanobodies®,
have received increasing attention as highly versatile proteins with a high affinity for
a variety of targets, and their flexibility has opened the door for a new generation of
therapeutics [4,5]. Nanobodies have been proposed as treatments for various diseases
and infections, including: autoimmune diseases, allergies, and for use as antivirals. The
term nanobody originates from a trademark introduced by the company Ablynx in 2003
and became a general classification for these single-immunoglobulin domain proteins,
reflecting their small size compared to antibodies, which are more than 10 times larger [6].
Nanobodies are potent alternatives to conventional antibodies, because of their small size,
refolding capacity, stability, specificity, and natural origin [4,7,8]. Structurally, nanobodies
are still functional without a light-chain counterpart found in typical antibodies, as they
lack the hydrophobic interface, which is usually required to pair with a light chain in
IgG-type antibodies [9]. Thus, the amino acid sequences of naturally occurring VHH
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antibodies are expected to contain adaptations to compensate for the absence of the paired
light-chain variable domain. Nevertheless, it has been shown that VHH sequences share a
high degree of similarity (~80%) with conventional human variable heavy-chain domains
(VH). However, the less hydrophobic interface in VHH originates from several residue
substitutions (mainly hydrophilic residues), namely L11S, V37F/Y, G44E, L45R/C, and
W47G (following the Kabat nomenclature [10]), that discriminate the conventional VH from
VHH. These residue substitutions are believed to enhance the stability in the absence of
the light chain and result in favorable biophysical characteristics, such as stability and low
aggregation risk [11,12]. However, the amino acid residues at the positions that determine
the typical immunoglobulin fold are all well-conserved in the VHH [13,14].

The VHH domain consists of four framework regions (FR1, FR2, FR3, FR4), which are
separated by three hypervariable loops, known as the complementarity-determining region
loops (CDRs), namely the CDR1, CDR2, and CDR3 loops (Figure 1). The antigen-binding
site, the paratope, is formed not exclusively by the CDR loops but also by neighboring
framework residues, which contribute to recognizing and binding the antigen. VHHs
contain a canonical disulfide bond connecting the β-strands of framework regions 1 and 3.
Various camelid antibodies also have an additional disulfide bond connecting either the
end of the CDR1 loop with the CDR3 loop (camels) or the beginning of the CDR2 loop with
the CDR3 loop (llamas). Furthermore, the CDR3 loop of VHHs can be substantially longer
compared to conventional IgG and possesses the unique ability to form long extensions
to reach cavities and buried binding sites with high shape complementarity [15]. Thus,
the CDR3 loop of VHHs plays a critical role in recognizing and binding the antigen [16].
However, due to the high diversity in the length, sequence, and structure of the CDR3 loop,
structure prediction remains challenging [17]. Recent studies using molecular dynamics
(MD) simulations found that one single static structure is not sufficient to functionally un-
derstand the antigen-binding site, and suggested to characterize the paratopes as ensembles
in solution [18–20]. We previously showed that antigen recognition follows a conforma-
tional selection-type binding to the dominant structure in solution, which is frequently not
reflected by a single structure due to crystal packing effects in the apo form [18,21].
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Figure 1. Structure of the anti-GPF nanobody with and without the antigen present. (A) Schematic 
representation of a heavy-chain-only antibody and a nanobody with the structure (PDB accession 
code: 3OGO). The CDR1, CDR2, and CDR3 loops are colored in teal, deep-teal, and dark blue, re-
spectively. The conserved disulfide bridge is indicated in yellow. The FR1, FR2, FR3, and FR4 are 
illustrated in light grey, dark-grey, aquamarine, and turquoise, respectively. (B) Structure of the 

Figure 1. Structure of the anti-GPF nanobody with and without the antigen present. (A) Schematic
representation of a heavy-chain-only antibody and a nanobody with the structure (PDB accession
code: 3OGO). The CDR1, CDR2, and CDR3 loops are colored in teal, deep-teal, and dark blue,
respectively. The conserved disulfide bridge is indicated in yellow. The FR1, FR2, FR3, and FR4
are illustrated in light grey, dark-grey, aquamarine, and turquoise, respectively. (B) Structure of the
anti-GFP binding nanobody in complex with GFP. The dashed lines show interactions of the CDR3
loop with the antigen.
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MD simulations are a powerful tool to study biomolecular movements in atomistic
detail on timescales ranging from picoseconds to milliseconds. Various studies have already
validated MD simulations against quantitative experimental data of protein structure and
dynamics to further improve the MD method itself, as well as to mechanistically interpret
the experimental data [22–24]. NMR data of proteins in solution are uniquely suited to
observe different timescales of protein dynamics and to assess the quality of protein MD
simulations [25–27]. In this study, we tested the applicability of recently honed MD methods
to characterize the conformational diversity of an anti-GFP binding nanobody by combining
molecular dynamics simulations with experimental data from NMR spectroscopy in order
to better understand nanobody structures and dynamics.

2. Results

To characterize the conformational diversity of the CDR loops of the anti-GFP
nanobody [28,29] in solution, we used a protocol using bias-exchange meta-dynamics
in combination with classical MD simulations (resulting in 15.4 µs of MD simulations)
to overcome the limitations of conformational sampling imposed by high-energy barri-
ers [19,30,31]. These simulations will be referred to as “simulated MD ensemble”. Addi-
tionally, we used experimental nuclear magnetic resonance (NMR) nuclear Overhauser
effect (NOE) data in combination with molecular dynamics simulations to understand the
dynamics and the respective timescales of conformational rearrangements for the anti-GFP
nanobody [28,29]. The time averaging and 1/r6 dependence of the interatomic distances
on intensity provides accurate information for assessing MD sampling. The simulation
performed with NOE restraints will be referred to as “simulated NMR ensemble”. Figure 1
illustrates the structure of the nanobody, highlighting the three CDR loops, and displays the
complex structure of the nanobody with GFP. Figure 1B shows that the CDR3 loop plays a
critical role in antigen recognition and binding, while the CDR1 and CDR2 loops do not
interact with the antigen. To visualize the conformational spaces and to reconstruct the free
energy landscape of the CDR1, CDR2, and CDR3 loops, and the paratope, we performed
a time-lagged independent component analysis [32] (tICA) of the accumulated 15.4 µs of
MD simulations and the simulation including the time-averaged NOE restraints, based on
the backbone torsions of the respective CDR loops in the same coordinate system. The free
energy surfaces and the respective conformational ensembles are illustrated in Figure 2.
What can immediately be seen is that the conformational space is confined to a single
dominant minimum, revealing structural rearrangements in the low-nanosecond timescale.
The transition timescales have been estimated based on the tICA free energy landscape,
which takes the number of conformational transitions into account [33]. In agreement with
our observations from the simulated MD ensemble (Figure 2), we found by comparing our
results with the NMR ensemble (including the time-averaged NOE restraints) that most
of the movements occurred in the ps–ns timescale. Additionally, we also performed MD
simulations with NOE restraints to compare the respective ensembles in solution (Figure 2).
While we covered a very similar conformational space, the observed dynamics including
the NOE restraints resulted in a more restricted conformational space.

The NOE restraints were obtained with the following strategy. Since a crystal structure
was already known, the goal was not to test the limits of NMR structure techniques, but
rather to provide as many calibrated NOEs as accurately as possible. To do this, 171 NOEs
were manually assigned with the aid of the crystal structure 3OGO [28]. A round zero of
structure calculations provided a loose ensemble of starting structures that were used by
CYANA to assign the remaining NOEs using an iterative strategy. A total of 1194 upper-
limit restraints were determined by CYANA.
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Figure 2. Free energy surfaces of the simulated MD ensemble (A) and the simulated NMR ensem-
ble (C). Combined tICA of the simulated MD ensemble and the simulated NMR ensemble was
performed to generate kinetic coordinate systems for each CDR loop and the whole paratope. tIC1
and tIC2 represent the directions of the two slowest movements of the system. The crystal structure
is projected into these coordinate systems and illustrated as a white dot. (B)The respective structure
representatives of the simulated MD ensembles are shown in the middle, focusing on the respective
CDR loops.

The CYANA calculated structures had 1.5 Å RMSD for the residues 3–113. Table 1
shows that Ramachandran space was never violated, only a handful of NOEs were occa-
sionally violated in the ensemble, and eight van der Waals close contacts were noted. These
statistics show that the NMR restraints are not in conflict with standard protein geometry.
Figure 3 shows that the NMR ensemble matches the 3OGO structure well (Figure 3), with
1.4 Å RMSD over 110 Cα-atoms, indicating that the accuracy of the ensemble is on a par
with the precision. The biggest difference in the NMR versus the 3OGO crystal structure is
in the displacement of the exterior loop residues 57–69. In this loop, the backbone angles are
very similar, but the NMR loop is slightly displaced from the beta sheets of the nanobody,
likely due to a paucity of long-range restraints on the exterior of the protein. The structure
demonstrates that the upper-limit restraints calibrated from the NOE intensities accurately
reflect the nanobody structure, as determined by crystallography.



Int. J. Mol. Sci. 2022, 23, 5419 5 of 12

Table 1. Summary of restraints used for NMR structure determination and structure refinement
statistics (20 structures) of experimental restraints.

NOE Assigned by CYANA 1194

Manually assigned NOEs 171
H-Bond restraints 38
Dihedral restraints 194

Backbone RMSD (residues 3–113) 1.5 Å
Ramachandran Space

Most Favored 80.3 %
Additionally Allowed 19.2 %
Generously Allowed 0.5 %

Disallowed 0
Violations

NOE (<0.2 Å) 19
Dihedrals 3

VDW close contacts 8
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CYANA (aquamarine) is compared to the crystal structure 3OGO (grey). A dark-grey arrow indicates
the displacement of residues 57–69.

Apart from directly comparing the obtained conformational spaces (Figure 2), we
also compared the experimental NOE upper limits with the calculated NOEs from the
simulated MD ensemble (Figure 4A). The results show the presence of highly similar
NOEs between the simulated MD ensemble and the experiment. To compare the order
parameters (S2) from our simulated MD ensemble with the experimentally determined
ones, we performed 1 µs of classical MD simulations by using the dominant paratope
ensemble structure as a starting structure. We calculated S2 from the obtained classical
MD trajectory by using pytraj [34] and present the comparison with the experimentally
determined order parameters in Figure 4B. While we found few residues in the CDR1
loop with dynamic discrepancies, we observed an overall good agreement between the
calculated and experimentally measured order parameters.
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3. Discussion

In this study, we characterized the conformational diversity of an anti-GFP nanobody [28]
with molecular dynamics simulations and NMR. Figure 2 compares the conformational
landscapes of the simulated MD ensemble and simulated NMR ensemble for the individual
CDR loops and the whole paratope in a combined coordinate system. We observe that the
NOE restricted MD simulation results in a decidedly more restricted conformational space
compared to the simulated MD ensemble trajectories. It is therefore worth discussing any
bias in the method to measure and calibrate the NOE restraints. The iterative assignment
and calibration of NOEs by CYANA is designed to converge on a single structural ensemble
with a low RMSD, as incorrect assignments and erroneous distances are removed. This
strategy mimics manual NMR analysis and other auto-assignment methods. The point
is that rare conformations that might be present in the NOE data are likely pruned, and
the resulting structures are closer to a global minimum. Therefore, it is reasonable that
the ensembles restrained by NOEs are a narrow subset of the simulated MD ensemble.
Attempts to include rare conformations in NMR structure calculations utilize the mea-
surement of exact NOEs (eNOEs) and better algorithms that account for spin diffusion
and multiple states [35,36]. However, measuring exact NOEs requires significantly more
spectrometer time (up to six additional 3D spectra are recommended [35]) and the methods
are not as amenable to automated assignment. Enhanced sampling with classical MD
simulations in addition to traditional NMR structure analysis likely represent a viable
alternative procedure to examine rare states.

In comparison to various antibodies [20,37] and other single-domain formats (e.g.,
VNARs, T-cell, and β-variable domains) [31,38–40], this anti-GFP nanobody shows limited
conformational diversity, indicating a high specificity for the GFP protein. Even though
this antibody already seems quite matured, describing the antigen-binding site as a confor-
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mational ensemble in solution is necessary to provide a quantitative understanding of the
binding interface [38].

Rare states can also be detected by NMR on timescales of ms to sub-ms [41]. However,
the CPMG experiments did not detect any convincing dispersions (data not shown). On a
faster timescale of ns–ps, NMR can directly assess molecular motions on fast timescales.
Comparison of these measurements with MD is common and generally shows good corre-
lations between measured and simulated order parameters [42,43]. Similarly, in the case of
this nanobody, there is generally good agreement between the measured and calculated
order parameters, especially for the CDR3 loop, again suggesting that our MD simulations
capture realistic molecular motions. Capturing the flexibility of the CDR3 loop is particu-
larly important for nanobodies, as this loop is mainly involved in recognizing and binding
to the antigen [12,15,16,44]. Admittedly, there were very few residues in the CDR1 loop
with significant dynamic excursions, so the analysis of large motions is slightly biased
toward a few interesting loop residues. Figure 4A shows the calculated and experimentally
determined NOEs and confirms the good agreement of both methods. In contrast to other
single-domain antibodies, which showed substantial conformational rearrangements in the
micro-to-millisecond timescale, this anti-GFP nanobody is confined to one single minimum
with structural changes in the ps–ns timescale [31,38].

4. Methods
4.1. Structure Preparation

As starting structures for our simulations, we used the crystal structure of the anti-GFP
nanobody with the PDB accession code 3OGO [28].

The starting structure was prepared and protonated in MOE using the Protonate3D
tool [45,46]. Charge neutrality was ensured by using the uniform background plasma
approach in AMBER [47,48]. Using the tleap tool of the AmberTools20 package, the crystal
structure was soaked in cubic water boxes of TIP3P water molecules with a minimum
wall distance of 10 Å to the protein [47,49–51]. The structures were described with the
AMBER force field 14SB [52]. The nanobody was carefully equilibrated using a multistep
equilibration protocol [53,54].

4.2. Metadynamics Simulations

To enhance the sampling of the conformational space, we performed 500 ns of well-
tempered bias-exchange meta-dynamics simulations in GROMACS with the PLUMED
2 implementation [55–57]. As an enhanced sampling technique, we chose meta-dynamics
because it allowed us to focus the enhanced sampling on predefined collective variables
(CV) [58–60]. The sampling is accelerated by a history-dependent bias potential, which is
constructed in the space of the CVs. As collective variables, we used a well-established
protocol, boosting a linear combination of sine and cosine of the ψ torsion angles of all
six CDR loops calculated with functions MATHEVAL and COMBINE implemented in
PLUMED 2 [21,39,61]. As discussed previously, the ψ torsion angle comprehensively
captures conformational transitions [62]. The underlying method presented here has been
validated in various studies against a large number of experimental results. The simulations
were performed at 300 K in an NpT ensemble to be as close to the experimental conditions as
possible and to obtain the correct density distributions of both protein and water. We used a
Gaussian height of 10.0 kJ/mol and a width of 0.3 rad. Gaussian deposition occurred every
1000 steps and a bias factor of 10 was used. The resulting trajectory was clustered with the
program cpptraj using the average linkage hierarchical clustering algorithm with a root
mean square deviation cutoff criterion of 1.2 Å, resulting in a large number of clusters [63].
The cluster representatives for the nanobody were equilibrated and simulated for 100 ns
using the AMBER 20 simulation package [47].
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4.3. Molecular Dynamics Simulations

MD simulations were performed in an NpT ensemble using the pmemd.cuda module
of AMBER 20 [64]. Bonds involving hydrogen atoms were restrained with the SHAKE
algorithm, allowing a timestep of 2.0 femtoseconds. Atmospheric pressure (1 bar) of the
system was set by weak coupling to an external bath using the Berendsen algorithm [65].
The Langevin thermostat was used to maintain the temperature during simulations at
300 K [66,67].

With the obtained trajectories, we performed a time-lagged independent compo-
nent analysis (tICA) using the python library PyEMMA 2 [68], employing a lag time
of 10 nanoseconds. tICA was applied to identify the slowest movements of nanobody
CDR loops and consequently to obtain a kinetic discretization of the sampled conforma-
tional space.

4.4. NOE Restraints Simulations—NMR Ensemble

The NOE distances were derived from intramolecular magnetic interactions which
are inversely proportional (1/r6) to the distances between protons. The NOE values were
utilized as determined by CYANA, see below. The structure was minimized, equilibrated,
and then simulated for 1 µs using the available 1194 NOE distance restraints, including
time-averaged constraints in an NpT ensemble using pmemd.cuda, following the same
parameters as described in the “Molecular Dynamics Simulations” Section [69,70]. A time
constant for the memory function for the distance restraints of 100 ps was chosen.

4.5. Expression

BL21(DE3) E. coli were grown to an OD ~4 in 1 L of 2XYT media at 37 ◦C. Cells were pel-
leted, then brought up in 1 L of M9 minimal media which was labeled with either 15NH4Cl
or 15NH4Cl and U-13C-glucose. Cells had a 1 h equilibration time while shaking at 25 ◦C.
The temperature was lowered to 18 ◦C and cells were induced with 0.5 mM of IPTG. Protein
was expressed overnight (12–18 h). Cells were pelleted and frozen for later purification. The
expressed protein sequence was: MAQVQLVESGGALVQPGGSLRLSCAASGFPVNRYSMR-
WYRQAPGKEREWVAGMSSAGDRSSYEDSVKGRFTISRDDARNTVYLQMNSLKPEDTAV
YYCNVNVGFEYWGQGTQVTVSSHHHHHH.

4.6. Purification

Frozen cells were thawed and re-suspended in 15 mL of a lysis buffer containing 1 M
NaCl, 50 mM HEPES (pH 7.6), 10 mM imidazole, 1 mM MgSO4, 18 mM B-mercaptoethanol,
1 mL B-PER (Thermo Scientific), and an EDTA-free protease inhibitor cocktail tablet (Roche).
Cells were lysed by sonication (3 cycles × 2 min/cycle) on ice. The lysate was centrifuged
at 28,000× g for 30 min at 4 ◦C. The supernatant was syringe-filtered to produce a clear
lysate. The lysate was loaded onto an IMAC column packed with Ni+2-charged NTA-resin
(Amersham). Protein was then eluted from the column with a buffer consisting of 0.5 M
NaCl, 50 mM HEPES (pH 7.6), and a stepped gradient of imidazole of 10, 25, and 300 mM,
where the protein eluted in the 300 mM imidazole fraction. The protein was further purified
using a Superdex 26/60 S75 preparative-grade gel filtration column (GE Amersham) with
a buffer consisting of 150 mM NaCl, 25 mM HEPES (pH 7.4), 1 mM DTT, and 0.25 mM
sodium azide.

4.7. NMR Data Acquisition

The NMR backbone and side-chain peaks were assigned using standard NMR tech-
niques [71]. The peaks were remarkably well-dispersed, facilitating a straightforward
attribution of spectral coordinates to individual atoms. The NOE spectra were analyzed
in conjunction with the 3OGO structure, which allowed the rapid assignment of the beta-
strand interactions that were used to assign H-bond pseudo-NOEs and other long-range
NOEs. A total of 38 H-bonds and 171 NOEs were input as initial restraints for structure
calculations with CYANA [72]. The H-bond H–O interactions were set with upper lim-
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its of 2.5 Å, and the NOE upper limits were set at 5 or 7 Å for leucine or valine methyl.
These ‘round-zero’ structures had, as expected, low convergence, with a 3–4 Å RMSD.
The 10 lowest energy round-zero structures were used as initial structures in a subsequent
round of CYANA calculations that included all the unassigned peaks (4224) and the manu-
ally assigned NOEs. The peak intensities and ppm coordinates were converted to NOE
upper limits in CYANA’s iterative structure determination approach. The NOE upper limits
(1194) after the final iteration of CYANA were used for comparison with the MD trajectories.
Details of the structural convergence and structure quality are shown in Table 1.

Relaxation data were acquired using common pulse sequences for T1, T2, {1H-15N}-
NOE, and relaxation dispersion at 600 and 800 MHz [41,73,74]. The T1, T2, and {1H,15N}-
NOE data were analyzed using the program RELAX to choose the best motional model for
order parameters [75,76]. Relaxation dispersion data were analyzed with GUARDD [77].

5. Conclusions

We showed that the CDR loop ensembles obtained with and without time-averaged
NOE restraints were in good agreement, which was reflected in the very similar covered
conformational space, with the same dominant minimum in solution. In line with the
NMR data, we observed that most of the movements for the CDR loops of this nanobody
occurred in the low-nanosecond timescale. This is also in line with the good accordance
of the order parameters, especially for the CDR3 loop. Thus, we showed that our MD
ensemble characterizes and captures the relevant CDR loop conformations in solution that
are important for antigen recognition.
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